//===--- HexagonExpandCondsets.cpp ----------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Replace mux instructions with the corresponding legal instructions. // It is meant to work post-SSA, but still on virtual registers. It was // originally placed between register coalescing and machine instruction // scheduler. // In this place in the optimization sequence, live interval analysis had // been performed, and the live intervals should be preserved. A large part // of the code deals with preserving the liveness information. // // Liveness tracking aside, the main functionality of this pass is divided // into two steps. The first step is to replace an instruction // vreg0 = C2_mux vreg1, vreg2, vreg3 // with a pair of conditional transfers // vreg0 = A2_tfrt vreg1, vreg2 // vreg0 = A2_tfrf vreg1, vreg3 // It is the intention that the execution of this pass could be terminated // after this step, and the code generated would be functionally correct. // // If the uses of the source values vreg1 and vreg2 are kills, and their // definitions are predicable, then in the second step, the conditional // transfers will then be rewritten as predicated instructions. E.g. // vreg0 = A2_or vreg1, vreg2 // vreg3 = A2_tfrt vreg99, vreg0 // will be rewritten as // vreg3 = A2_port vreg99, vreg1, vreg2 // // This replacement has two variants: "up" and "down". Consider this case: // vreg0 = A2_or vreg1, vreg2 // ... [intervening instructions] ... // vreg3 = A2_tfrt vreg99, vreg0 // variant "up": // vreg3 = A2_port vreg99, vreg1, vreg2 // ... [intervening instructions, vreg0->vreg3] ... // [deleted] // variant "down": // [deleted] // ... [intervening instructions] ... // vreg3 = A2_port vreg99, vreg1, vreg2 // // Both, one or none of these variants may be valid, and checks are made // to rule out inapplicable variants. // // As an additional optimization, before either of the two steps above is // executed, the pass attempts to coalesce the target register with one of // the source registers, e.g. given an instruction // vreg3 = C2_mux vreg0, vreg1, vreg2 // vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds, // the instruction would then be (for example) // vreg3 = C2_mux vreg0, vreg3, vreg2 // and, under certain circumstances, this could result in only one predicated // instruction: // vreg3 = A2_tfrf vreg0, vreg2 // // Splitting a definition of a register into two predicated transfers // creates a complication in liveness tracking. Live interval computation // will see both instructions as actual definitions, and will mark the // first one as dead. The definition is not actually dead, and this // situation will need to be fixed. For example: // vreg1 = A2_tfrt ... ; marked as dead // vreg1 = A2_tfrf ... // // Since any of the individual predicated transfers may end up getting // removed (in case it is an identity copy), some pre-existing def may // be marked as dead after live interval recomputation: // vreg1 = ... ; marked as dead // ... // vreg1 = A2_tfrf ... ; if A2_tfrt is removed // This case happens if vreg1 was used as a source in A2_tfrt, which means // that is it actually live at the A2_tfrf, and so the now dead definition // of vreg1 will need to be updated to non-dead at some point. // // This issue could be remedied by adding implicit uses to the predicated // transfers, but this will create a problem with subsequent predication, // since the transfers will no longer be possible to reorder. To avoid // that, the initial splitting will not add any implicit uses. These // implicit uses will be added later, after predication. The extra price, // however, is that finding the locations where the implicit uses need // to be added, and updating the live ranges will be more involved. #define DEBUG_TYPE "expand-condsets" #include "HexagonTargetMachine.h" #include "llvm/ADT/SetVector.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; static cl::opt OptTfrLimit("expand-condsets-tfr-limit", cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions")); static cl::opt OptCoaLimit("expand-condsets-coa-limit", cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings")); namespace llvm { void initializeHexagonExpandCondsetsPass(PassRegistry&); FunctionPass *createHexagonExpandCondsets(); } namespace { class HexagonExpandCondsets : public MachineFunctionPass { public: static char ID; HexagonExpandCondsets() : MachineFunctionPass(ID), HII(0), TRI(0), MRI(0), LIS(0), CoaLimitActive(false), TfrLimitActive(false), CoaCounter(0), TfrCounter(0) { if (OptCoaLimit.getPosition()) CoaLimitActive = true, CoaLimit = OptCoaLimit; if (OptTfrLimit.getPosition()) TfrLimitActive = true, TfrLimit = OptTfrLimit; initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "Hexagon Expand Condsets"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; private: const HexagonInstrInfo *HII; const TargetRegisterInfo *TRI; MachineDominatorTree *MDT; MachineRegisterInfo *MRI; LiveIntervals *LIS; bool CoaLimitActive, TfrLimitActive; unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter; struct RegisterRef { RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()), Sub(Op.getSubReg()) {} RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {} bool operator== (RegisterRef RR) const { return Reg == RR.Reg && Sub == RR.Sub; } bool operator!