//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements a simple loop unroller. It works best when loops have // been canonicalized by the -indvars pass, allowing it to determine the trip // counts of loops easily. //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Metadata.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/UnrollLoop.h" #include using namespace llvm; #define DEBUG_TYPE "loop-unroll" static cl::opt UnrollThreshold("unroll-threshold", cl::Hidden, cl::desc("The baseline cost threshold for loop unrolling")); static cl::opt UnrollPercentDynamicCostSavedThreshold( "unroll-percent-dynamic-cost-saved-threshold", cl::Hidden, cl::desc("The percentage of estimated dynamic cost which must be saved by " "unrolling to allow unrolling up to the max threshold.")); static cl::opt UnrollDynamicCostSavingsDiscount( "unroll-dynamic-cost-savings-discount", cl::Hidden, cl::desc("This is the amount discounted from the total unroll cost when " "the unrolled form has a high dynamic cost savings (triggered by " "the '-unroll-perecent-dynamic-cost-saved-threshold' flag).")); static cl::opt UnrollMaxIterationsCountToAnalyze( "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden, cl::desc("Don't allow loop unrolling to simulate more than this number of" "iterations when checking full unroll profitability")); static cl::opt UnrollCount("unroll-count", cl::Hidden, cl::desc("Use this unroll count for all loops including those with " "unroll_count pragma values, for testing purposes")); static cl::opt UnrollAllowPartial("unroll-allow-partial", cl::Hidden, cl::desc("Allows loops to be partially unrolled until " "-unroll-threshold loop size is reached.")); static cl::opt UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, cl::desc("Unroll loops with run-time trip counts")); static cl::opt PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, cl::desc("Unrolled size limit for loops with an unroll(full) or " "unroll_count pragma.")); /// A magic value for use with the Threshold parameter to indicate /// that the loop unroll should be performed regardless of how much /// code expansion would result. static const unsigned NoThreshold = UINT_MAX; /// Default unroll count for loops with run-time trip count if /// -unroll-count is not set static const unsigned DefaultUnrollRuntimeCount = 8; /// Gather the various unrolling parameters based on the defaults, compiler /// flags, TTI overrides, pragmas, and user specified parameters. static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences( Loop *L, const TargetTransformInfo &TTI, Optional UserThreshold, Optional UserCount, Optional UserAllowPartial, Optional UserRuntime, unsigned PragmaCount, bool PragmaFullUnroll, bool PragmaEnableUnroll, unsigned TripCount) { TargetTransformInfo::UnrollingPreferences UP; // Set up the defaults UP.Threshold = 150; UP.PercentDynamicCostSavedThreshold = 20; UP.DynamicCostSavingsDiscount = 2000; UP.OptSizeThreshold = 50; UP.PartialThreshold = UP.Threshold; UP.PartialOptSizeThreshold = UP.OptSizeThreshold; UP.Count = 0; UP.MaxCount = UINT_MAX; UP.Partial = false; UP.Runtime = false; UP.AllowExpensiveTripCount = false; // Override with any target specific settings TTI.getUnrollingPreferences(L, UP); // Apply size attributes if (L->getHeader()->getParent()->optForSize()) { UP.Threshold = UP.OptSizeThreshold; UP.PartialThreshold = UP.PartialOptSizeThreshold; } // Apply unroll count pragmas if (PragmaCount) UP.Count = PragmaCount; else if (PragmaFullUnroll) UP.Count = TripCount; // Apply any user values specified by cl::opt if (UnrollThreshold.getNumOccurrences() > 0) { UP.Threshold = UnrollThreshold; UP.PartialThreshold = UnrollThreshold; } if (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0) UP.PercentDynamicCostSavedThreshold = UnrollPercentDynamicCostSavedThreshold; if (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0) UP.DynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount; if (UnrollCount.getNumOccurrences() > 0) UP.Count = UnrollCount; if (UnrollAllowPartial.getNumOccurrences() > 0) UP.Partial = UnrollAllowPartial; if (UnrollRuntime.getNumOccurrences() > 0) UP.Runtime = UnrollRuntime; // Apply user values provided by argument if (UserThreshold.hasValue()) { UP.Threshold = *UserThreshold; UP.PartialThreshold = *UserThreshold; } if (UserCount.hasValue()) UP.Count = *UserCount; if (UserAllowPartial.hasValue()) UP.Partial = *UserAllowPartial; if (UserRuntime.hasValue()) UP.Runtime = *UserRuntime; if (PragmaCount > 0 || ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0)) { // If the loop has an unrolling pragma, we want