//===-- LLVMTargetMachine.cpp - Implement the LLVMTargetMachine class -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVMTargetMachine class. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetMachine.h" #include "llvm/PassManager.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFunctionAnalysis.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/GCStrategy.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormattedStream.h" using namespace llvm; namespace llvm { bool EnableFastISel; } static cl::opt DisablePostRA("disable-post-ra", cl::Hidden, cl::desc("Disable Post Regalloc")); static cl::opt DisableBranchFold("disable-branch-fold", cl::Hidden, cl::desc("Disable branch folding")); static cl::opt DisableTailDuplicate("disable-tail-duplicate", cl::Hidden, cl::desc("Disable tail duplication")); static cl::opt DisableEarlyTailDup("disable-early-taildup", cl::Hidden, cl::desc("Disable pre-register allocation tail duplication")); static cl::opt DisableCodePlace("disable-code-place", cl::Hidden, cl::desc("Disable code placement")); static cl::opt DisableSSC("disable-ssc", cl::Hidden, cl::desc("Disable Stack Slot Coloring")); static cl::opt DisableMachineLICM("disable-machine-licm", cl::Hidden, cl::desc("Disable Machine LICM")); static cl::opt DisablePostRAMachineLICM("disable-postra-machine-licm", cl::Hidden, cl::desc("Disable Machine LICM")); static cl::opt DisableMachineSink("disable-machine-sink", cl::Hidden, cl::desc("Disable Machine Sinking")); static cl::opt DisableLSR("disable-lsr", cl::Hidden, cl::desc("Disable Loop Strength Reduction Pass")); static cl::opt DisableCGP("disable-cgp", cl::Hidden, cl::desc("Disable Codegen Prepare")); static cl::opt PrintLSR("print-lsr-output", cl::Hidden, cl::desc("Print LLVM IR produced by the loop-reduce pass")); static cl::opt PrintISelInput("print-isel-input", cl::Hidden, cl::desc("Print LLVM IR input to isel pass")); static cl::opt PrintGCInfo("print-gc", cl::Hidden, cl::desc("Dump garbage collector data")); static cl::opt ShowMCEncoding("show-mc-encoding", cl::Hidden, cl::desc("Show encoding in .s output")); static cl::opt ShowMCInst("show-mc-inst", cl::Hidden, cl::desc("Show instruction structure in .s output")); static cl::opt EnableMCLogging("enable-mc-api-logging", cl::Hidden, cl::desc("Enable MC API logging")); static cl::opt VerifyMachineCode("verify-machineinstrs", cl::Hidden, cl::desc("Verify generated machine code"), cl::init(getenv("LLVM_VERIFY_MACHINEINSTRS")!=NULL)); static cl::opt AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), cl::init(cl::BOU_UNSET)); static bool getVerboseAsm() { switch (AsmVerbose) { default: case cl::BOU_UNSET: return TargetMachine::getAsmVerbosityDefault(); case cl::BOU_TRUE: return true; case cl::BOU_FALSE: return false; } } // Enable or disable FastISel. Both options are needed, because // FastISel is enabled by default with -fast, and we wish to be // able to enable or disable fast-isel independently from -O0. static cl::opt EnableFastISelOption("fast-isel", cl::Hidden, cl::desc("Enable the \"fast\" instruction selector")); LLVMTargetMachine::LLVMTargetMachine(const Target &T, const std::string &Triple) : TargetMachine(T), TargetTriple(Triple) { AsmInfo = T.createAsmInfo(TargetTriple); } // Set the default code model for the JIT for a generic target. // FIXME: Is small right here? or .is64Bit() ? Large : Small? void LLVMTargetMachine::setCodeModelForJIT() { setCodeModel(CodeModel::Small); } // Set the default code model for static compilation for a generic target. void LLVMTargetMachine::setCodeModelForStatic() { setCodeModel(CodeModel::Small); } bool LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM, formatted_raw_ostream &Out, CodeGenFileType FileType, CodeGenOpt::Level OptLevel, bool