= (RegisterRef RR) const { return !operator==(RR); } bool operator< (RegisterRef RR) const { return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub); } unsigned Reg, Sub; }; typedef DenseMap ReferenceMap; enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) }; enum { Exec_Then = 0x10, Exec_Else = 0x20 }; unsigned getMaskForSub(unsigned Sub); bool isCondset(const MachineInstr &MI); LaneBitmask getLaneMask(unsigned Reg, unsigned Sub); void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec); bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec); void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range); void updateKillFlags(unsigned Reg); void updateDeadFlags(unsigned Reg); void recalculateLiveInterval(unsigned Reg); void removeInstr(MachineInstr &MI); void updateLiveness(std::set &RegSet, bool Recalc, bool UpdateKills, bool UpdateDeads); unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond); MachineInstr *genCondTfrFor(MachineOperand &SrcOp, MachineBasicBlock::iterator At, unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool PredSense, bool ReadUndef, bool ImpUse); bool split(MachineInstr &MI, std::set &UpdRegs); bool isPredicable(MachineInstr *MI); MachineInstr *getReachingDefForPred(RegisterRef RD, MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond); bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses); bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown); void predicateAt(const MachineOperand &DefOp, MachineInstr &MI, MachineBasicBlock::iterator Where, const MachineOperand &PredOp, bool Cond, std::set &UpdRegs); void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, bool Cond, MachineBasicBlock::iterator First, MachineBasicBlock::iterator Last); bool predicate(MachineInstr &TfrI, bool Cond, std::set &UpdRegs); bool predicateInBlock(MachineBasicBlock &B, std::set &UpdRegs); bool isIntReg(RegisterRef RR, unsigned &BW); bool isIntraBlocks(LiveInterval &LI); bool coalesceRegisters(RegisterRef R1, RegisterRef R2); bool coalesceSegments(const SmallVectorImpl &Condsets, std::set &UpdRegs); }; } char HexagonExpandCondsets::ID = 0; namespace llvm { char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID; } INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets", "Hexagon Expand Condsets", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets", "Hexagon Expand Condsets", false, false) unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) { switch (Sub) { case Hexagon::subreg_loreg: return Sub_Low; case Hexagon::subreg_hireg: return Sub_High; case Hexagon::NoSubRegister: return Sub_None; } llvm_unreachable("Invalid subregister"); } bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) { unsigned Opc = MI.getOpcode(); switch (Opc) { case Hexagon::C2_mux: case Hexagon::C2_muxii: case Hexagon::C2_muxir: case Hexagon::C2_muxri: case Hexagon::PS_pselect: return true; break; } return false; } LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) { assert(TargetRegisterInfo::isVirtualRegister(Reg)); return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : MRI->getMaxLaneMaskForVReg(Reg); } void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec) { unsigned Mask = getMaskForSub(RR.Sub) | Exec; ReferenceMap::iterator F = Map.find(RR.Reg); if (F == Map.end()) Map.insert(std::make_pair(RR.Reg, Mask)); else F->second |= Mask; } bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec) { ReferenceMap::iterator F = Map.find(RR.Reg); if (F == Map.end()) return false; unsigned Mask = getMaskForSub(RR.Sub) | Exec; if (Mask & F->second) return true; return false; } void HexagonExpandCondsets::updateKillFlags(unsigned Reg) { auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void { // Set the flag on a use of Reg whose lane mask is contained in LM. MachineInstr *MI = LIS->getInstructionFromIndex(K); for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg) continue; LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg()); if ((SLM & LM) == SLM) { // Only set the kill flag on the first encountered use of Reg in this // instruction. Op.setIsKill(true); break; } } }; LiveInterval &LI = LIS->getInterval(Reg); for (auto I = LI.begin(), E = LI.end(); I != E; ++I) { if (!I->end.isRegister()) continue; // Do not mark the end of the segment as , if the next segment // starts with a predicated instruction. auto NextI = std::next(I); if (NextI != E && NextI->start.isRegister()) { MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start); if (HII->isPredicated(*DefI)) continue; } bool WholeReg = true; if (LI.hasSubRanges()) { auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool { LiveRange::iterator F = S.find(I->end); return F != S.end() && I->end == F->end; }; // Check