//===- ELFYAML.h - ELF YAMLIO implementation --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file declares classes for handling the YAML representation /// of ELF. /// //===----------------------------------------------------------------------===// #ifndef LLVM_OBJECTYAML_ELFYAML_H #define LLVM_OBJECTYAML_ELFYAML_H #include "llvm/ADT/StringRef.h" #include "llvm/ObjectYAML/DWARFYAML.h" #include "llvm/ObjectYAML/YAML.h" #include "llvm/Support/YAMLTraits.h" #include #include #include namespace llvm { namespace ELFYAML { StringRef dropUniqueSuffix(StringRef S); std::string appendUniqueSuffix(StringRef Name, const Twine& Msg); // These types are invariant across 32/64-bit ELF, so for simplicity just // directly give them their exact sizes. We don't need to worry about // endianness because these are just the types in the YAMLIO structures, // and are appropriately converted to the necessary endianness when // reading/generating binary object files. // The naming of these types is intended to be ELF_PREFIX, where PREFIX is // the common prefix of the respective constants. E.g. ELF_EM corresponds // to the `e_machine` constants, like `EM_X86_64`. // In the future, these would probably be better suited by C++11 enum // class's with appropriate fixed underlying type. LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_ET) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_EM) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFCLASS) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFDATA) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFOSABI) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_EF) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_DYNTAG) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PF) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_SHT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_REL) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_RSS) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_SHF) LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_SHN) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STB) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STT) LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG) LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_ISA) LLVM_YAML_STRONG_TYPEDEF(StringRef, YAMLFlowString) LLVM_YAML_STRONG_TYPEDEF(int64_t, YAMLIntUInt) // For now, hardcode 64 bits everywhere that 32 or 64 would be needed // since 64-bit can hold 32-bit values too. struct FileHeader { ELF_ELFCLASS Class; ELF_ELFDATA Data; ELF_ELFOSABI OSABI; llvm::yaml::Hex8 ABIVersion; ELF_ET Type; ELF_EM Machine; ELF_EF Flags; llvm::yaml::Hex64 Entry; Optional SHEntSize; Optional SHOff; Optional SHNum; Optional SHStrNdx; }; struct SectionHeader { StringRef Name; }; struct SectionHeaderTable { Optional> Sections; Optional> Excluded; bool NoHeaders; }; struct SectionName { StringRef Section; }; struct Symbol { StringRef Name; ELF_STT Type; StringRef Section; Optional Index; ELF_STB Binding; llvm::yaml::Hex64 Value; llvm::yaml::Hex64 Size; Optional Other; Optional StName; }; struct SectionOrType { StringRef sectionNameOrType; }; struct DynamicEntry { ELF_DYNTAG Tag; llvm::yaml::Hex64 Val; }; struct StackSizeEntry { llvm::yaml::Hex64 Address; llvm::yaml::Hex64 Size; }; struct NoteEntry { StringRef Name; yaml::BinaryRef Desc; llvm::yaml::Hex32 Type; }; struct Chunk { enum class ChunkKind { Dynamic, Group, RawContent, Relocation, Relr, NoBits, Note, Hash, GnuHash, Verdef, Verneed, StackSizes, SymtabShndxSection, Symver, MipsABIFlags, Addrsig, Fill, LinkerOptions, DependentLibraries, CallGraphProfile }; ChunkKind Kind; StringRef Name; Optional Offset; Chunk(ChunkKind K) : Kind(K) {} virtual ~Chunk(); }; struct Section : public Chunk { ELF_SHT Type; Optional Flags; Optional Address; StringRef Link; llvm::yaml::Hex64 AddressAlign; Optional EntSize; // Usually sections are not created implicitly, but loaded from YAML. // When they are, this flag is used to signal about that. bool IsImplicit; // Holds the original section index. unsigned OriginalSecNdx; Section(ChunkKind Kind, bool IsImplicit = false) : Chunk(Kind), IsImplicit(IsImplicit) {} static bool classof(const Chunk *S) { return S->Kind != ChunkKind::Fill; } // The following members are used to override section fields which is // useful for creating invalid objects. // This can be used to override the offset stored in the sh_name field. // It does not affect the name stored in the string table. Optional ShName; // This can be used to override the sh_offset field. It does not place the // section data at the offset specified. Optional ShOffset; // This can be used to override the sh_size field. It does not affect the // content written. Optional ShSize; // This can be used to override the sh_flags field. Optional ShFlags; }; // Fill is a block of data which is placed outside of sections. It is // not present in the sections header table, but it might affect the output file // size and program headers produced. struct Fill : Chunk { Optional Pattern; llvm::yaml::Hex64 Size; Fill() : Chunk(ChunkKind::Fill) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Fill; } }; struct StackSizesSection : Section { Optional Content; Optional Size; Optional> Entries; StackSizesSection() : Section(ChunkKind::StackSizes) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::StackSizes; } static