//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Shared implementation of BlockFrequency for IR and Machine Instructions. // See the documentation below for BlockFrequencyInfoImpl for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/BasicBlock.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/DOTGraphTraits.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/ScaledNumber.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #define DEBUG_TYPE "block-freq" namespace llvm { class BasicBlock; class BranchProbabilityInfo; class Function; class Loop; class LoopInfo; class MachineBasicBlock; class MachineBranchProbabilityInfo; class MachineFunction; class MachineLoop; class MachineLoopInfo; namespace bfi_detail { struct IrreducibleGraph; // This is part of a workaround for a GCC 4.7 crash on lambdas. template struct BlockEdgesAdder; /// \brief Mass of a block. /// /// This class implements a sort of fixed-point fraction always between 0.0 and /// 1.0. getMass() == UINT64_MAX indicates a value of 1.0. /// /// Masses can be added and subtracted. Simple saturation arithmetic is used, /// so arithmetic operations never overflow or underflow. /// /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses /// an inexpensive floating-point algorithm that's off-by-one (almost, but not /// quite, maximum precision). /// /// Masses can be scaled by \a BranchProbability at maximum precision. class BlockMass { uint64_t Mass; public: BlockMass() : Mass(0) {} explicit BlockMass(uint64_t Mass) : Mass(Mass) {} static BlockMass getEmpty() { return BlockMass(); } static BlockMass getFull() { return BlockMass(UINT64_MAX); } uint64_t getMass() const { return Mass; } bool isFull() const { return Mass == UINT64_MAX; } bool isEmpty() const { return !Mass; } bool operator!() const { return isEmpty(); } /// \brief Add another mass. /// /// Adds another mass, saturating at \a isFull() rather than overflowing. BlockMass &operator+=(BlockMass X) { uint64_t Sum = Mass + X.Mass; Mass = Sum < Mass ? UINT64_MAX : Sum; return *this; } /// \brief Subtract another mass. /// /// Subtracts another mass, saturating at \a isEmpty() rather than /// undeflowing. BlockMass &operator-=(BlockMass X) { uint64_t Diff = Mass - X.Mass; Mass = Diff > Mass ? 0 : Diff; return *this; } BlockMass &operator*=(BranchProbability P) { Mass = P.scale(Mass); return *this; } bool operator==(BlockMass X) const { return Mass == X.Mass; } bool operator!=(BlockMass X) const { return Mass != X.Mass; } bool operator<=(BlockMass X) const { return Mass <= X.Mass; } bool operator>=(BlockMass X) const { return Mass >= X.Mass; } bool operator<(BlockMass X) const { return Mass < X.Mass; } bool operator>(BlockMass X) const { return Mass > X.Mass; } /// \brief Convert to scaled number. /// /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty() /// gives slightly above 0.0. ScaledNumber toScaled() const; void dump() const; raw_ostream &print(raw_ostream &OS) const; }; inline BlockMass operator+(BlockMass L, BlockMass R) { return BlockMass(L) += R; } inline BlockMass operator-(BlockMass L, BlockMass R) { return BlockMass(L) -= R; } inline BlockMass operator*(BlockMass L, BranchProbability R) { return BlockMass(L) *= R; } inline BlockMass operator*(BranchProbability L, BlockMass R) { return BlockMass(R) *= L; } inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) { return X.print(OS); } } // end namespace bfi_detail template <> struct isPodLike { static const bool value = true; }; /// \brief Base class for BlockFrequencyInfoImpl /// /// BlockFrequencyInfoImplBase has supporting data structures and some /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on /// the block type (or that call such algorithms) are skipped here. /// /// Nevertheless, the majority of the overall algorithm documention lives with /// BlockFrequencyInfoImpl. See there for details. class BlockFrequencyInfoImplBase { public: typedef ScaledNumber Scaled64; typedef bfi_detail::BlockMass BlockMass; /// \brief Representative of a block. /// /// This is a simple wrapper around an index into the reverse-post-order /// traversal of the blocks. /// /// Unlike a block pointer, its order has meaning (location in the /// topological sort) and it's class is the same regardless of block type. struct BlockNode { typedef uint32_t IndexType; IndexType Index; bool operator==(const BlockNode &X) const { return Index == X.Index; } bool operator!=(const BlockNode &X) const { return Index != X.Index; } bool operator<=(const BlockNode &X) const { return Index <= X.Index; } bool operator>=(const BlockNode &X) const { return Index >= X.Index; } bool operator<(const BlockNode &X) const { return Index < X.Index; } bool operator>(const BlockNode &X) const { return Index > X.Index; } BlockNode() : Index(UINT32_MAX) {} BlockNode(IndexType Index) : Index(Index) {} bool isValid() const { return Index <= getMaxIndex(); } static size_t getMaxIndex() { return UINT32_MAX - 1; } }; /// \brief Stats about a block itself. struct FrequencyData { Scaled64 Scaled; uint64_t Integer; }; /// \brief Data about a loop. /// /// Contains the data necessary to represent a loop as a pseudo-node once it's /// packaged. struct LoopData { typedef SmallVector, 4> ExitMap; typedef SmallVector NodeList; typedef SmallVector HeaderMassList; LoopData *Parent; ///< The parent loop. bool IsPackaged; ///< Whether this has been