to be more aggressive with // unrolling limits. Set thresholds to at least the PragmaTheshold value // which is larger than the default limits. if (UP.Threshold != NoThreshold) UP.Threshold = std::max(UP.Threshold, PragmaUnrollThreshold); if (UP.PartialThreshold != NoThreshold) UP.PartialThreshold = std::max(UP.PartialThreshold, PragmaUnrollThreshold); } return UP; } namespace { // This class is used to get an estimate of the optimization effects that we // could get from complete loop unrolling. It comes from the fact that some // loads might be replaced with concrete constant values and that could trigger // a chain of instruction simplifications. // // E.g. we might have: // int a[] = {0, 1, 0}; // v = 0; // for (i = 0; i < 3; i ++) // v += b[i]*a[i]; // If we completely unroll the loop, we would get: // v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2] // Which then will be simplified to: // v = b[0]* 0 + b[1]* 1 + b[2]* 0 // And finally: // v = b[1] class UnrolledInstAnalyzer : private InstVisitor { typedef InstVisitor Base; friend class InstVisitor; struct SimplifiedAddress { Value *Base = nullptr; ConstantInt *Offset = nullptr; }; public: UnrolledInstAnalyzer(unsigned Iteration, DenseMap &SimplifiedValues, ScalarEvolution &SE) : SimplifiedValues(SimplifiedValues), SE(SE) { IterationNumber = SE.getConstant(APInt(64, Iteration)); } // Allow access to the initial visit method. using Base::visit; private: /// \brief A cache of pointer bases and constant-folded offsets corresponding /// to GEP (or derived from GEP) instructions. /// /// In order to find the base pointer one needs to perform non-trivial /// traversal of the corresponding SCEV expression, so it's good to have the /// results saved. DenseMap SimplifiedAddresses; /// \brief SCEV expression corresponding to number of currently simulated /// iteration. const SCEV *IterationNumber; /// \brief A Value->Constant map for keeping values that we managed to /// constant-fold on the given iteration. /// /// While we walk the loop instructions, we build up and maintain a mapping /// of simplified values specific to this iteration. The idea is to propagate /// any special information we have about loads that can be replaced with /// constants after complete unrolling, and account for likely simplifications /// post-unrolling. DenseMap &SimplifiedValues; ScalarEvolution &SE; /// \brief Try to simplify instruction \param I using its SCEV expression. /// /// The idea is that some AddRec expressions become constants, which then /// could trigger folding of other instructions. However, that only happens /// for expressions whose start value is also constant, which isn't always the /// case. In another common and important case the start value is just some /// address (i.e. SCEVUnknown) - in this case we compute the offset and save /// it along with the base address instead. bool simplifyInstWithSCEV(Instruction *I) { if (!SE.isSCEVable(I->getType())) return false; const SCEV *S = SE.getSCEV(I); if (auto *SC = dyn_cast(S)) { SimplifiedValues[I] = SC->getValue(); return true; } auto *AR = dyn_cast(S); if (!AR) return false; const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE); // Check if the AddRec expression becomes a constant. if (auto *SC = dyn_cast(ValueAtIteration)) { SimplifiedValues[I] = SC->getValue(); return true; } // Check if the offset from the base address becomes a constant. auto *Base = dyn_cast(SE.getPointerBase(S)); if (!Base) return false; auto *Offset = dyn_cast(SE.getMinusSCEV(ValueAtIteration, Base)); if (!Offset) return false; SimplifiedAddress Address; Address.Base = Base->getValue(); Address.Offset = Offset->getValue(); SimplifiedAddresses[I] = Address; return true; } /// Base case for the instruction visitor. bool visitInstruction(Instruction &I) { return simplifyInstWithSCEV(&I); } /// Try to simplify binary operator I. /// /// TODO: Probably it's worth to hoist the code for estimating the /// simplifications effects to a separate class, since we have a very similar /// code in InlineCost already. bool visitBinaryOperator(BinaryOperator &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); if (!isa(LHS)) if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) LHS = SimpleLHS; if (!isa(RHS)) if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) RHS = SimpleRHS; Value *SimpleV = nullptr; const DataLayout &DL = I.getModule()->getDataLayout(); if (auto FI = dyn_cast(&I)) SimpleV = SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); else SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); if (Constant *C = dyn_cast_or_null(SimpleV)) SimplifiedValues[&I] = C; if (SimpleV) return true; return Base::visitBinaryOperator(I); } /// Try to fold load I. bool visitLoad(LoadInst &I) { Value *AddrOp = I.getPointerOperand(); auto AddressIt = SimplifiedAddresses.find(AddrOp); if (AddressIt == SimplifiedAddresses.end()) return false; ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset; auto *GV = dyn_cast(AddressIt->second.Base); // We're only interested in loads that can be completely folded to a // constant. if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant()) return false; ConstantDataSequential *CDS = dyn_cast(GV->getInitializer()); if (!CDS) return false; // We might have a vector load from an array. FIXME: for now we just bail // out in this case, but we should be able to resolve and simplify such // loads. if(!CDS->isElementTypeCompatible(I.getType())) return false; int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 && "Unexpectedly large index value."); int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize; if (Index >= CDS->getNumElements()) { // FIXME: For now we conservatively ignore out of bound accesses, but // we're allowed to perform the optimization in this case. return false; } Constant *CV = CDS->getElementAsConstant(Index); assert(CV && "Constant expected."); SimplifiedValues[&I] = CV; return true; } bool visitCastInst(CastInst &I) { // Propagate constants through casts. Constant *COp = dyn_cast(I.getOperand(0)); if (!COp) COp = SimplifiedValues.lookup(I.getOperand(0)); if (COp) if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { SimplifiedValues[&I] = C; return true; } return Base::visitCastInst(I); } bool visitCmpInst(CmpInst &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); // First try to handle simplified comparisons. if (!isa(LHS)) if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) LHS = SimpleLHS; if (!isa(RHS)) if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) RHS = SimpleRHS; if (!isa(LHS) && !isa(RHS)) { auto SimplifiedLHS = SimplifiedAddresses.find(LHS); if (SimplifiedLHS != SimplifiedAddresses.end()) { auto SimplifiedRHS = SimplifiedAddresses.find(RHS); if (SimplifiedRHS != SimplifiedAddresses.end()) { SimplifiedAddress &LHSAddr = SimplifiedLHS->second; SimplifiedAddress &RHSAddr = SimplifiedRHS->second; if (LHSAddr.Base == RHSAddr.Base) { LHS = LHSAddr.Offset; RHS = RHSAddr.Offset; } } } } if (Constant *CLHS = dyn_cast(LHS)) { if (Constant *CRHS = dyn_cast(RHS)) { if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) { SimplifiedValues[&I] = C; return true; } } } return Base::visitCmpInst(I); } }; } // namespace namespace { struct EstimatedUnrollCost { /// \brief The estimated cost after unrolling. int UnrolledCost; /// \brief The estimated dynamic cost of executing the instructions in the /// rolled form. int RolledDynamicCost; }; } /// \brief Figure out if the loop is worth full unrolling. /// /// Complete loop unrolling can make some loads constant, and we need to know /// if that would expose any further optimization opportunities. This routine /// estimates this optimization. It computes cost of unrolled loop /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By /// dynamic cost we mean that we won't count costs of blocks that are known not /// to be executed (i.e. if we have a branch in the loop and we know that at the /// given iteration its condition would be resolved to true, we won't add up the /// cost of the 'false'-block). /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If /// the analysis failed (no benefits expected from the unrolling, or the loop is /// too big to analyze), the returned value is None. static Optional analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, const TargetTransformInfo &TTI, int MaxUnrolledLoopSize) { // We want to be able to scale offsets by the trip count and add more offsets // to them without checking for overflows, and we already don't want to // analyze *massive* trip counts, so we force the max to be reasonably small. assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) && "The unroll iterations max is too large!"); // Don't simulate loops with a big or unknown tripcount if (!UnrollMaxIterationsCountToAnalyze || !TripCount || TripCount > UnrollMaxIterationsCountToAnalyze) return None; SmallSetVector BBWorklist; DenseMap SimplifiedValues; SmallVector, 4> SimplifiedInputValues; // The estimated cost of the unrolled form of the loop. We try to estimate // this by simplifying as much as we can while computing the estimate. int UnrolledCost = 0; // We also track the estimated dynamic (that is, actually executed) cost