if all subranges end at I->end. If so, make sure to kill // the whole register. for (LiveInterval::SubRange &S : LI.subranges()) { if (EndsAtI(S)) KillAt(I->end, S.LaneMask); else WholeReg = false; } } if (WholeReg) KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg)); } } void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range) { assert(TargetRegisterInfo::isVirtualRegister(Reg)); if (Range.empty()) return; auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> bool { if (!Op.isReg() || !Op.isDef()) return false; unsigned DR = Op.getReg(), DSR = Op.getSubReg(); if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg) return false; LaneBitmask SLM = getLaneMask(DR, DSR); return (SLM & LM) != 0; }; // The splitting step will create pairs of predicated definitions without // any implicit uses (since implicit uses would interfere with predication). // This can cause the reaching defs to become dead after live range // recomputation, even though they are not really dead. // We need to identify predicated defs that need implicit uses, and // dead defs that are not really dead, and correct both problems. auto Dominate = [this] (SetVector &Defs, MachineBasicBlock *Dest) -> bool { for (MachineBasicBlock *D : Defs) if (D != Dest && MDT->dominates(D, Dest)) return true; MachineBasicBlock *Entry = &Dest->getParent()->front(); SetVector Work(Dest->pred_begin(), Dest->pred_end()); for (unsigned i = 0; i < Work.size(); ++i) { MachineBasicBlock *B = Work[i]; if (Defs.count(B)) continue; if (B == Entry) return false; for (auto *P : B->predecessors()) Work.insert(P); } return true; }; // First, try to extend live range within individual basic blocks. This // will leave us only with dead defs that do not reach any predicated // defs in the same block. SetVector Defs; SmallVector PredDefs; for (auto &Seg : Range) { if (!Seg.start.isRegister()) continue; MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); Defs.insert(DefI->getParent()); if (HII->isPredicated(*DefI)) PredDefs.push_back(Seg.start); } SmallVector Undefs; LiveInterval &LI = LIS->getInterval(Reg); LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes()); for (auto &SI : PredDefs) { MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI); if (P.first != nullptr || P.second) SI = SlotIndex(); } // Calculate reachability for those predicated defs that were not handled // by the in-block extension. SmallVector ExtTo; for (auto &SI : PredDefs) { if (!SI.isValid()) continue; MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); if (BB->pred_empty()) continue; // If the defs from this range reach SI via all predecessors, it is live. // It can happen that SI is reached by the defs through some paths, but // not all. In the IR coming into this optimization, SI would not be // considered live, since the defs would then not jointly dominate SI. // That means that SI is an overwriting def, and no implicit use is // needed at this point. Do not add SI to the extension points, since // extendToIndices will abort if there is no joint dominance. // If the abort was avoided by adding extra undefs added to Undefs, // extendToIndices could actually indicate that SI is live, contrary // to the original IR. if (Dominate(Defs, BB)) ExtTo.push_back(SI); } if (!ExtTo.empty()) LIS->extendToIndices(Range, ExtTo, Undefs); // Remove flags from all defs that are not dead after live range // extension, and collect all def operands. They will be used to generate // the necessary implicit uses. std::set DefRegs; for (auto &Seg : Range) { if (!Seg.start.isRegister()) continue; MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); for (auto &Op : DefI->operands()) { if (Seg.start.isDead() || !IsRegDef(Op)) continue; DefRegs.insert(Op); Op.setIsDead(false); } } // Finally, add implicit uses to each predicated def that is reached // by other defs. for (auto &Seg : Range) { if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot())) continue; MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); if (!HII->isPredicated(*DefI)) continue; // Construct the set of all necessary implicit uses, based on the def // operands in the instruction. std::set ImpUses; for (auto &Op : DefI->operands()) if (Op.isReg() && Op.isDef() && DefRegs.count(Op)) ImpUses.insert(Op); if (ImpUses.empty()) continue; MachineFunction &MF = *DefI->getParent()->getParent(); for (RegisterRef R : ImpUses) MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub); } } void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) { LiveInterval &LI = LIS->getInterval(Reg); if (LI.hasSubRanges()) { for (LiveInterval::SubRange &S : LI.subranges()) { updateDeadsInRange(Reg, S.LaneMask, S); LIS->shrinkToUses(S, Reg); } LI.clear(); LIS->constructMainRangeFromSubranges(LI); } else { updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI); } } void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) { LIS->removeInterval(Reg); LIS->createAndComputeVirtRegInterval(Reg); } void HexagonExpandCondsets::removeInstr(MachineInstr &MI) { LIS->RemoveMachineInstrFromMaps(MI); MI.eraseFromParent(); } void HexagonExpandCondsets::updateLiveness(std::set &RegSet, bool Recalc, bool UpdateKills, bool UpdateDeads) { UpdateKills |= UpdateDeads; for (auto R : RegSet) { if (Recalc) recalculateLiveInterval(R); if (UpdateKills) MRI->clearKillFlags(R); if (UpdateDeads) updateDeadFlags(R); // Fixing flags may extend live ranges, so reset flags // after that. if (UpdateKills) updateKillFlags(R); LIS->getInterval(R).verify(); } } /// Get the opcode for a conditional transfer of the value in SO (source /// operand). The condition (true/false) is given in Cond. unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO, bool IfTrue) { using namespace Hexagon; if (SO.isReg()) { unsigned PhysR; RegisterRef RS = SO; if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) { const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg); assert(VC->begin() != VC->end() && "Empty register class"); PhysR = *VC->begin(); } else { assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg)); PhysR = RS.Reg; } unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS); switch (RC->getSize()) { case 4: return IfTrue ? A2_tfrt : A2_tfrf; case 8: return IfTrue ? A2_tfrpt : A2_tfrpf; } llvm_unreachable("Invalid register operand"); } if (SO.isImm() || SO.isFPImm()) return IfTrue ? C2_cmoveit : C2_cmoveif; llvm_unreachable("Unexpected source operand"); } /// Generate a conditional transfer, copying the value SrcOp to the /// destination register DstR:DstSR, and using the predicate register from /// PredOp. The Cond argument specifies whether the predicate is to be /// if(PredOp), or if(!PredOp). MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp, MachineBasicBlock::iterator At, unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool PredSense, bool ReadUndef, bool ImpUse) { MachineInstr *MI = SrcOp.getParent(); MachineBasicBlock &B = *At->getParent(); const DebugLoc &DL = MI->getDebugLoc(); // Don't avoid identity copies here (i.e. if the source and the destination // are the same registers). It is actually better to generate them here, // since this would cause the copy to potentially be predicated in the next // step. The predication will remove such a copy if it is unable to /// predicate. unsigned Opc = getCondTfrOpcode(SrcOp, PredSense); unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0); unsigned PredState = getRegState(PredOp) & ~RegState::Kill; MachineInstrBuilder MIB; if (SrcOp.isReg()) { unsigned SrcState = getRegState(SrcOp); if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR)) SrcState &= ~RegState::Kill; MIB = BuildMI(B, At, DL, HII->get(Opc)) .addReg(DstR, DstState, DstSR) .addReg(PredOp.getReg(), PredState, PredOp.getSubReg()) .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg()); } else { MIB = BuildMI(B, At, DL, HII->get(Opc)) .addReg(DstR, DstState, DstSR) .addReg(PredOp.getReg(), PredState, PredOp.getSubReg()) .addOperand(SrcOp); } DEBUG(dbgs() << "created an initial copy: " << *MIB); return &*MIB; } /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function /// performs all necessary changes to complete the replacement. bool HexagonExpandCondsets::split(MachineInstr &MI, std::set &UpdRegs) { if (TfrLimitActive) { if (TfrCounter >= TfrLimit) return false; TfrCounter++; } DEBUG(dbgs() << "\nsplitting BB#" << MI.getParent()->getNumber() << ": " << MI); MachineOperand &MD = MI.getOperand(0); // Definition MachineOperand &MP = MI.getOperand(1); // Predicate register assert(MD.isDef()); unsigned DR = MD.getReg(), DSR = MD.getSubReg(); bool ReadUndef = MD.isUndef(); MachineBasicBlock::iterator At = MI; // If this is a mux of the same register, just replace it with COPY. // Ideally, this would happen earlier, so that register coalescing would // see it. MachineOperand &ST = MI.getOperand(2); MachineOperand &SF = MI.getOperand(3); if (ST.isReg() && SF.isReg()) { RegisterRef RT(ST); if (RT == RegisterRef(SF)) { MI.setDesc(HII->get(TargetOpcode::COPY)); unsigned S = getRegState(ST); while (MI.getNumOperands() > 1) MI.RemoveOperand(MI.getNumOperands()-1); MachineFunction &MF = *MI.getParent()->getParent(); MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub); return true; } } // First, create the two invididual conditional transfers, and add each // of them to the live intervals information. Do that first and then remove // the old instruction from live intervals. MachineInstr *TfrT = genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false); MachineInstr *TfrF = genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true); LIS->InsertMachineInstrInMaps(*TfrT); LIS->InsertMachineInstrInMaps(*TfrF); // Will need to recalculate live intervals for all registers in MI. for (auto &Op : MI.operands()) if (Op.isReg()) UpdRegs.insert(Op.getReg()); removeInstr(MI); return true; } bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) { if (HII->isPredicated(*MI) || !HII->isPredicable(*MI)) return false; if (MI->hasUnmodeledSideEffects() || MI->mayStore()) return