packaged. uint32_t NumHeaders; ///< Number of headers. ExitMap Exits; ///< Successor edges (and weights). NodeList Nodes; ///< Header and the members of the loop. HeaderMassList BackedgeMass; ///< Mass returned to each loop header. BlockMass Mass; Scaled64 Scale; LoopData(LoopData *Parent, const BlockNode &Header) : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header), BackedgeMass(1) {} template LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, It2 LastOther) : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) { NumHeaders = Nodes.size(); Nodes.insert(Nodes.end(), FirstOther, LastOther); BackedgeMass.resize(NumHeaders); } bool isHeader(const BlockNode &Node) const { if (isIrreducible()) return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders, Node); return Node == Nodes[0]; } BlockNode getHeader() const { return Nodes[0]; } bool isIrreducible() const { return NumHeaders > 1; } HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) { assert(isHeader(B) && "this is only valid on loop header blocks"); if (isIrreducible()) return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) - Nodes.begin(); return 0; } NodeList::const_iterator members_begin() const { return Nodes.begin() + NumHeaders; } NodeList::const_iterator members_end() const { return Nodes.end(); } iterator_range members() const { return make_range(members_begin(), members_end()); } }; /// \brief Index of loop information. struct WorkingData { BlockNode Node; ///< This node. LoopData *Loop; ///< The loop this block is inside. BlockMass Mass; ///< Mass distribution from the entry block. WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {} bool isLoopHeader() const { return Loop && Loop->isHeader(Node); } bool isDoubleLoopHeader() const { return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() && Loop->Parent->isHeader(Node); } LoopData *getContainingLoop() const { if (!isLoopHeader()) return Loop; if (!isDoubleLoopHeader()) return Loop->Parent; return Loop->Parent->Parent; } /// \brief Resolve a node to its representative. /// /// Get the node currently representing Node, which could be a containing /// loop. /// /// This function should only be called when distributing mass. As long as /// there are no irreducible edges to Node, then it will have complexity /// O(1) in this context. /// /// In general, the complexity is O(L), where L is the number of loop /// headers Node has been packaged into. Since this method is called in /// the context of distributing mass, L will be the number of loop headers /// an early exit edge jumps out of. BlockNode getResolvedNode() const { auto L = getPackagedLoop(); return L ? L->getHeader() : Node; } LoopData *getPackagedLoop() const { if (!Loop || !Loop->IsPackaged) return nullptr; auto L = Loop; while (L->Parent && L->Parent->IsPackaged) L = L->Parent; return L; } /// \brief Get the appropriate mass for a node. /// /// Get appropriate mass for Node. If Node is a loop-header (whose loop /// has been packaged), returns the mass of its pseudo-node. If it's a /// node inside a packaged loop, it returns the loop's mass. BlockMass &getMass() { if (!isAPackage()) return Mass; if (!isADoublePackage()) return Loop->Mass; return Loop->Parent->Mass; } /// \brief Has ContainingLoop been packaged up? bool isPackaged() const { return getResolvedNode() != Node; } /// \brief Has Loop been packaged up? bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; } /// \brief Has Loop been packaged up twice? bool isADoublePackage() const { return isDoubleLoopHeader() && Loop->Parent->IsPackaged; } }; /// \brief Unscaled probability weight. /// /// Probability weight for an edge in the graph (including the /// successor/target node). /// /// All edges in the original function are 32-bit. However, exit edges from /// loop packages are taken from 64-bit exit masses, so we need 64-bits of /// space in general. /// /// In addition to the raw weight amount, Weight stores the type of the edge /// in the current context (i.e., the context of the loop being processed). /// Is this a local edge within the loop, an exit from the loop, or a /// backedge to the loop header? struct Weight { enum DistType { Local, Exit, Backedge }; DistType Type; BlockNode TargetNode; uint64_t Amount; Weight() : Type(Local), Amount(0) {} Weight(DistType Type, BlockNode TargetNode, uint64_t Amount) : Type(Type), TargetNode(TargetNode), Amount(Amount) {} }; /// \brief Distribution of unscaled probability weight. /// /// Distribution of unscaled probability weight to a set of successors. /// /// This class collates the successor edge weights for later processing. /// /// \a DidOverflow indicates whether \a Total did overflow while adding to /// the distribution. It should never overflow twice. struct Distribution { typedef SmallVector WeightList; WeightList Weights; ///< Individual successor weights. uint64_t Total; ///< Sum of all weights. bool DidOverflow; ///< Whether \a Total did overflow. Distribution() : Total(0), DidOverflow(false) {} void addLocal(const BlockNode &Node, uint64_t Amount) { add(Node, Amount, Weight::Local); } void addExit(const BlockNode &Node, uint64_t Amount) { add(Node, Amount, Weight::Exit); } void addBackedge(const BlockNode &Node, uint64_t Amount) { add(Node, Amount, Weight::Backedge); } /// \brief Normalize the distribution. /// /// Combines multiple edges to the same \a