in // the rolled form. This helps identify cases when the savings from unrolling // aren't just exposing dead control flows, but actual reduced dynamic // instructions due to the simplifications which we expect to occur after // unrolling. int RolledDynamicCost = 0; // Ensure that we don't violate the loop structure invariants relied on by // this analysis. assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); assert(L->isLCSSAForm(DT) && "Must have loops in LCSSA form to track live-out values."); DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); // Simulate execution of each iteration of the loop counting instructions, // which would be simplified. // Since the same load will take different values on different iterations, // we literally have to go through all loop's iterations. for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); // Prepare for the iteration by collecting any simplified entry or backedge // inputs. for (Instruction &I : *L->getHeader()) { auto *PHI = dyn_cast(&I); if (!PHI) break; // The loop header PHI nodes must have exactly two input: one from the // loop preheader and one from the loop latch. assert( PHI->getNumIncomingValues() == 2 && "Must have an incoming value only for the preheader and the latch."); Value *V = PHI->getIncomingValueForBlock( Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); Constant *C = dyn_cast(V); if (Iteration != 0 && !C) C = SimplifiedValues.lookup(V); if (C) SimplifiedInputValues.push_back({PHI, C}); } // Now clear and re-populate the map for the next iteration. SimplifiedValues.clear(); while (!SimplifiedInputValues.empty()) SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE); BBWorklist.clear(); BBWorklist.insert(L->getHeader()); // Note that we *must not* cache the size, this loop grows the worklist. for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { BasicBlock *BB = BBWorklist[Idx]; // Visit all instructions in the given basic block and try to simplify // it. We don't change the actual IR, just count optimization // opportunities. for (Instruction &I : *BB) { int InstCost = TTI.getUserCost(&I); // Visit the instruction to analyze its loop cost after unrolling, // and if the visitor returns false, include this instruction in the // unrolled cost. if (!Analyzer.visit(I)) UnrolledCost += InstCost; else { DEBUG(dbgs() << " " << I << " would be simplified if loop is unrolled.\n"); (void)0; } // Also track this instructions expected cost when executing the rolled // loop form. RolledDynamicCost += InstCost; // If unrolled body turns out to be too big, bail out. if (UnrolledCost > MaxUnrolledLoopSize) { DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" << " UnrolledCost: " << UnrolledCost << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize << "\n"); return None; } } TerminatorInst *TI = BB->getTerminator(); // Add in the live successors by first checking whether we have terminator // that may be simplified based on the values simplified by this call. if (BranchInst *BI = dyn_cast(TI)) { if (BI->isConditional()) { if (Constant *SimpleCond = SimplifiedValues.lookup(BI->getCondition())) { BasicBlock *Succ = nullptr; // Just take the first successor if condition is undef if (isa(SimpleCond)) Succ = BI->getSuccessor(0); else Succ = BI->getSuccessor( cast(SimpleCond)->isZero() ? 1 : 0); if (L->contains(Succ)) BBWorklist.insert(Succ); continue; } } } else if (SwitchInst *SI = dyn_cast(TI)) { if (Constant *SimpleCond = SimplifiedValues.lookup(SI->getCondition())) { BasicBlock *Succ = nullptr; // Just take the first successor if condition is undef if (isa(SimpleCond)) Succ = SI->getSuccessor(0); else Succ = SI->findCaseValue(cast(SimpleCond)) .getCaseSuccessor(); if (L->contains(Succ)) BBWorklist.insert(Succ); continue; } } // Add BB's successors to the worklist. for (BasicBlock *Succ : successors(BB)) if (L->contains(Succ)) BBWorklist.insert(Succ); } // If we found no optimization opportunities on the first iteration, we // won't find them on later ones too. if (UnrolledCost == RolledDynamicCost) { DEBUG(dbgs() << " No opportunities found.. exiting.