DisableVerify) { // Add common CodeGen passes. MCContext *Context = 0; if (addCommonCodeGenPasses(PM, OptLevel, DisableVerify, Context)) return true; assert(Context != 0 && "Failed to get MCContext"); if (hasMCSaveTempLabels()) Context->setAllowTemporaryLabels(false); const MCAsmInfo &MAI = *getMCAsmInfo(); OwningPtr AsmStreamer; switch (FileType) { default: return true; case CGFT_AssemblyFile: { MCInstPrinter *InstPrinter = getTarget().createMCInstPrinter(*this, MAI.getAssemblerDialect(), MAI); // Create a code emitter if asked to show the encoding. MCCodeEmitter *MCE = 0; TargetAsmBackend *TAB = 0; if (ShowMCEncoding) { MCE = getTarget().createCodeEmitter(*this, *Context); TAB = getTarget().createAsmBackend(TargetTriple); } MCStreamer *S = getTarget().createAsmStreamer(*Context, Out, getVerboseAsm(), hasMCUseLoc(), hasMCUseCFI(), InstPrinter, MCE, TAB, ShowMCInst); AsmStreamer.reset(S); break; } case CGFT_ObjectFile: { // Create the code emitter for the target if it exists. If not, .o file // emission fails. MCCodeEmitter *MCE = getTarget().createCodeEmitter(*this, *Context); TargetAsmBackend *TAB = getTarget().createAsmBackend(TargetTriple); if (MCE == 0 || TAB == 0) return true; AsmStreamer.reset(getTarget().createObjectStreamer(TargetTriple, *Context, *TAB, Out, MCE, hasMCRelaxAll(), hasMCNoExecStack())); AsmStreamer.get()->InitSections(); break; } case CGFT_Null: // The Null output is intended for use for performance analysis and testing, // not real users. AsmStreamer.reset(createNullStreamer(*Context)); break; } if (EnableMCLogging) AsmStreamer.reset(createLoggingStreamer(AsmStreamer.take(), errs())); // Create the AsmPrinter, which takes ownership of AsmStreamer if successful. FunctionPass *Printer = getTarget().createAsmPrinter(*this, *AsmStreamer); if (Printer == 0) return true; // If successful, createAsmPrinter took ownership of AsmStreamer. AsmStreamer.take(); PM.add(Printer); // Make sure the code model is set. setCodeModelForStatic(); PM.add(createGCInfoDeleter()); return false; } /// addPassesToEmitMachineCode - Add passes to the specified pass manager to /// get machine code emitted. This uses a JITCodeEmitter object to handle /// actually outputting the machine code and resolving things like the address /// of functions. This method should returns true if machine code emission is /// not supported. /// bool LLVMTargetMachine::addPassesToEmitMachineCode(PassManagerBase &PM, JITCodeEmitter &JCE, CodeGenOpt::Level OptLevel, bool DisableVerify) { // Make sure the code model is set. setCodeModelForJIT(); // Add common CodeGen passes. MCContext *Ctx = 0; if (addCommonCodeGenPasses(PM, OptLevel, DisableVerify, Ctx)) return true; addCodeEmitter(PM, OptLevel, JCE); PM.add(createGCInfoDeleter()); return false; // success! } /// addPassesToEmitMC - Add passes to the specified pass manager to get /// machine code emitted with the MCJIT. This method returns true if machine /// code is not supported. It fills the MCContext Ctx pointer which can be /// used to build custom MCStreamer. /// bool LLVMTargetMachine::addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx, raw_ostream &Out, CodeGenOpt::Level OptLevel, bool DisableVerify) { // Add common CodeGen passes. if (addCommonCodeGenPasses(PM, OptLevel, DisableVerify, Ctx)) return true; if (hasMCSaveTempLabels()) Ctx->setAllowTemporaryLabels(false); // Create the code emitter for the target if it exists. If not, .o file // emission fails. MCCodeEmitter *MCE = getTarget().createCodeEmitter(*this, *Ctx); TargetAsmBackend *TAB = getTarget().createAsmBackend(TargetTriple); if (MCE == 0 || TAB == 0) return true; OwningPtr AsmStreamer; AsmStreamer.reset(getTarget().createObjectStreamer(TargetTriple, *Ctx, *TAB, Out, MCE, hasMCRelaxAll(), hasMCNoExecStack())); AsmStreamer.get()->InitSections(); // Create