Weight::TargetNode and scales /// down so that \a Total fits into 32-bits. /// /// This is linear in the size of \a Weights. For the vast majority of /// cases, adjacent edge weights are combined by sorting WeightList and /// combining adjacent weights. However, for very large edge lists an /// auxiliary hash table is used. void normalize(); private: void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type); }; /// \brief Data about each block. This is used downstream. std::vector Freqs; /// \brief Loop data: see initializeLoops(). std::vector Working; /// \brief Indexed information about loops. std::list Loops; /// \brief Add all edges out of a packaged loop to the distribution. /// /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each /// successor edge. /// /// \return \c true unless there's an irreducible backedge. bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist); /// \brief Add an edge to the distribution. /// /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the /// edge is local/exit/backedge is in the context of LoopHead. Otherwise, /// every edge should be a local edge (since all the loops are packaged up). /// /// \return \c true unless aborted due to an irreducible backedge. bool addToDist(Distribution &Dist, const LoopData *OuterLoop, const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight); LoopData &getLoopPackage(const BlockNode &Head) { assert(Head.Index < Working.size()); assert(Working[Head.Index].isLoopHeader()); return *Working[Head.Index].Loop; } /// \brief Analyze irreducible SCCs. /// /// Separate irreducible SCCs from \c G, which is an explict graph of \c /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr). /// Insert them into \a Loops before \c Insert. /// /// \return the \c LoopData nodes representing the irreducible SCCs. iterator_range::iterator> analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop, std::list::iterator Insert); /// \brief Update a loop after packaging irreducible SCCs inside of it. /// /// Update \c OuterLoop. Before finding irreducible control flow, it was /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged /// up need to be removed from \a OuterLoop::Nodes. void updateLoopWithIrreducible(LoopData &OuterLoop); /// \brief Distribute mass according to a distribution. /// /// Distributes the mass in Source according to Dist. If LoopHead.isValid(), /// backedges and exits are stored in its entry in Loops. /// /// Mass is distributed in parallel from two copies of the source mass. void distributeMass(const BlockNode &Source, LoopData *OuterLoop, Distribution &Dist); /// \brief Compute the loop scale for a loop. void computeLoopScale(LoopData &Loop); /// Adjust the mass of all headers in an irreducible loop. /// /// Initially, irreducible loops are assumed to distribute their mass /// equally among its headers. This can lead to wrong frequency estimates /// since some headers may be executed more frequently than others. /// /// This adjusts header mass distribution so it matches the weights of /// the backedges going into each of the loop headers. void adjustLoopHeaderMass(LoopData &Loop); /// \brief Package up a loop. void packageLoop(LoopData &Loop); /// \brief Unwrap loops. void unwrapLoops(); /// \brief Finalize frequency metrics. /// /// Calculates final frequencies and cleans up no-longer-needed data /// structures. void finalizeMetrics(); /// \brief Clear all memory. void clear(); virtual std::string getBlockName(const BlockNode &Node) const; std::string getLoopName(const LoopData &Loop) const; virtual raw_ostream &print(raw_ostream &OS) const { return OS; } void dump() const { print(dbgs()); } Scaled64 getFloatingBlockFreq(const BlockNode &Node) const; BlockFrequency getBlockFreq(const BlockNode &Node) const; Optional getBlockProfileCount(const Function &F, const BlockNode &Node) const; Optional getProfileCountFromFreq(const Function &F, uint64_t Freq) const; void setBlockFreq(const BlockNode &Node, uint64_t Freq); raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const; raw_ostream &printBlockFreq(raw_ostream &OS, const BlockFrequency &Freq) const; uint64_t getEntryFreq() const { assert(!Freqs.empty()); return Freqs[0].Integer; } /// \brief Virtual destructor. /// /// Need a virtual destructor to mask the compiler warning about /// getBlockName(). virtual ~BlockFrequencyInfoImplBase() {} }; namespace bfi_detail { template struct TypeMap {}; template <> struct TypeMap { typedef BasicBlock BlockT; typedef Function FunctionT; typedef BranchProbabilityInfo BranchProbabilityInfoT; typedef Loop LoopT; typedef LoopInfo LoopInfoT; }; template <> struct TypeMap { typedef MachineBasicBlock BlockT; typedef MachineFunction FunctionT; typedef MachineBranchProbabilityInfo BranchProbabilityInfoT; typedef MachineLoop LoopT; typedef MachineLoopInfo LoopInfoT; }; /// \brief Get the name of a MachineBasicBlock. /// /// Get the name of a MachineBasicBlock. It's templated so that including from /// CodeGen is unnecessary (that would be a layering issue). /// /// This is used mainly for debug output. The name is similar to /// MachineBasicBlock::getFullName(), but skips the name of the function. template std::string getBlockName(const BlockT *BB) { assert(BB && "Unexpected nullptr"); auto MachineName = "BB" + Twine(BB->getNumber()); if (BB->getBasicBlock()) return (MachineName + "[" + BB->getName() + "]").str(); return