bool nameMatches(StringRef Name) { return Name == ".stack_sizes"; } }; struct DynamicSection : Section { std::vector Entries; Optional Content; DynamicSection() : Section(ChunkKind::Dynamic) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Dynamic; } }; struct RawContentSection : Section { Optional Content; Optional Size; Optional Info; RawContentSection() : Section(ChunkKind::RawContent) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::RawContent; } }; struct NoBitsSection : Section { llvm::yaml::Hex64 Size; NoBitsSection() : Section(ChunkKind::NoBits) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::NoBits; } }; struct NoteSection : Section { Optional Content; Optional Size; Optional> Notes; NoteSection() : Section(ChunkKind::Note) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Note; } }; struct HashSection : Section { Optional Content; Optional Size; Optional> Bucket; Optional> Chain; // The following members are used to override section fields. // This is useful for creating invalid objects. Optional NBucket; Optional NChain; HashSection() : Section(ChunkKind::Hash) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Hash; } }; struct GnuHashHeader { // The number of hash buckets. // Not used when dumping the object, but can be used to override // the real number of buckets when emiting an object from a YAML document. Optional NBuckets; // Index of the first symbol in the dynamic symbol table // included in the hash table. llvm::yaml::Hex32 SymNdx; // The number of words in the Bloom filter. // Not used when dumping the object, but can be used to override the real // number of words in the Bloom filter when emiting an object from a YAML // document. Optional MaskWords; // A shift constant used by the Bloom filter. llvm::yaml::Hex32 Shift2; }; struct GnuHashSection : Section { Optional Content; Optional Header; Optional> BloomFilter; Optional> HashBuckets; Optional> HashValues; GnuHashSection() : Section(ChunkKind::GnuHash) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::GnuHash; } }; struct VernauxEntry { uint32_t Hash; uint16_t Flags; uint16_t Other; StringRef Name; }; struct VerneedEntry { uint16_t Version; StringRef File; std::vector AuxV; }; struct VerneedSection : Section { Optional Content; Optional> VerneedV; llvm::yaml::Hex64 Info; VerneedSection() : Section(ChunkKind::Verneed) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Verneed; } }; struct AddrsigSection : Section { Optional Content; Optional Size; Optional> Symbols; AddrsigSection() : Section(ChunkKind::Addrsig) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Addrsig; } }; struct LinkerOption { StringRef Key; StringRef Value; }; struct LinkerOptionsSection : Section { Optional> Options; Optional Content; LinkerOptionsSection() : Section(ChunkKind::LinkerOptions) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::LinkerOptions; } }; struct DependentLibrariesSection : Section { Optional> Libs; Optional Content; DependentLibrariesSection() : Section(ChunkKind::DependentLibraries) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::DependentLibraries; } }; // Represents the call graph profile section entry. struct CallGraphEntry { // The symbol of the source of the edge. StringRef From; // The symbol index of the destination of the edge. StringRef To; // The weight of the edge. uint64_t Weight; }; struct CallGraphProfileSection : Section { Optional> Entries; Optional Content; CallGraphProfileSection() : Section(ChunkKind::CallGraphProfile) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::CallGraphProfile; } }; struct SymverSection : Section { std::vector Entries; SymverSection() : Section(ChunkKind::Symver) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Symver; } }; struct VerdefEntry { uint16_t Version; uint16_t Flags; uint16_t VersionNdx; uint32_t Hash; std::vector VerNames; }; struct VerdefSection : Section { Optional> Entries; Optional Content; llvm::yaml::Hex64 Info; VerdefSection() : Section(ChunkKind::Verdef) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Verdef; } }; struct Group : Section { // Members of a group contain a flag and a list of section indices // that are part of the group. std::vector Members; Optional Signature; /* Info */ Group() : Section(ChunkKind::Group) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Group; } }; struct Relocation { llvm::yaml::Hex64 Offset; YAMLIntUInt Addend; ELF_REL Type; Optional Symbol; }; struct RelocationSection : Section { std::vector Relocations; StringRef RelocatableSec; /* Info */ RelocationSection() : Section(ChunkKind::Relocation) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Relocation; } }; struct RelrSection : Section { Optional> Entries; Optional Content; RelrSection() : Section(ChunkKind::Relr) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Relr; } }; struct SymtabShndxSection : Section { std::vector Entries; SymtabShndxSection() : Section(ChunkKind::SymtabShndxSection) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::SymtabShndxSection; } }; // Represents .MIPS.abiflags section struct MipsABIFlags : Section { llvm::yaml::Hex16 Version; MIPS_ISA ISALevel; llvm::yaml::Hex8 ISARevision; MIPS_AFL_REG GPRSize; MIPS_AFL_REG CPR1Size; MIPS_AFL_REG CPR2Size; MIPS_ABI_FP FpABI; MIPS_AFL_EXT ISAExtension; MIPS_AFL_ASE ASEs; MIPS_AFL_FLAGS1 Flags1; llvm::yaml::Hex32 