false; // Reject instructions with multiple defs (e.g. post-increment loads). bool HasDef = false; for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isDef()) continue; if (HasDef) return false; HasDef = true; } for (auto &Mo : MI->memoperands()) if (Mo->isVolatile()) return false; return true; } /// Find the reaching definition for a predicated use of RD. The RD is used /// under the conditions given by PredR and Cond, and this function will ignore /// definitions that set RD under the opposite conditions. MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD, MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) { MachineBasicBlock &B = *UseIt->getParent(); MachineBasicBlock::iterator I = UseIt, S = B.begin(); if (I == S) return 0; bool PredValid = true; do { --I; MachineInstr *MI = &*I; // Check if this instruction can be ignored, i.e. if it is predicated // on the complementary condition. if (PredValid && HII->isPredicated(*MI)) { if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI))) continue; } // Check the defs. If the PredR is defined, invalidate it. If RD is // defined, return the instruction or 0, depending on the circumstances. for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isDef()) continue; RegisterRef RR = Op; if (RR.Reg == PredR) { PredValid = false; continue; } if (RR.Reg != RD.Reg) continue; // If the "Reg" part agrees, there is still the subregister to check. // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but // not vreg1 (w/o subregisters). if (RR.Sub == RD.Sub) return MI; if (RR.Sub == 0 || RD.Sub == 0) return 0; // We have different subregisters, so we can continue looking. } } while (I != S); return 0; } /// Check if the instruction MI can be safely moved over a set of instructions /// whose side-effects (in terms of register defs and uses) are expressed in /// the maps Defs and Uses. These maps reflect the conditional defs and uses /// that depend on the same predicate register to allow moving instructions /// over instructions predicated on the opposite condition. bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses) { // In order to be able to safely move MI over instructions that define // "Defs" and use "Uses", no def operand from MI can be defined or used // and no use operand can be defined. for (auto &Op : MI.operands()) { if (!Op.isReg()) continue; RegisterRef RR = Op; // For physical register we would need to check register aliases, etc. // and we don't want to bother with that. It would be of little value // before the actual register rewriting (from virtual to physical). if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) return false; // No redefs for any operand. if (isRefInMap(RR, Defs, Exec_Then)) return false; // For defs, there cannot be uses. if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then)) return false; } return true; } /// Check if the instruction accessing memory (TheI) can be moved to the /// location ToI. bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI, bool IsDown) { bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore(); if (!IsLoad && !IsStore) return true; if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI)) return true; if (TheI.hasUnmodeledSideEffects()) return false; MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI; MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI; bool Ordered = TheI.hasOrderedMemoryRef(); // Search for aliased memory reference in (StartI, EndI). for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) { MachineInstr *MI = &*I; if (MI->hasUnmodeledSideEffects()) return false; bool L = MI->mayLoad(), S = MI->mayStore(); if (!L && !S) continue; if (Ordered && MI->hasOrderedMemoryRef()) return false; bool Conflict = (L && IsStore) || S; if (Conflict) return false; } return true; } /// Generate a predicated version of MI (where the condition is given via /// PredR and Cond) at the point indicated by Where. void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp, MachineInstr &MI, MachineBasicBlock::iterator Where, const MachineOperand &PredOp, bool Cond, std::set &UpdRegs) { // The problem with updating live intervals is that we can move one def // past another def. In particular, this can happen when moving an A2_tfrt // over an A2_tfrf defining the same register. From the point of view of // live intervals, these two instructions are two separate definitions, // and each one starts another live segment. LiveIntervals's "handleMove" // does not allow such moves, so we need to handle it ourselves. To avoid // invalidating liveness data while we are using it, the move will be // implemented in 4 steps: (1) add a clone of the instruction MI at the // target location, (2) update liveness, (3) delete the old instruction, // and (4) update liveness again. MachineBasicBlock &B = *MI.getParent(); DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction. unsigned Opc = MI.getOpcode(); unsigned PredOpc = HII->getCondOpcode(Opc, !Cond); MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc)); unsigned