MachineName.str(); } /// \brief Get the name of a BasicBlock. template <> inline std::string getBlockName(const BasicBlock *BB) { assert(BB && "Unexpected nullptr"); return BB->getName().str(); } /// \brief Graph of irreducible control flow. /// /// This graph is used for determining the SCCs in a loop (or top-level /// function) that has irreducible control flow. /// /// During the block frequency algorithm, the local graphs are defined in a /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock /// graphs for most edges, but getting others from \a LoopData::ExitMap. The /// latter only has successor information. /// /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator), /// and it explicitly lists predecessors and successors. The initialization /// that relies on \c MachineBasicBlock is defined in the header. struct IrreducibleGraph { typedef BlockFrequencyInfoImplBase BFIBase; BFIBase &BFI; typedef BFIBase::BlockNode BlockNode; struct IrrNode { BlockNode Node; unsigned NumIn; std::deque Edges; IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {} typedef std::deque::const_iterator iterator; iterator pred_begin() const { return Edges.begin(); } iterator succ_begin() const { return Edges.begin() + NumIn; } iterator pred_end() const { return succ_begin(); } iterator succ_end() const { return Edges.end(); } }; BlockNode Start; const IrrNode *StartIrr; std::vector Nodes; SmallDenseMap Lookup; /// \brief Construct an explicit graph containing irreducible control flow. /// /// Construct an explicit graph of the control flow in \c OuterLoop (or the /// top-level function, if \c OuterLoop is \c nullptr). Uses \c /// addBlockEdges to add block successors that have not been packaged into /// loops. /// /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected /// user of this. template IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges) : BFI(BFI), StartIrr(nullptr) { initialize(OuterLoop, addBlockEdges); } template void initialize(const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges); void addNodesInLoop(const BFIBase::LoopData &OuterLoop); void addNodesInFunction(); void addNode(const BlockNode &Node) { Nodes.emplace_back(Node); BFI.Working[Node.Index].getMass() = BlockMass::getEmpty(); } void indexNodes(); template void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges); void addEdge(IrrNode &Irr, const BlockNode &Succ, const BFIBase::LoopData *OuterLoop); }; template void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges) { if (OuterLoop) { addNodesInLoop(*OuterLoop); for (auto N : OuterLoop->Nodes) addEdges(N, OuterLoop, addBlockEdges); } else { addNodesInFunction(); for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) addEdges(Index, OuterLoop, addBlockEdges); } StartIrr = Lookup[Start.Index]; } template void IrreducibleGraph::addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges) { auto L = Lookup.find(Node.Index); if (L == Lookup.end()) return; IrrNode &Irr = *L->second; const auto &Working = BFI.Working[Node.Index]; if (Working.isAPackage()) for (const auto &I : Working.Loop->Exits) addEdge(Irr, I.first, OuterLoop); else addBlockEdges(*this, Irr, OuterLoop); } } /// \brief Shared implementation for block frequency analysis. /// /// This is a shared implementation of BlockFrequencyInfo and /// MachineBlockFrequencyInfo, and calculates the relative frequencies of /// blocks. /// /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block, /// which is called the header. A given loop, L, can have sub-loops, which are /// loops within the subgraph of L that exclude its header. (A "trivial" SCC /// consists of a single block that does not have a self-edge.) /// /// In addition to loops, this algorithm has limited support for irreducible /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are /// discovered on they fly, and modelled as loops with multiple headers. /// /// The headers of irreducible sub-SCCs consist of its entry blocks and all /// nodes that are targets of a backedge within it (excluding backedges within /// true sub-loops). Block frequency calculations act as if a block is /// inserted that intercepts all the edges to the headers. All backedges and /// entries point to this block. Its successors are the headers, which split /// the frequency evenly. /// /// This algorithm leverages BlockMass and ScaledNumber to maintain precision, /// separates mass distribution from loop scaling, and dithers to eliminate /// probability mass loss. /// /// The implementation is split between BlockFrequencyInfoImpl, which knows the /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in /// reverse-post order. This gives two advantages: it's easy to compare the /// relative ordering of two nodes, and maps keyed on BlockT can be represented /// by vectors. /// /// This algorithm is O(V+E), unless there is irreducible control flow, in /// which case it's O(V*E) in the worst case. /// /// These are the main stages: /// /// 0. Reverse post-order traversal (\a initializeRPOT()). /// /// Run a single post-order traversal and save it (in reverse) in RPOT. /// All other stages make use of this ordering. Save a lookup from BlockT /// to BlockNode (the index into RPOT) in Nodes. /// /// 1. Loop initialization (\a initializeLoops()). /// /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of /// the algorithm. In particular, store the