\n" << " UnrolledCost: " << UnrolledCost << "\n"); return None; } } DEBUG(dbgs() << "Analysis finished:\n" << "UnrolledCost: " << UnrolledCost << ", " << "RolledDynamicCost: " << RolledDynamicCost << "\n"); return {{UnrolledCost, RolledDynamicCost}}; } /// ApproximateLoopSize - Approximate the size of the loop. static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, const TargetTransformInfo &TTI, AssumptionCache *AC) { SmallPtrSet EphValues; CodeMetrics::collectEphemeralValues(L, AC, EphValues); CodeMetrics Metrics; for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) Metrics.analyzeBasicBlock(*I, TTI, EphValues); NumCalls = Metrics.NumInlineCandidates; NotDuplicatable = Metrics.notDuplicatable; unsigned LoopSize = Metrics.NumInsts; // Don't allow an estimate of size zero. This would allows unrolling of loops // with huge iteration counts, which is a compile time problem even if it's // not a problem for code quality. Also, the code using this size may assume // that each loop has at least three instructions (likely a conditional // branch, a comparison feeding that branch, and some kind of loop increment // feeding that comparison instruction). LoopSize = std::max(LoopSize, 3u); return LoopSize; } // Returns the loop hint metadata node with the given name (for example, // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is // returned. static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { if (MDNode *LoopID = L->getLoopID()) return GetUnrollMetadata(LoopID, Name); return nullptr; } // Returns true if the loop has an unroll(full) pragma. static bool HasUnrollFullPragma(const Loop *L) { return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); } // Returns true if the loop has an unroll(enable) pragma. This metadata is used // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. static bool HasUnrollEnablePragma(const Loop *L) { return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); } // Returns true if the loop has an unroll(disable) pragma. static bool HasUnrollDisablePragma(const Loop *L) { return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable"); } // Returns true if the loop has an runtime unroll(disable) pragma. static bool HasRuntimeUnrollDisablePragma(const Loop *L) { return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); } // If loop has an unroll_count pragma return the (necessarily // positive) value from the pragma. Otherwise return 0. static unsigned UnrollCountPragmaValue(const Loop *L) { MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); if (MD) { assert(MD->getNumOperands() == 2 && "Unroll count hint metadata should have two operands."); unsigned Count = mdconst::extract(MD->getOperand(1))->getZExtValue(); assert(Count >= 1 && "Unroll count must be positive."); return Count; } return 0; } // Remove existing unroll metadata and add unroll disable metadata to // indicate the loop has already been unrolled. This prevents a loop // from being unrolled more than is directed by a pragma if the loop // unrolling pass is run more than once (which it generally is). static void SetLoopAlreadyUnrolled(Loop *L) { MDNode *LoopID = L->getLoopID(); if (!LoopID) return; // First remove any existing loop unrolling metadata. SmallVector MDs; // Reserve first location for self reference to the LoopID metadata node. MDs.push_back(nullptr); for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { bool IsUnrollMetadata = false; MDNode *MD = dyn_cast(LoopID->getOperand(i)); if (MD) { const MDString *S = dyn_cast(MD->getOperand(0)); IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); } if (!IsUnrollMetadata) MDs.push_back(LoopID->getOperand(i)); } // Add unroll(disable) metadata to disable future unrolling. LLVMContext &Context = L->getHeader()->getContext(); SmallVector DisableOperands; DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); MDNode *DisableNode = MDNode::get(Context, DisableOperands); MDs.push_back(DisableNode); MDNode *NewLoopID = MDNode::get(Context, MDs); // Set operand 0 to refer to the loop id itself. NewLoopID->replaceOperandWith(0, NewLoopID); L->setLoopID(NewLoopID); } static bool canUnrollCompletely(Loop *L, unsigned Threshold, unsigned PercentDynamicCostSavedThreshold, unsigned DynamicCostSavingsDiscount, uint64_t UnrolledCost, uint64_t RolledDynamicCost) { if (Threshold == NoThreshold) { DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n"); return true; } if (UnrolledCost <= Threshold) { DEBUG(dbgs() << " Can fully unroll, because unrolled cost: " << UnrolledCost << "<" << Threshold << "\n"); return true; } assert(UnrolledCost && "UnrolledCost can't be 0 at this point."); assert(RolledDynamicCost >= UnrolledCost && "Cannot have a higher unrolled cost than a rolled cost!"); // Compute the percentage of the dynamic cost in the rolled form that is // saved when unrolled. If unrolling dramatically reduces the estimated // dynamic cost of the loop, we use a higher threshold to allow more // unrolling. unsigned PercentDynamicCostSaved = (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost; if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold && (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <= (int64_t)Threshold) { DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the " "expected dynamic cost by " << PercentDynamicCostSaved << "% (threshold: " << PercentDynamicCostSavedThreshold << "%)\n" << " and the unrolled cost (" << UnrolledCost << ") is less than the max threshold (" << DynamicCostSavingsDiscount << ").