the AsmPrinter, which takes ownership of AsmStreamer if successful. FunctionPass *Printer = getTarget().createAsmPrinter(*this, *AsmStreamer); if (Printer == 0) return true; // If successful, createAsmPrinter took ownership of AsmStreamer. AsmStreamer.take(); PM.add(Printer); // Make sure the code model is set. setCodeModelForJIT(); return false; // success! } static void printNoVerify(PassManagerBase &PM, const char *Banner) { if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(dbgs(), Banner)); } static void printAndVerify(PassManagerBase &PM, const char *Banner) { if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(dbgs(), Banner)); if (VerifyMachineCode) PM.add(createMachineVerifierPass(Banner)); } /// addCommonCodeGenPasses - Add standard LLVM codegen passes used for both /// emitting to assembly files or machine code output. /// bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM, CodeGenOpt::Level OptLevel, bool DisableVerify, MCContext *&OutContext) { // Standard LLVM-Level Passes. // Basic AliasAnalysis support. // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that // BasicAliasAnalysis wins if they disagree. This is intended to help // support "obvious" type-punning idioms. PM.add(createTypeBasedAliasAnalysisPass()); PM.add(createBasicAliasAnalysisPass()); // Before running any passes, run the verifier to determine if the input // coming from the front-end and/or optimizer is valid. if (!DisableVerify) PM.add(createVerifierPass()); // Run loop strength reduction before anything else. if (OptLevel != CodeGenOpt::None && !DisableLSR) { PM.add(createLoopStrengthReducePass(getTargetLowering())); if (PrintLSR) PM.add(createPrintFunctionPass("\n\n*** Code after LSR ***\n", &dbgs())); } PM.add(createGCLoweringPass()); // Make sure that no unreachable blocks are instruction selected. PM.add(createUnreachableBlockEliminationPass()); // Turn exception handling constructs into something the code generators can // handle. switch (getMCAsmInfo()->getExceptionHandlingType()) { case ExceptionHandling::SjLj: // SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both // Dwarf EH prepare needs to be run after SjLj prepare. Otherwise, // catch info can get misplaced when a selector ends up more than one block // removed from the parent invoke(s). This could happen when a landing // pad is shared by multiple invokes and is also a target of a normal // edge from elsewhere. PM.add(createSjLjEHPass(getTargetLowering())); // FALLTHROUGH case ExceptionHandling::DwarfCFI: case ExceptionHandling::ARM: PM.add(createDwarfEHPass(this)); break; case ExceptionHandling::None: PM.add(createLowerInvokePass(getTargetLowering())); // The lower invoke pass may create unreachable code. Remove it. PM.add(createUnreachableBlockEliminationPass()); break; } if (OptLevel != CodeGenOpt::None && !DisableCGP) PM.add(createCodeGenPreparePass(getTargetLowering())); PM.add(createStackProtectorPass(getTargetLowering())); addPreISel(PM, OptLevel); if (PrintISelInput) PM.add(createPrintFunctionPass("\n\n" "*** Final LLVM Code input to ISel ***\n", &dbgs())); // All passes which modify the LLVM IR are now complete; run the verifier // to ensure that the IR is valid. if (!DisableVerify) PM.add(createVerifierPass()); // Standard Lower-Level Passes. // Install a MachineModuleInfo class, which is an immutable pass that holds // all the per-module stuff we're generating, including MCContext. TargetAsmInfo *TAI = new TargetAsmInfo(*this); MachineModuleInfo *MMI = new MachineModuleInfo(*getMCAsmInfo(), TAI); PM.add(MMI); OutContext = &MMI->getContext(); // Return the MCContext specifically by-ref. // Set up a MachineFunction for the rest of CodeGen to work on. PM.add(new