immediate members of each loop /// in reverse post-order. /// /// 2. Calculate mass and scale in loops (\a computeMassInLoops()). /// /// For each loop (bottom-up), distribute mass through the DAG resulting /// from ignoring backedges and treating sub-loops as a single pseudo-node. /// Track the backedge mass distributed to the loop header, and use it to /// calculate the loop scale (number of loop iterations). Immediate /// members that represent sub-loops will already have been visited and /// packaged into a pseudo-node. /// /// Distributing mass in a loop is a reverse-post-order traversal through /// the loop. Start by assigning full mass to the Loop header. For each /// node in the loop: /// /// - Fetch and categorize the weight distribution for its successors. /// If this is a packaged-subloop, the weight distribution is stored /// in \a LoopData::Exits. Otherwise, fetch it from /// BranchProbabilityInfo. /// /// - Each successor is categorized as \a Weight::Local, a local edge /// within the current loop, \a Weight::Backedge, a backedge to the /// loop header, or \a Weight::Exit, any successor outside the loop. /// The weight, the successor, and its category are stored in \a /// Distribution. There can be multiple edges to each successor. /// /// - If there's a backedge to a non-header, there's an irreducible SCC. /// The usual flow is temporarily aborted. \a /// computeIrreducibleMass() finds the irreducible SCCs within the /// loop, packages them up, and restarts the flow. /// /// - Normalize the distribution: scale weights down so that their sum /// is 32-bits, and coalesce multiple edges to the same node. /// /// - Distribute the mass accordingly, dithering to minimize mass loss, /// as described in \a distributeMass(). /// /// In the case of irreducible loops, instead of a single loop header, /// there will be several. The computation of backedge masses is similar /// but instead of having a single backedge mass, there will be one /// backedge per loop header. In these cases, each backedge will carry /// a mass proportional to the edge weights along the corresponding /// path. /// /// At the end of propagation, the full mass assigned to the loop will be /// distributed among the loop headers proportionally according to the /// mass flowing through their backedges. /// /// Finally, calculate the loop scale from the accumulated backedge mass. /// /// 3. Distribute mass in the function (\a computeMassInFunction()). /// /// Finally, distribute mass through the DAG resulting from packaging all /// loops in the function. This uses the same algorithm as distributing /// mass in a loop, except that there are no exit or backedge edges. /// /// 4. Unpackage loops (\a unwrapLoops()). /// /// Initialize each block's frequency to a floating point representation of /// its mass. /// /// Visit loops top-down, scaling the frequencies of its immediate members /// by the loop's pseudo-node's frequency. /// /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()). /// /// Using the min and max frequencies as a guide, translate floating point /// frequencies to an appropriate range in uint64_t. /// /// It has some known flaws. /// /// - The model of irreducible control flow is a rough approximation. /// /// Modelling irreducible control flow exactly involves setting up and /// solving a group of infinite geometric series. Such precision is /// unlikely to be worthwhile, since most of our algorithms give up on /// irreducible control flow anyway. /// /// Nevertheless, we might find that we need to get closer. Here's a sort /// of TODO list for the model with diminishing returns, to be completed as /// necessary. /// /// - The headers for the \a LoopData representing an irreducible SCC /// include non-entry blocks. When these extra blocks exist, they /// indicate a self-contained irreducible sub-SCC. We could treat them /// as sub-loops, rather than arbitrarily shoving the problematic /// blocks into the headers of the main irreducible SCC. /// /// - Entry frequencies are assumed to be evenly split between the /// headers of a given irreducible SCC, which is the only option if we /// need to compute mass in the SCC before its parent loop. Instead, /// we could partially compute mass in the parent loop, and stop when /// we get to the SCC. Here, we have the correct ratio of entry /// masses, which we can use to adjust their relative frequencies. /// Compute mass in the SCC, and then continue propagation in the /// parent. /// /// - We can propagate mass iteratively through the SCC, for some fixed /// number of iterations. Each iteration starts by assigning the entry /// blocks their backedge mass from the prior iteration. The final /// mass for each block (and each exit, and the total backedge mass /// used for computing loop scale) is the sum of all iterations. /// (Running this until fixed point would "solve" the geometric /// series by simulation.) template class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase { typedef typename bfi_detail::TypeMap::BlockT BlockT; typedef typename bfi_detail::TypeMap::FunctionT FunctionT; typedef typename bfi_detail::TypeMap::BranchProbabilityInfoT BranchProbabilityInfoT; typedef typename bfi_detail::TypeMap::LoopT LoopT; typedef typename bfi_detail::TypeMap::LoopInfoT LoopInfoT; // This is part of a workaround for a GCC 4.7 crash on lambdas. friend