//=-- InstrProf.cpp - Instrumented profiling format support -----------------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for clang's instrumentation based PGO and // coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/InstrProf.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Module.h" #include "llvm/Support/Compression.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/ManagedStatic.h" using namespace llvm; namespace { class InstrProfErrorCategoryType : public std::error_category { const char *name() const LLVM_NOEXCEPT override { return "llvm.instrprof"; } std::string message(int IE) const override { instrprof_error E = static_cast(IE); switch (E) { case instrprof_error::success: return "Success"; case instrprof_error::eof: return "End of File"; case instrprof_error::unrecognized_format: return "Unrecognized instrumentation profile encoding format"; case instrprof_error::bad_magic: return "Invalid instrumentation profile data (bad magic)"; case instrprof_error::bad_header: return "Invalid instrumentation profile data (file header is corrupt)"; case instrprof_error::unsupported_version: return "Unsupported instrumentation profile format version"; case instrprof_error::unsupported_hash_type: return "Unsupported instrumentation profile hash type"; case instrprof_error::too_large: return "Too much profile data"; case instrprof_error::truncated: return "Truncated profile data"; case instrprof_error::malformed: return "Malformed instrumentation profile data"; case instrprof_error::unknown_function: return "No profile data available for function"; case instrprof_error::hash_mismatch: return "Function control flow change detected (hash mismatch)"; case instrprof_error::count_mismatch: return "Function basic block count change detected (counter mismatch)"; case instrprof_error::counter_overflow: return "Counter overflow"; case instrprof_error::value_site_count_mismatch: return "Function value site count change detected (counter mismatch)"; } llvm_unreachable("A value of instrprof_error has no message."); } }; } // end anonymous namespace static ManagedStatic ErrorCategory; const std::error_category &llvm::instrprof_category() { return *ErrorCategory; } namespace llvm { std::string getPGOFuncName(StringRef RawFuncName, GlobalValue::LinkageTypes Linkage, StringRef FileName, uint64_t Version LLVM_ATTRIBUTE_UNUSED) { // Function names may be prefixed with a binary '1' to indicate // that the backend should not modify the symbols due to any platform // naming convention. Do not include that '1' in the PGO profile name. if (RawFuncName[0] == '\1') RawFuncName = RawFuncName.substr(1); std::string FuncName = RawFuncName; if (llvm::GlobalValue::isLocalLinkage(Linkage)) { // For local symbols, prepend the main file name to distinguish them. // Do not include the full path in the file name since there's no guarantee // that it will stay the same, e.g., if the files are checked out from // version control in different locations. if (FileName.empty()) FuncName = FuncName.insert(0, ":"); else FuncName = FuncName.insert(0, FileName.str() + ":"); } return FuncName; } std::string getPGOFuncName(const Function &F, uint64_t Version) { return getPGOFuncName(F.getName(), F.getLinkage(), F.getParent()->getName(), Version); } StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { if (FileName.empty()) return PGOFuncName; // Drop the file name including ':'. See also getPGOFuncName. if (PGOFuncName.startswith(FileName)) PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); return PGOFuncName; } // \p FuncName is the string used as profile lookup key for the function. A // symbol is created to hold the name. Return the legalized symbol name. static std::string getPGOFuncNameVarName(StringRef FuncName, GlobalValue::LinkageTypes Linkage) { std::string VarName = getInstrProfNameVarPrefix(); VarName += FuncName; if (!GlobalValue::isLocalLinkage(Linkage)) return VarName; // Now fix up illegal chars in local VarName that may upset the assembler. const char *InvalidChars = "-:<>\"'"; size_t found = VarName.find_first_of(InvalidChars); while (found != std::string::npos) { VarName[found] = '_'; found = VarName.find_first_of(InvalidChars, found + 1); } return VarName; } GlobalVariable *createPGOFuncNameVar(Module &M, GlobalValue::LinkageTypes Linkage, StringRef FuncName) { // We generally want to match the function's linkage, but available_externally // and extern_weak both have the wrong semantics, and anything that doesn't // need to link across compilation units doesn't need to be visible at all. if (Linkage == GlobalValue::ExternalWeakLinkage) Linkage = GlobalValue::LinkOnceAnyLinkage; else if (Linkage == GlobalValue::AvailableExternallyLinkage) Linkage = GlobalValue::LinkOnceODRLinkage; else if (Linkage == GlobalValue::InternalLinkage || Linkage == GlobalValue::ExternalLinkage) Linkage = GlobalValue::PrivateLinkage; auto *Value = ConstantDataArray::getString(M.getContext(), FuncName, false); auto FuncNameVar = new GlobalVariable(M, Value->getType(), true, Linkage, Value, getPGOFuncNameVarName(FuncName, Linkage)); // Hide the symbol so that we correctly get a copy for each executable. if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); return FuncNameVar; } GlobalVariable *createPGOFuncNameVar(Function &F, StringRef FuncName) { return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), FuncName); } void InstrProfSymtab::create(const Module &M) { for (const Function &F : M) addFuncName(getPGOFuncName(F)); finalizeSymtab(); } int collectPGOFuncNameStrings(const std::vector &NameStrs, bool doCompression, std::string &Result) { uint8_t Header[16], *P = Header; std::string UncompressedNameStrings = join(NameStrs.begin(), NameStrs.end(), StringRef(" ")); unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); P += EncLen; auto WriteStringToResult = [&](size_t CompressedLen, const std::string &InputStr) { EncLen = encodeULEB128(CompressedLen, P); P += EncLen; char *HeaderStr = reinterpret_cast(&Header[0]); unsigned HeaderLen = P - &Header[0]; Result.append(HeaderStr, HeaderLen); Result += InputStr; return 0; }; if (!doCompression) return WriteStringToResult(0, UncompressedNameStrings); SmallVector CompressedNameStrings; zlib::Status Success = zlib::compress(StringRef(UncompressedNameStrings), CompressedNameStrings, zlib::BestSizeCompression); if (Success != zlib::StatusOK) return 1; return WriteStringToResult( CompressedNameStrings.size(), std::string(CompressedNameStrings.data(), CompressedNameStrings.size())); } StringRef getPGOFuncNameInitializer(GlobalVariable *NameVar) { auto *Arr = cast(NameVar->getInitializer()); StringRef NameStr = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); return NameStr; } int collectPGOFuncNameStrings(const std::vector &NameVars, std::string &Result) { std::vector NameStrs; for (auto *NameVar : NameVars) { NameStrs.push_back(getPGOFuncNameInitializer(NameVar)); } return collectPGOFuncNameStrings(NameStrs, zlib::isAvailable(), Result); } int readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { const uint8_t *P = reinterpret_cast(NameStrings.data()); const uint8_t *EndP = reinterpret_cast(NameStrings.data() + NameStrings.size()); while (P < EndP) { uint32_t N; uint64_t UncompressedSize = decodeULEB128(P, &N); P += N; uint64_t CompressedSize = decodeULEB128(P, &N); P += N; bool isCompressed = (CompressedSize != 0); SmallString<128> UncompressedNameStrings; StringRef NameStrings; if (isCompressed) { StringRef CompressedNameStrings(reinterpret_cast(P), CompressedSize); if (zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, UncompressedSize) != zlib::StatusOK) return 1; P += CompressedSize; NameStrings = StringRef(UncompressedNameStrings.data(), UncompressedNameStrings.size()); } else { NameStrings = StringRef(reinterpret_cast(P), UncompressedSize); P += UncompressedSize; } // Now parse the name strings. SmallVector Names; NameStrings.split(Names, ' '); for (StringRef &Name : Names) Symtab.addFuncName(Name); while (P < EndP && *P == 0) P++; } Symtab.finalizeSymtab(); return 0; } instrprof_error InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input, uint64_t Weight) { this->sortByTargetValues(); Input.sortByTargetValues(); auto I = ValueData.begin(); auto IE = ValueData.end(); instrprof_error Result = instrprof_error::success; for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; ++J) { while (I != IE && I->Value < J->Value) ++I; if (I != IE && I->Value == J->Value) { bool Overflowed; I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); if (Overflowed) Result = instrprof_error::counter_overflow; ++I; continue; } ValueData.insert(I, *J); } return Result; } instrprof_error InstrProfValueSiteRecord::scale(uint64_t Weight) { instrprof_error Result = instrprof_error::success; for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { bool Overflowed; I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed); if (Overflowed) Result = instrprof_error::counter_overflow; } return Result; } // Merge Value Profile data from Src record to this record for ValueKind. // Scale merged value counts by \p Weight. instrprof_error InstrProfRecord::mergeValueProfData(uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight) { uint32_t ThisNumValueSites = getNumValueSites(ValueKind); uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); if (ThisNumValueSites != OtherNumValueSites) return