\n"); return true; } DEBUG(dbgs() << " Too large to fully unroll:\n"); DEBUG(dbgs() << " Threshold: " << Threshold << "\n"); DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n"); DEBUG(dbgs() << " Percent cost saved threshold: " << PercentDynamicCostSavedThreshold << "%\n"); DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n"); DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n"); DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved << "\n"); return false; } static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution *SE, const TargetTransformInfo &TTI, AssumptionCache &AC, bool PreserveLCSSA, Optional ProvidedCount, Optional ProvidedThreshold, Optional ProvidedAllowPartial, Optional ProvidedRuntime) { BasicBlock *Header = L->getHeader(); DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName() << "] Loop %" << Header->getName() << "\n"); if (HasUnrollDisablePragma(L)) { return false; } bool PragmaFullUnroll = HasUnrollFullPragma(L); bool PragmaEnableUnroll = HasUnrollEnablePragma(L); unsigned PragmaCount = UnrollCountPragmaValue(L); bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0; // Find trip count and trip multiple if count is not available unsigned TripCount = 0; unsigned TripMultiple = 1; // If there are multiple exiting blocks but one of them is the latch, use the // latch for the trip count estimation. Otherwise insist on a single exiting // block for the trip count estimation. BasicBlock *ExitingBlock = L->getLoopLatch(); if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) ExitingBlock = L->getExitingBlock(); if (ExitingBlock) { TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); } TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial, ProvidedRuntime, PragmaCount, PragmaFullUnroll, PragmaEnableUnroll, TripCount); unsigned Count = UP.Count; bool CountSetExplicitly = Count != 0; // Use a heuristic count if we didn't set anything explicitly. if (!CountSetExplicitly) Count = TripCount == 0 ? DefaultUnrollRuntimeCount : TripCount; if (TripCount && Count > TripCount) Count = TripCount; unsigned NumInlineCandidates; bool notDuplicatable; unsigned LoopSize = ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC); DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); // When computing the unrolled size, note that the conditional branch on the // backedge and the comparison feeding it are not replicated like the rest of // the loop body (which is why 2 is subtracted). uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2; if (notDuplicatable) { DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" << " instructions.\n"); return false; } if (NumInlineCandidates != 0) { DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); return false; } // Given Count, TripCount and thresholds determine the type of // unrolling which is to be performed. enum { Full = 0, Partial = 1, Runtime = 2 }; int Unrolling; if (TripCount && Count == TripCount) { Unrolling = Partial; // If the loop is really small, we don't need to run an expensive analysis. if (canUnrollCompletely(L, UP.Threshold, 100, UP.DynamicCostSavingsDiscount, UnrolledSize, UnrolledSize)) { Unrolling = Full; } else { // The loop isn't that small, but we still can fully unroll it if that // helps to remove a significant number of instructions. // To check that, run additional analysis on the loop. if (Optional Cost = analyzeLoopUnrollCost( L, TripCount, DT, *SE, TTI, UP.Threshold + UP.DynamicCostSavingsDiscount)) if (canUnrollCompletely(L, UP.Threshold, UP.PercentDynamicCostSavedThreshold, UP.DynamicCostSavingsDiscount, Cost->UnrolledCost, Cost->RolledDynamicCost)) { Unrolling = Full; } } } else if (TripCount && Count < TripCount) { Unrolling = Partial; } else { Unrolling = Runtime; } // Reduce count based on the type of unrolling and the threshold values. unsigned OriginalCount = Count; bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) || UP.Runtime; // Don't unroll a runtime trip count loop with unroll full pragma. if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) { AllowRuntime = false; } if (Unrolling == Partial) { bool AllowPartial = PragmaEnableUnroll || UP.Partial; if (!AllowPartial && !CountSetExplicitly) { DEBUG(dbgs() << " will