struct bfi_detail::BlockEdgesAdder; typedef GraphTraits Successor; typedef GraphTraits> Predecessor; const BranchProbabilityInfoT *BPI; const LoopInfoT *LI; const FunctionT *F; // All blocks in reverse postorder. std::vector RPOT; DenseMap Nodes; typedef typename std::vector::const_iterator rpot_iterator; rpot_iterator rpot_begin() const { return RPOT.begin(); } rpot_iterator rpot_end() const { return RPOT.end(); } size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); } BlockNode getNode(const rpot_iterator &I) const { return BlockNode(getIndex(I)); } BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); } const BlockT *getBlock(const BlockNode &Node) const { assert(Node.Index < RPOT.size()); return RPOT[Node.Index]; } /// \brief Run (and save) a post-order traversal. /// /// Saves a reverse post-order traversal of all the nodes in \a F. void initializeRPOT(); /// \brief Initialize loop data. /// /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from /// each block to the deepest loop it's in, but we need the inverse. For each /// loop, we store in reverse post-order its "immediate" members, defined as /// the header, the headers of immediate sub-loops, and all other blocks in /// the loop that are not in sub-loops. void initializeLoops(); /// \brief Propagate to a block's successors. /// /// In the context of distributing mass through \c OuterLoop, divide the mass /// currently assigned to \c Node between its successors. /// /// \return \c true unless there's an irreducible backedge. bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node); /// \brief Compute mass in a particular loop. /// /// Assign mass to \c Loop's header, and then for each block in \c Loop in /// reverse post-order, distribute mass to its successors. Only visits nodes /// that have not been packaged into sub-loops. /// /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop. /// \return \c true unless there's an irreducible backedge. bool computeMassInLoop(LoopData &Loop); /// \brief Try to compute mass in the top-level function. /// /// Assign mass to the entry block, and then for each block in reverse /// post-order, distribute mass to its successors. Skips nodes that have /// been packaged into loops. /// /// \pre \a computeMassInLoops() has been called. /// \return \c true unless there's an irreducible backedge. bool tryToComputeMassInFunction(); /// \brief Compute mass in (and package up) irreducible SCCs. /// /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front /// of \c Insert), and call \a computeMassInLoop() on each of them. /// /// If \c OuterLoop is \c nullptr, it refers to the top-level function. /// /// \pre \a computeMassInLoop() has been called for each subloop of \c /// OuterLoop. /// \pre \c Insert points at the last loop successfully processed by \a /// computeMassInLoop(). /// \pre \c OuterLoop has irreducible SCCs. void computeIrreducibleMass(LoopData *OuterLoop, std::list::iterator Insert); /// \brief Compute mass in all loops. /// /// For each loop bottom-up, call \a computeMassInLoop(). /// /// \a computeMassInLoop() aborts (and returns \c false) on loops that /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then /// re-enter \a computeMassInLoop(). /// /// \post \a computeMassInLoop() has returned \c true for every loop. void computeMassInLoops(); /// \brief Compute mass in the top-level function. /// /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to /// compute mass in the top-level function. /// /// \post \a tryToComputeMassInFunction() has returned \c true. void computeMassInFunction(); std::string getBlockName(const BlockNode &Node) const override { return bfi_detail::getBlockName(getBlock(Node)); } public: const FunctionT *getFunction() const { return F; } void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, const LoopInfoT &LI); BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {} using BlockFrequencyInfoImplBase::getEntryFreq; BlockFrequency getBlockFreq(const BlockT *BB) const { return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB)); } Optional getBlockProfileCount(const Function &F, const BlockT *BB) const { return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB)); } Optional getProfileCountFromFreq(const Function &F, uint64_t Freq) const { return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq); } void setBlockFreq(const BlockT *BB, uint64_t Freq); Scaled64 getFloatingBlockFreq(const BlockT *BB) const { return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB)); } const BranchProbabilityInfoT &getBPI() const { return *BPI; } /// \brief Print the frequencies for the current function. /// /// Prints the frequencies for the blocks in the current function. /// /// Blocks are printed in the natural iteration order of the function, rather /// than reverse post-order. This provides two advantages: writing -analyze /// tests is easier (since blocks come out in source order), and even /// unreachable blocks are printed. /// /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so /// we need to override it here. raw_ostream &print(raw_ostream &OS) const override; using BlockFrequencyInfoImplBase::dump; using BlockFrequencyInfoImplBase::printBlockFreq; raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const { return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB)); } }; template void