Flags2; MipsABIFlags() : Section(ChunkKind::MipsABIFlags) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::MipsABIFlags; } }; struct ProgramHeader { ELF_PT Type; ELF_PF Flags; llvm::yaml::Hex64 VAddr; llvm::yaml::Hex64 PAddr; Optional Align; Optional FileSize; Optional MemSize; Optional Offset; std::vector Sections; // This vector is parallel to Sections and contains corresponding chunks. std::vector Chunks; }; struct Object { FileHeader Header; Optional SectionHeaders; std::vector ProgramHeaders; // An object might contain output section descriptions as well as // custom data that does not belong to any section. std::vector> Chunks; // Although in reality the symbols reside in a section, it is a lot // cleaner and nicer if we read them from the YAML as a separate // top-level key, which automatically ensures that invariants like there // being a single SHT_SYMTAB section are upheld. Optional> Symbols; Optional> DynamicSymbols; Optional DWARF; std::vector
getSections() { std::vector
Ret; for (const std::unique_ptr &Sec : Chunks) if (auto S = dyn_cast(Sec.get())) Ret.push_back(S); return Ret; } }; } // end namespace ELFYAML } // end namespace llvm LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::StackSizeEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::DynamicEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::LinkerOption) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::CallGraphEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::NoteEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::ProgramHeader) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionHeader) LLVM_YAML_IS_SEQUENCE_VECTOR(std::unique_ptr) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Symbol) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerdefEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VernauxEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerneedEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Relocation) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionOrType) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionName) namespace llvm { namespace yaml { template <> struct ScalarTraits { static void output(const ELFYAML::YAMLIntUInt &Val, void *Ctx, raw_ostream &Out); static StringRef input(StringRef Scalar, void *Ctx, ELFYAML::YAMLIntUInt &Val); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_ET &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_PT &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_EM &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_ELFCLASS &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_ELFDATA &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_ELFOSABI &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::ELF_EF &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::ELF_PF &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_SHT &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::ELF_SHF &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_SHN &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_STB &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_STT &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_REL &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_DYNTAG &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_RSS &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::MIPS_AFL_REG &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::MIPS_ABI_FP &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::MIPS_AFL_EXT &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::MIPS_ISA &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::MIPS_AFL_ASE &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::FileHeader &FileHdr); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::SectionHeaderTable &SecHdrTable); static StringRef validate(IO &IO, ELFYAML::SectionHeaderTable &SecHdrTable); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::SectionHeader &SHdr); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::ProgramHeader &FileHdr); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::Symbol &Symbol); static StringRef validate(IO &IO, ELFYAML::Symbol &Symbol); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::StackSizeEntry &Rel); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::GnuHashHeader &Rel); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::DynamicEntry &Rel); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::NoteEntry &N); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::VerdefEntry &E); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::VerneedEntry &E); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::VernauxEntry &E); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::LinkerOption &Sym); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::CallGraphEntry &E); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::Relocation &Rel); }; template <> struct MappingTraits> { static void mapping(IO &IO, std::unique_ptr &C); static StringRef validate(IO &io, std::unique_ptr &C); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::Object &Object); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::SectionOrType §ionOrType); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::SectionName §ionName); }; } // end namespace yaml } // end namespace llvm #endif // LLVM_OBJECTYAML_ELFYAML_H