MachineFunctionAnalysis(*this, OptLevel)); // Enable FastISel with -fast, but allow that to be overridden. if (EnableFastISelOption == cl::BOU_TRUE || (OptLevel == CodeGenOpt::None && EnableFastISelOption != cl::BOU_FALSE)) EnableFastISel = true; // Ask the target for an isel. if (addInstSelector(PM, OptLevel)) return true; // Print the instruction selected machine code... printAndVerify(PM, "After Instruction Selection"); // Expand pseudo-instructions emitted by ISel. PM.add(createExpandISelPseudosPass()); // Optimize PHIs before DCE: removing dead PHI cycles may make more // instructions dead. if (OptLevel != CodeGenOpt::None) PM.add(createOptimizePHIsPass()); // If the target requests it, assign local variables to stack slots relative // to one another and simplify frame index references where possible. PM.add(createLocalStackSlotAllocationPass()); if (OptLevel != CodeGenOpt::None) { // With optimization, dead code should already be eliminated. However // there is one known exception: lowered code for arguments that are only // used by tail calls, where the tail calls reuse the incoming stack // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll). PM.add(createDeadMachineInstructionElimPass()); printAndVerify(PM, "After codegen DCE pass"); if (!DisableMachineLICM) PM.add(createMachineLICMPass()); PM.add(createMachineCSEPass()); if (!DisableMachineSink) PM.add(createMachineSinkingPass()); printAndVerify(PM, "After Machine LICM, CSE and Sinking passes"); PM.add(createPeepholeOptimizerPass()); printAndVerify(PM, "After codegen peephole optimization pass"); } // Pre-ra tail duplication. if (OptLevel != CodeGenOpt::None && !DisableEarlyTailDup) { PM.add(createTailDuplicatePass(true)); printAndVerify(PM, "After Pre-RegAlloc TailDuplicate"); } // Run pre-ra passes. if (addPreRegAlloc(PM, OptLevel)) printAndVerify(PM, "After PreRegAlloc passes"); // Perform register allocation. PM.add(createRegisterAllocator(OptLevel)); printAndVerify(PM, "After Register Allocation"); // Perform stack slot coloring and post-ra machine LICM. if (OptLevel != CodeGenOpt::None) { // FIXME: Re-enable coloring with register when it's capable of adding // kill markers. if (!DisableSSC) PM.add(createStackSlotColoringPass(false)); // Run post-ra machine LICM to hoist reloads / remats. if (!DisablePostRAMachineLICM) PM.add(createMachineLICMPass(false)); printAndVerify(PM, "After StackSlotColoring and postra Machine LICM"); } // Run post-ra passes. if (addPostRegAlloc(PM, OptLevel)) printAndVerify(PM, "After PostRegAlloc passes"); PM.add(createLowerSubregsPass()); printAndVerify(PM, "After LowerSubregs"); // Insert prolog/epilog code. Eliminate abstract frame index references... PM.add(createPrologEpilogCodeInserter()); printAndVerify(PM, "After PrologEpilogCodeInserter"); // Run pre-sched2 passes. if (addPreSched2(PM, OptLevel)) printAndVerify(PM, "After PreSched2 passes"); // Second pass scheduler. if (OptLevel != CodeGenOpt::None && !DisablePostRA) { PM.add(createPostRAScheduler(OptLevel)); printAndVerify(PM, "After PostRAScheduler"); } // Branch folding must be run after regalloc and prolog/epilog insertion. if (OptLevel != CodeGenOpt::None && !DisableBranchFold) { PM.add(createBranchFoldingPass(getEnableTailMergeDefault())); printNoVerify(PM, "After BranchFolding"); } // Tail duplication. if (OptLevel != CodeGenOpt::None && !DisableTailDuplicate) { PM.add(createTailDuplicatePass(false)); printNoVerify(PM, "After TailDuplicate"); } PM.add(createGCMachineCodeAnalysisPass()); if (PrintGCInfo) PM.add(createGCInfoPrinter(dbgs())); if (OptLevel != CodeGenOpt::None && !DisableCodePlace) { PM.add(createCodePlacementOptPass()); printNoVerify(PM, "After CodePlacementOpt"); } if (addPreEmitPass(PM, OptLevel)) printNoVerify(PM, "After PreEmit passes"); return false; }