BlockFrequencyInfoImpl::calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, const LoopInfoT &LI) { // Save the parameters. this->BPI = &BPI; this->LI = &LI; this->F = &F; // Clean up left-over data structures. BlockFrequencyInfoImplBase::clear(); RPOT.clear(); Nodes.clear(); // Initialize. DEBUG(dbgs() << "\nblock-frequency: " << F.getName() << "\n=================" << std::string(F.getName().size(), '=') << "\n"); initializeRPOT(); initializeLoops(); // Visit loops in post-order to find the local mass distribution, and then do // the full function. computeMassInLoops(); computeMassInFunction(); unwrapLoops(); finalizeMetrics(); } template void BlockFrequencyInfoImpl::setBlockFreq(const BlockT *BB, uint64_t Freq) { if (Nodes.count(BB)) BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq); else { // If BB is a newly added block after BFI is done, we need to create a new // BlockNode for it assigned with a new index. The index can be determined // by the size of Freqs. BlockNode NewNode(Freqs.size()); Nodes[BB] = NewNode; Freqs.emplace_back(); BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq); } } template void BlockFrequencyInfoImpl::initializeRPOT() { const BlockT *Entry = &F->front(); RPOT.reserve(F->size()); std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT)); std::reverse(RPOT.begin(), RPOT.end()); assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() && "More nodes in function than Block Frequency Info supports"); DEBUG(dbgs() << "reverse-post-order-traversal\n"); for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) { BlockNode Node = getNode(I); DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n"); Nodes[*I] = Node; } Working.reserve(RPOT.size()); for (size_t Index = 0; Index < RPOT.size(); ++Index) Working.emplace_back(Index); Freqs.resize(RPOT.size()); } template void BlockFrequencyInfoImpl::initializeLoops() { DEBUG(dbgs() << "loop-detection\n"); if (LI->empty()) return; // Visit loops top down and assign them an index. std::deque> Q; for (const LoopT *L : *LI) Q.emplace_back(L, nullptr); while (!Q.empty()) { const LoopT *Loop = Q.front().first; LoopData *Parent = Q.front().second; Q.pop_front(); BlockNode Header = getNode(Loop->getHeader()); assert(Header.isValid()); Loops.emplace_back(Parent, Header); Working[Header.Index].Loop = &Loops.back(); DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n"); for (const LoopT *L : *Loop) Q.emplace_back(L, &Loops.back()); } // Visit nodes in reverse post-order and add them to their deepest containing // loop. for (size_t Index = 0; Index < RPOT.size(); ++Index) { // Loop headers have already been mostly mapped. if (Working[Index].isLoopHeader()) { LoopData *ContainingLoop = Working[Index].getContainingLoop(); if (ContainingLoop) ContainingLoop->Nodes.push_back(Index); continue; } const LoopT *Loop = LI->getLoopFor(RPOT[Index]); if (!Loop) continue; // Add this node to its containing loop's member list. BlockNode Header = getNode(Loop->getHeader()); assert(Header.isValid()); const auto &HeaderData = Working[Header.Index]; assert(HeaderData.isLoopHeader()); Working[Index].Loop = HeaderData.Loop; HeaderData.Loop->Nodes.push_back(Index); DEBUG(dbgs() << " - loop = " << getBlockName(Header) << ": member = " << getBlockName(Index) << "\n"); } } template void BlockFrequencyInfoImpl::computeMassInLoops() { // Visit loops with the deepest first, and the top-level loops last. for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { if (computeMassInLoop(*L)) continue; auto Next = std::next(L); computeIrreducibleMass(&*L, L.base()); L = std::prev(Next); if (computeMassInLoop(*L)) continue; llvm_unreachable("unhandled irreducible control flow"); } } template bool BlockFrequencyInfoImpl::computeMassInLoop(LoopData &Loop) { // Compute mass in loop. DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n"); if (Loop.isIrreducible()) { BlockMass Remaining = BlockMass::getFull(); for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { auto &Mass = Working[Loop.Nodes[H].Index].getMass(); Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H); Remaining -= Mass; } for (const BlockNode &M : Loop.Nodes) if (!propagateMassToSuccessors(&Loop, M)) llvm_unreachable("unhandled irreducible control flow"); adjustLoopHeaderMass(Loop); } else { Working[Loop.getHeader().Index].getMass() = BlockMass::getFull(); if (!propagateMassToSuccessors(&Loop, Loop.getHeader())) llvm_unreachable("irreducible control flow to loop header!?"); for (const BlockNode &M : Loop.members()) if (!propagateMassToSuccessors(&Loop, M)) // Irreducible backedge. return false; } computeLoopScale(Loop); packageLoop(Loop); return true; } template bool BlockFrequencyInfoImpl::tryToComputeMassInFunction() { // Compute mass in function. DEBUG(dbgs() << "compute-mass-in-function\n"); assert(!Working.empty() && "no blocks in function"); assert(!Working[0].isLoopHeader() && "entry block is a loop header"); Working[0].getMass() = BlockMass::getFull(); for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) { // Check for nodes that have been packaged. BlockNode Node = getNode(I); if (Working[Node.Index].isPackaged()) continue; if (!propagateMassToSuccessors(nullptr, Node)) return false; } return true; } template void BlockFrequencyInfoImpl::computeMassInFunction() { if (tryToComputeMassInFunction()) return; computeIrreducibleMass(nullptr, Loops.begin()); if (tryToComputeMassInFunction()) return; llvm_unreachable("unhandled irreducible control flow"); } /// \note This should be a lambda, but that crashes GCC 4.7. namespace bfi_detail { template struct BlockEdgesAdder { typedef BT BlockT; typedef BlockFrequencyInfoImplBase::LoopData LoopData; typedef GraphTraits Successor; const BlockFrequencyInfoImpl &BFI; explicit BlockEdgesAdder(const BlockFrequencyInfoImpl &BFI) : BFI(BFI) {} void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr, const LoopData *OuterLoop) { const BlockT *BB = BFI.RPOT[Irr.Node.Index]; for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB); I != E; ++I) G.addEdge(Irr, BFI.getNode(*I), OuterLoop); } }; } template void BlockFrequencyInfoImpl::computeIrreducibleMass( LoopData *OuterLoop, std::list::iterator Insert) { DEBUG(dbgs() << "analyze-irreducible-in-"; if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n"; else dbgs() << "function\n"); using namespace bfi_detail; // Ideally, addBlockEdges() would be declared here as a lambda, but that // crashes GCC 4.7. BlockEdgesAdder addBlockEdges(*this); IrreducibleGraph G(*this, OuterLoop, addBlockEdges); for (auto &L : analyzeIrreducible(G, OuterLoop, Insert)) computeMassInLoop(L); if (!OuterLoop) return; updateLoopWithIrreducible(*OuterLoop); } // A helper function that converts a branch probability into weight. inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) { return Prob.getNumerator(); } template bool BlockFrequencyInfoImpl::propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node) { DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n"); // Calculate probability for successors. Distribution Dist; if (auto *Loop = Working[Node.Index].getPackagedLoop()) { assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop"); if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist)) // Irreducible backedge. return false; } else { const BlockT *BB = getBlock(Node); for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB); SI != SE; ++SI) if (!addToDist(Dist, OuterLoop, Node, getNode(*SI), getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI)))) // Irreducible backedge. return false; } // Distribute mass to successors, saving exit and backedge data in the // loop header. distributeMass(Node, OuterLoop, Dist); return true; } template raw_ostream &BlockFrequencyInfoImpl::print(raw_ostream &OS) const { if (!F) return OS; OS << "block-frequency-info: " << F->getName() << "\n"; for (const BlockT &BB : *F) { OS << " - " << bfi_detail::getBlockName(&BB) << ": float = "; getFloatingBlockFreq(&BB).print(OS, 5) << ", int = " << getBlockFreq(&BB).getFrequency() << "\n"; } // Add an extra newline for readability. OS << "\n"; return OS; } // Graph trait base class for block frequency information graph // viewer. enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count }; template struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits { explicit BFIDOTGraphTraitsBase(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} typedef GraphTraits GTraits; typedef typename GTraits::NodeType NodeType; typedef typename GTraits::ChildIteratorType EdgeIter; typedef typename GTraits::nodes_iterator NodeIter; uint64_t MaxFrequency = 0; static std::string getGraphName(const BlockFrequencyInfoT *G) { return G->getFunction()->getName(); } std::string getNodeAttributes(const NodeType *Node, const BlockFrequencyInfoT *Graph, unsigned HotPercentThreshold = 0) { std::string Result; if (!HotPercentThreshold) return Result; // Compute MaxFrequency on the fly: if (!MaxFrequency) { for (NodeIter I = GTraits::nodes_begin(Graph), E = GTraits::nodes_end(Graph); I != E; ++I) { NodeType &N = *I; MaxFrequency = std::max(MaxFrequency, Graph->getBlockFreq(&N).getFrequency()); } } BlockFrequency Freq = Graph->getBlockFreq(Node); BlockFrequency HotFreq = (BlockFrequency(MaxFrequency) * BranchProbability::getBranchProbability(HotPercentThreshold, 100)); if (Freq < HotFreq) return Result; raw_string_ostream OS(Result); OS << "color=\"red\""; OS.flush(); return Result; } std::string getNodeLabel(const NodeType *Node, const BlockFrequencyInfoT *Graph, GVDAGType GType) { std::string Result; raw_string_ostream OS(Result); OS << Node->getName().str() << " : "; switch (GType) { case GVDT_Fraction: Graph->printBlockFreq(OS, Node); break; case GVDT_Integer: OS << Graph->getBlockFreq(Node).getFrequency(); break; case GVDT_Count: { auto Count = Graph->getBlockProfileCount(Node); if (Count) OS << Count.getValue(); else OS << "Unknown"; break; } case GVDT_None: llvm_unreachable("If we are not supposed to render a graph we should " "never reach this point."); } return Result; } std::string getEdgeAttributes(const NodeType *Node, EdgeIter EI, const BlockFrequencyInfoT *BFI, const BranchProbabilityInfoT *BPI, unsigned HotPercentThreshold = 0) { std::string Str; if (!BPI) return Str; BranchProbability BP = BPI->getEdgeProbability(Node, EI); uint32_t N = BP.getNumerator(); uint32_t D = BP.getDenominator(); double Percent = 100.0 * N / D; raw_string_ostream OS(Str); OS << format("label=\"%.1f%%\"", Percent); if (HotPercentThreshold) { BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP; BlockFrequency HotFreq = BlockFrequency(MaxFrequency) * BranchProbability(HotPercentThreshold, 100); if (EFreq >= HotFreq) { OS << ",color=\"red\""; } } OS.flush(); return Str; } }; } // end namespace llvm #undef DEBUG_TYPE #endif