instrprof_error::value_site_count_mismatch; std::vector &ThisSiteRecords = getValueSitesForKind(ValueKind); std::vector &OtherSiteRecords = Src.getValueSitesForKind(ValueKind); instrprof_error Result = instrprof_error::success; for (uint32_t I = 0; I < ThisNumValueSites; I++) MergeResult(Result, ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight)); return Result; } instrprof_error InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight) { // If the number of counters doesn't match we either have bad data // or a hash collision. if (Counts.size() != Other.Counts.size()) return instrprof_error::count_mismatch; instrprof_error Result = instrprof_error::success; for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { bool Overflowed; Counts[I] = SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); if (Overflowed) Result = instrprof_error::counter_overflow; } for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) MergeResult(Result, mergeValueProfData(Kind, Other, Weight)); return Result; } instrprof_error InstrProfRecord::scaleValueProfData(uint32_t ValueKind, uint64_t Weight) { uint32_t ThisNumValueSites = getNumValueSites(ValueKind); std::vector &ThisSiteRecords = getValueSitesForKind(ValueKind); instrprof_error Result = instrprof_error::success; for (uint32_t I = 0; I < ThisNumValueSites; I++) MergeResult(Result, ThisSiteRecords[I].scale(Weight)); return Result; } instrprof_error InstrProfRecord::scale(uint64_t Weight) { instrprof_error Result = instrprof_error::success; for (auto &Count : this->Counts) { bool Overflowed; Count = SaturatingMultiply(Count, Weight, &Overflowed); if (Overflowed && Result == instrprof_error::success) { Result = instrprof_error::counter_overflow; } } for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) MergeResult(Result, scaleValueProfData(Kind, Weight)); return Result; } // Map indirect call target name hash to name string. uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, ValueMapType *ValueMap) { if (!ValueMap) return Value; switch (ValueKind) { case IPVK_IndirectCallTarget: { auto Result = std::lower_bound(ValueMap->begin(), ValueMap->end(), Value, [](const std::pair &LHS, uint64_t RHS) { return LHS.first < RHS; }); if (Result != ValueMap->end()) Value = (uint64_t)Result->second; break; } } return Value; } void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, InstrProfValueData *VData, uint32_t N, ValueMapType *ValueMap) { for (uint32_t I = 0; I < N; I++) { VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); } std::vector &ValueSites = getValueSitesForKind(ValueKind); if (N == 0) ValueSites.push_back(InstrProfValueSiteRecord()); else ValueSites.emplace_back(VData, VData + N); } #define INSTR_PROF_COMMON_API_IMPL #include "llvm/ProfileData/InstrProfData.inc" /*! * \brief ValueProfRecordClosure Interface implementation for InstrProfRecord * class. These C wrappers are used as adaptors so that C++ code can be * invoked as callbacks. */ uint32_t getNumValueKindsInstrProf(const void *Record) { return reinterpret_cast(Record)->getNumValueKinds(); } uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { return reinterpret_cast(Record) ->getNumValueSites(VKind); } uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { return reinterpret_cast(Record) ->getNumValueData(VKind); } uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, uint32_t S) { return reinterpret_cast(R) ->getNumValueDataForSite(VK, S); } void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, uint32_t K, uint32_t S, uint64_t (*Mapper)(uint32_t, uint64_t)) { return reinterpret_cast(R)->getValueForSite( Dst, K, S, Mapper); } ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { ValueProfData *VD = (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); memset(VD, 0, TotalSizeInBytes); return VD; } static ValueProfRecordClosure InstrProfRecordClosure = { nullptr, getNumValueKindsInstrProf, getNumValueSitesInstrProf, getNumValueDataInstrProf, getNumValueDataForSiteInstrProf, nullptr, getValueForSiteInstrProf, allocValueProfDataInstrProf}; // Wrapper implementation using the closure mechanism. uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { InstrProfRecordClosure.Record = &Record; return getValueProfDataSize(&InstrProfRecordClosure); } // Wrapper implementation using the closure mechanism. std::unique_ptr ValueProfData::serializeFrom(const InstrProfRecord &Record) { InstrProfRecordClosure.Record = &Record; std::unique_ptr VPD( serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); return VPD; } void ValueProfRecord::deserializeTo(InstrProfRecord &Record, InstrProfRecord::ValueMapType *VMap) { Record.reserveSites(Kind, NumValueSites); InstrProfValueData *ValueData = getValueProfRecordValueData(this); for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { uint8_t ValueDataCount = this->SiteCountArray[VSite]; Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap); ValueData += ValueDataCount; } } // For writing/serializing, Old is the host endianness, and New is // byte order intended on disk. For Reading/deserialization, Old // is the on-disk source endianness, and New is the host endianness. void ValueProfRecord::swapBytes(support::endianness Old, support::endianness New) { using namespace support; if (Old == New) return; if (getHostEndianness() != Old) { sys::swapByteOrder(NumValueSites); sys::swapByteOrder(Kind); } uint32_t ND = getValueProfRecordNumValueData(this); InstrProfValueData *VD = getValueProfRecordValueData(this); // No need to swap byte array: SiteCountArrray. for (uint32_t I = 0; I < ND; I++) { sys::swapByteOrder(VD[I].Value); sys::swapByteOrder(VD[I].Count); } if (getHostEndianness() == Old) { sys::swapByteOrder(NumValueSites); sys::swapByteOrder(Kind); } } void ValueProfData::deserializeTo(InstrProfRecord &Record, InstrProfRecord::ValueMapType *VMap) { if (NumValueKinds == 0) return; ValueProfRecord *VR = getFirstValueProfRecord(this); for (uint32_t K = 0; K < NumValueKinds; K++) { VR->deserializeTo(Record, VMap); VR = getValueProfRecordNext(VR); } } template static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { using namespace support; if (Orig == little) return endian::readNext(D); else return endian::readNext(D); } static std::unique_ptr allocValueProfData(uint32_t TotalSize) { return std::unique_ptr(new (::operator new(TotalSize)) ValueProfData()); } instrprof_error ValueProfData::checkIntegrity() { if (NumValueKinds > IPVK_Last + 1) return instrprof_error::malformed; // Total size needs to be mulltiple of quadword size. if (TotalSize % sizeof(uint64_t)) return instrprof_error::malformed; ValueProfRecord *VR = getFirstValueProfRecord(this); for (uint32_t K = 0; K < this->NumValueKinds; K++) { if (VR->Kind > IPVK_Last) return instrprof_error::malformed; VR = getValueProfRecordNext(VR); if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) return instrprof_error::malformed; } return instrprof_error::success; } ErrorOr> ValueProfData::getValueProfData(const unsigned char *D, const unsigned char *const BufferEnd, support::endianness Endianness) { using namespace support; if (D + sizeof(ValueProfData) > BufferEnd) return instrprof_error::truncated; const unsigned char *Header = D; uint32_t TotalSize = swapToHostOrder(Header, Endianness); if (D + TotalSize > BufferEnd) return instrprof_error::too_large; std::unique_ptr VPD = allocValueProfData(TotalSize); memcpy(VPD.get(), D, TotalSize); // Byte swap. VPD->swapBytesToHost(Endianness); instrprof_error EC = VPD->checkIntegrity(); if (EC != instrprof_error::success) return EC; return std::move(VPD); } void ValueProfData::swapBytesToHost(support::endianness Endianness) { using namespace support; if (Endianness == getHostEndianness()) return; sys::swapByteOrder(TotalSize); sys::swapByteOrder(NumValueKinds); ValueProfRecord *VR = getFirstValueProfRecord(this); for (uint32_t K = 0; K < NumValueKinds; K++) { VR->swapBytes(Endianness, getHostEndianness()); VR = getValueProfRecordNext(VR); } } void ValueProfData::swapBytesFromHost(support::endianness Endianness) { using namespace support; if (Endianness == getHostEndianness()) return; ValueProfRecord *VR = getFirstValueProfRecord(this); for (uint32_t K = 0; K < NumValueKinds; K++) { ValueProfRecord *NVR = getValueProfRecordNext(VR); VR->swapBytes(getHostEndianness(), Endianness); VR = NVR; } sys::swapByteOrder(TotalSize); sys::swapByteOrder(NumValueKinds); } // The argument to this method is a vector of cutoff percentages and the return // value is a vector of (Cutoff, MinBlockCount, NumBlocks) triplets. void ProfileSummary::computeDetailedSummary() { if (DetailedSummaryCutoffs.empty()) return; auto Iter = CountFrequencies.begin(); auto End = CountFrequencies.end(); std::sort(DetailedSummaryCutoffs.begin(), DetailedSummaryCutoffs.end()); uint32_t BlocksSeen = 0; uint64_t CurrSum = 0, Count; for (uint32_t Cutoff : DetailedSummaryCutoffs) { assert(Cutoff <= 999999); APInt Temp(128, TotalCount); APInt N(128, Cutoff); APInt D(128, ProfileSummary::Scale); Temp *= N; Temp = Temp.sdiv(D); uint64_t DesiredCount = Temp.getZExtValue(); assert(DesiredCount <= TotalCount); while (CurrSum < DesiredCount && Iter != End) { Count = Iter->first; uint32_t Freq = Iter->second; CurrSum += (Count * Freq); BlocksSeen += Freq; Iter++; } assert(CurrSum >= DesiredCount); ProfileSummaryEntry PSE = {Cutoff, Count, BlocksSeen}; DetailedSummary.push_back(PSE); } } } // end namespace llvm