not try to unroll partially because " << "-unroll-allow-partial not given\n"); return false; } if (UP.PartialThreshold != NoThreshold && UnrolledSize > UP.PartialThreshold) { // Reduce unroll count to be modulo of TripCount for partial unrolling. Count = (std::max(UP.PartialThreshold, 3u) - 2) / (LoopSize - 2); while (Count != 0 && TripCount % Count != 0) Count--; } } else if (Unrolling == Runtime) { if (!AllowRuntime && !CountSetExplicitly) { DEBUG(dbgs() << " will not try to unroll loop with runtime trip count " << "-unroll-runtime not given\n"); return false; } // Reduce unroll count to be the largest power-of-two factor of // the original count which satisfies the threshold limit. while (Count != 0 && UnrolledSize > UP.PartialThreshold) { Count >>= 1; UnrolledSize = (LoopSize-2) * Count + 2; } if (Count > UP.MaxCount) Count = UP.MaxCount; DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n"); } if (HasPragma) { if (PragmaCount != 0) // If loop has an unroll count pragma mark loop as unrolled to prevent // unrolling beyond that requested by the pragma. SetLoopAlreadyUnrolled(L); // Emit optimization remarks if we are unable to unroll the loop // as directed by a pragma. DebugLoc LoopLoc = L->getStartLoc(); Function *F = Header->getParent(); LLVMContext &Ctx = F->getContext(); if ((PragmaCount > 0) && Count != OriginalCount) { emitOptimizationRemarkMissed( Ctx, DEBUG_TYPE, *F, LoopLoc, "Unable to unroll loop the number of times directed by " "unroll_count pragma because unrolled size is too large."); } else if (PragmaFullUnroll && !TripCount) { emitOptimizationRemarkMissed( Ctx, DEBUG_TYPE, *F, LoopLoc, "Unable to fully unroll loop as directed by unroll(full) pragma " "because loop has a runtime trip count."); } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) { emitOptimizationRemarkMissed( Ctx, DEBUG_TYPE, *F, LoopLoc, "Unable to unroll loop as directed by unroll(enable) pragma because " "unrolled size is too large."); } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && Count != TripCount) { emitOptimizationRemarkMissed( Ctx, DEBUG_TYPE, *F, LoopLoc, "Unable to fully unroll loop as directed by unroll pragma because " "unrolled size is too large."); } } if (Unrolling != Full && Count < 2) { // Partial unrolling by 1 is a nop. For full unrolling, a factor // of 1 makes sense because loop control can be eliminated. return false; } // Unroll the loop. if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount, TripMultiple, LI, SE, &DT, &AC, PreserveLCSSA)) return false; return true; } namespace { class LoopUnroll : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopUnroll(Optional Threshold = None, Optional Count = None, Optional AllowPartial = None, Optional Runtime = None) : LoopPass(ID), ProvidedCount(Count), ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), ProvidedRuntime(Runtime) { initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); } Optional ProvidedCount; Optional ProvidedThreshold; Optional ProvidedAllowPartial; Optional ProvidedRuntime; bool runOnLoop(Loop *L, LPPassManager &) override { if (skipOptnoneFunction(L)) return false; Function &F = *L->getHeader()->getParent(); auto &DT = getAnalysis().getDomTree(); LoopInfo *LI = &getAnalysis().getLoopInfo(); ScalarEvolution *SE = &getAnalysis().getSE(); const TargetTransformInfo &TTI = getAnalysis().getTTI(F); auto &AC = getAnalysis().getAssumptionCache(F); bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, PreserveLCSSA, ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime); } /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG... /// void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); AU.addRequired(); AU.addPreserved(); AU.addRequired(); // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info. // If loop unroll does not preserve dom info then LCSSA pass on next // loop will receive invalid dom info. // For now, recreate dom info, if loop is unrolled. AU.addPreserved(); AU.addPreserved(); } }; } char LoopUnroll::ID = 0; INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSA) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial, int Runtime) { // TODO: It would make more sense for this function to take the optionals // directly, but that's dangerous since it would silently break out of tree // callers. return new LoopUnroll(Threshold == -1 ? None : Optional(Threshold), Count == -1 ? None : Optional(Count), AllowPartial == -1 ? None : Optional(AllowPartial), Runtime == -1 ? None : Optional(Runtime)); } Pass *llvm::createSimpleLoopUnrollPass() { return llvm::createLoopUnrollPass(-1, -1, 0, 0); }