Ox = 0, NP = MI.getNumOperands(); // Skip all defs from MI first. while (Ox < NP) { MachineOperand &MO = MI.getOperand(Ox); if (!MO.isReg() || !MO.isDef()) break; Ox++; } // Add the new def, then the predicate register, then the rest of the // operands. MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg()); MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0, PredOp.getSubReg()); while (Ox < NP) { MachineOperand &MO = MI.getOperand(Ox); if (!MO.isReg() || !MO.isImplicit()) MB.addOperand(MO); Ox++; } MachineFunction &MF = *B.getParent(); MachineInstr::mmo_iterator I = MI.memoperands_begin(); unsigned NR = std::distance(I, MI.memoperands_end()); MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR); for (unsigned i = 0; i < NR; ++i) MemRefs[i] = *I++; MB.setMemRefs(MemRefs, MemRefs+NR); MachineInstr *NewI = MB; NewI->clearKillInfo(); LIS->InsertMachineInstrInMaps(*NewI); for (auto &Op : NewI->operands()) if (Op.isReg()) UpdRegs.insert(Op.getReg()); } /// In the range [First, Last], rename all references to the "old" register RO /// to the "new" register RN, but only in instructions predicated on the given /// condition. void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, bool Cond, MachineBasicBlock::iterator First, MachineBasicBlock::iterator Last) { MachineBasicBlock::iterator End = std::next(Last); for (MachineBasicBlock::iterator I = First; I != End; ++I) { MachineInstr *MI = &*I; // Do not touch instructions that are not predicated, or are predicated // on the opposite condition. if (!HII->isPredicated(*MI)) continue; if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI))) continue; for (auto &Op : MI->operands()) { if (!Op.isReg() || RO != RegisterRef(Op)) continue; Op.setReg(RN.Reg); Op.setSubReg(RN.Sub); // In practice, this isn't supposed to see any defs. assert(!Op.isDef() && "Not expecting a def"); } } } /// For a given conditional copy, predicate the definition of the source of /// the copy under the given condition (using the same predicate register as /// the copy). bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond, std::set &UpdRegs) { // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi). unsigned Opc = TfrI.getOpcode(); (void)Opc; assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf); DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false") << ": " << TfrI); MachineOperand &MD = TfrI.getOperand(0); MachineOperand &MP = TfrI.getOperand(1); MachineOperand &MS = TfrI.getOperand(2); // The source operand should be a . This is not strictly necessary, // but it makes things a lot simpler. Otherwise, we would need to rename // some registers, which would complicate the transformation considerably. if (!MS.isKill()) return false; // Avoid predicating instructions that define a subregister if subregister // liveness tracking is not enabled. if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg())) return false; RegisterRef RT(MS); unsigned PredR = MP.getReg(); MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond); if (!DefI || !isPredicable(DefI)) return false; DEBUG(dbgs() << "Source def: " << *DefI); // Collect the information about registers defined and used between the // DefI and the TfrI. // Map: reg -> bitmask of subregs ReferenceMap Uses, Defs; MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI; // Check if the predicate register is valid between DefI and TfrI. // If it is, we can then ignore instructions predicated on the negated // conditions when collecting def and use information. bool PredValid = true; for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { if (!I->modifiesRegister(PredR, 0)) continue; PredValid = false; break; } for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { MachineInstr *MI = &*I; // If this instruction is predicated on the same register, it could // potentially be ignored. // By default assume that the instruction executes on the same condition // as TfrI (Exec_Then), and also on the opposite one (Exec_Else). unsigned Exec = Exec_Then | Exec_Else; if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR)) Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else; for (auto &Op : MI->operands()) { if (!Op.isReg()) continue; // We don't want to deal with physical registers. The reason is that // they can be aliased with other physical registers. Aliased virtual // registers must share the same register number, and can only differ // in the subregisters, which we are keeping track of. Physical // registers ters no longer have subregisters---their super- and // subregisters are other physical registers, and we are not checking // that. RegisterRef RR = Op; if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) return false; ReferenceMap &Map = Op.isDef() ? Defs : Uses; if (Op.isDef() && Op.isUndef()) { assert(RR.Sub && "Expecting a subregister on "); // If this is a , then it invalidates the non-written // part of the register. For the purpose of checking the validity of // the move, assume that it modifies the whole register. RR.Sub = 0; } addRefToMap(RR, Map, Exec); } } // The situation: // RT = DefI // ... // RD = TfrI ..., RT // If the register-in-the-middle (RT) is used or redefined between // DefI and TfrI, we may not be able proceed with this transformation. // We can ignore a def that will not execute together with TfrI, and a // use that will. If there is such a use (that does execute together with // TfrI), we will not be able to move DefI down. If there is a use that // executed if TfrI's condition is false, then RT must be available // unconditionally (cannot be predicated). // Essentially, we need to be able to rename RT to RD in this segment. if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else)) return false; RegisterRef RD = MD; // If the predicate register is defined between DefI and TfrI, the only // potential thing to do would be to move the DefI down to TfrI, and then // predicate. The reaching def (DefI) must be movable down to the location // of the TfrI. // If the target register of the TfrI (RD) is not used or defined between // DefI and TfrI, consider moving TfrI up to DefI. bool CanUp = canMoveOver(TfrI, Defs, Uses); bool CanDown = canMoveOver(*DefI, Defs, Uses); // The TfrI does not access memory, but DefI could. Check if it's safe // to move DefI down to TfrI. if (DefI->mayLoad() || DefI->mayStore()) if (!canMoveMemTo(*DefI, TfrI, true)) CanDown = false; DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no") << ", can move down: " << (CanDown ? "yes\n" : "no\n")); MachineBasicBlock::iterator PastDefIt = std::next(DefIt); if (CanUp) predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs); else if (CanDown) predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs); else return false; if (RT != RD) { renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt); UpdRegs.insert(RT.Reg); } removeInstr(TfrI); removeInstr(*DefI); return true; } /// Predicate all cases of conditional copies in the specified block. bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B, std::set &UpdRegs) { bool Changed = false; MachineBasicBlock::iterator I, E, NextI; for (I = B.begin(), E = B.end(); I != E; I = NextI) { NextI = std::next(I); unsigned Opc = I->getOpcode(); if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) { bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs); if (!Done) { // If we didn't predicate I, we may need to remove it in case it is // an "identity" copy, e.g. vreg1 = A2_tfrt vreg2, vreg1. if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) { for (auto &Op : I->operands()) if (Op.isReg()) UpdRegs.insert(Op.getReg()); removeInstr(*I); } } Changed |= Done; } } return Changed; } bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) { if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) return false; const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg); if (RC == &Hexagon::IntRegsRegClass) { BW = 32; return true; } if (RC == &Hexagon::DoubleRegsRegClass) { BW = (RR.Sub != 0) ? 32 : 64; return true; } return false; } bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) { for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { LiveRange::Segment &LR = *I; // Range must start at a register... if (!LR.start.isRegister()) return false; // ...and end in a register or in a dead slot. if (!LR.end.isRegister() && !LR.end.isDead()) return false; } return true; } bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) { if (CoaLimitActive) { if (CoaCounter >= CoaLimit) return false; CoaCounter++; } unsigned BW1, BW2; if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2) return false; if (MRI->isLiveIn(R1.Reg)) return false; if (MRI->isLiveIn(R2.Reg)) return false; LiveInterval &L1 = LIS->getInterval(R1.Reg); LiveInterval &L2 = LIS->getInterval(R2.Reg); if (L2.empty()) return false; if (L1.hasSubRanges() || L2.hasSubRanges()) return false; bool Overlap = L1.overlaps(L2); DEBUG(dbgs() << "compatible registers: (" << (Overlap ? "overlap" : "disjoint") << ")\n " << PrintReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n " << PrintReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n"); if (R1.Sub || R2.Sub) return false; if (Overlap) return false; // Coalescing could have a negative impact on scheduling, so try to limit // to some reasonable extent. Only consider coalescing segments, when one // of them does not cross basic block boundaries. if (!isIntraBlocks(L1) && !isIntraBlocks(L2)) return false; MRI->replaceRegWith(R2.Reg, R1.Reg); // Move all live segments from L2 to L1. typedef DenseMap ValueInfoMap; ValueInfoMap VM; for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) { VNInfo *NewVN, *OldVN = I->valno; ValueInfoMap::iterator F = VM.find(OldVN); if (F == VM.end()) { NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator()); VM.insert(std::make_pair(OldVN, NewVN)); } else { NewVN = F->second; } L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN)); } while (L2.begin() != L2.end()) L2.removeSegment(*L2.begin()); LIS->removeInterval(R2.Reg); updateKillFlags(R1.Reg); DEBUG(dbgs() << "coalesced: " << L1 << "\n"); L1.verify(); return true; } /// Attempt to coalesce one of the source registers to a MUX intruction with /// the destination register. This could lead to having only one predicated /// instruction in the end instead of two. bool HexagonExpandCondsets::coalesceSegments( const SmallVectorImpl &Condsets, std::set &UpdRegs) { SmallVector TwoRegs; for (MachineInstr *MI : Condsets) { MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3); if (!S1.isReg() && !S2.isReg()) continue; TwoRegs.push_back(MI); } bool Changed = false; for (MachineInstr *CI : TwoRegs) { RegisterRef RD = CI->getOperand(0); RegisterRef RP = CI->getOperand(1); MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3); bool Done = false; // Consider this case: // vreg1 = instr1 ... // vreg2 = instr2 ... // vreg0 = C2_mux ..., vreg1, vreg2 // If vreg0 was coalesced with vreg1, we could end up with the following // code: // vreg0 = instr1 ... // vreg2 = instr2 ... // vreg0 = A2_tfrf ..., vreg2 // which will later become: // vreg0 = instr1 ... // vreg0 = instr2_cNotPt ... // i.e. there will be an unconditional definition (instr1) of vreg0 // followed by a conditional one. The output dependency was there before // and it unavoidable, but if instr1 is predicable, we will no longer be // able to predicate it here. // To avoid this scenario, don't coalesce the destination register with // a source register that is defined by a predicable instruction. if (S1.isReg()) { RegisterRef RS = S1; MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true); if (!RDef || !HII->isPredicable(*RDef)) { Done = coalesceRegisters(RD, RegisterRef(S1)); if (Done) { UpdRegs.insert(RD.Reg); UpdRegs.insert(S1.getReg()); } } } if (!Done && S2.isReg()) { RegisterRef RS = S2; MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false); if (!RDef || !HII->isPredicable(*RDef)) { Done = coalesceRegisters(RD, RegisterRef(S2)); if (Done) { UpdRegs.insert(RD.Reg); UpdRegs.insert(S2.getReg()); } } } Changed |= Done; } return Changed; } bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(*MF.getFunction())) return false; HII = static_cast(MF.getSubtarget().getInstrInfo()); TRI = MF.getSubtarget().getRegisterInfo(); MDT = &getAnalysis(); LIS = &getAnalysis(); MRI = &MF.getRegInfo(); DEBUG(LIS->print(dbgs() << "Before expand-condsets\n", MF.getFunction()->getParent())); bool Changed = false; std::set CoalUpd, PredUpd; SmallVector Condsets; for (auto &B : MF) for (auto &I : B) if (isCondset(I)) Condsets.push_back(&I); // Try to coalesce the target of a mux with one of its sources. // This could eliminate a register copy in some circumstances. Changed |= coalesceSegments(Condsets, CoalUpd); // Update kill flags on all source operands. This is done here because // at this moment (when expand-condsets runs), there are no kill flags // in the IR (they have been removed by live range analysis). // Updating them right before we split is the easiest, because splitting // adds definitions which would interfere with updating kills afterwards. std::set KillUpd; for (MachineInstr *MI : Condsets) for (MachineOperand &Op : MI->operands()) if (Op.isReg() && Op.isUse()) if (!CoalUpd.count(Op.getReg())) KillUpd.insert(Op.getReg()); updateLiveness(KillUpd, false, true, false); DEBUG(LIS->print(dbgs() << "After coalescing\n", MF.getFunction()->getParent())); // First, simply split all muxes into a pair of conditional transfers // and update the live intervals to reflect the new arrangement. The // goal is to update the kill flags, since predication will rely on // them. for (MachineInstr *MI : Condsets) Changed |= split(*MI, PredUpd); Condsets.clear(); // The contents of Condsets are invalid here anyway. // Do not update live ranges after splitting. Recalculation of live // intervals removes kill flags, which were preserved by splitting on // the source operands of condsets. These kill flags are needed by // predication, and after splitting they are difficult to recalculate // (because of predicated defs), so make sure they are left untouched. // Predication does not use live intervals. DEBUG(LIS->print(dbgs() << "After splitting\n", MF.getFunction()->getParent())); // Traverse all blocks and collapse predicable instructions feeding // conditional transfers into predicated instructions. // Walk over all the instructions again, so we may catch pre-existing // cases that were not created in the previous step. for (auto &B : MF) Changed |= predicateInBlock(B, PredUpd); DEBUG(LIS->print(dbgs() << "After predicating\n", MF.getFunction()->getParent())); PredUpd.insert(CoalUpd.begin(), CoalUpd.end()); updateLiveness(PredUpd, true, true, true); DEBUG({ if (Changed) LIS->print(dbgs() << "After expand-condsets\n", MF.getFunction()->getParent()); }); return Changed; } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// FunctionPass *llvm::createHexagonExpandCondsets() { return new HexagonExpandCondsets(); }