//===- VPlan.h - Represent A Vectorizer Plan ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// This file contains the declarations of the Vectorization Plan base classes: /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual /// VPBlockBase, together implementing a Hierarchical CFG; /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be /// treated as proper graphs for generic algorithms; /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained /// within VPBasicBlocks; /// 4. The VPlan class holding a candidate for vectorization; /// 5. The VPlanPrinter class providing a way to print a plan in dot format. /// These are documented in docs/VectorizationPlan.rst. /// //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/IR/IRBuilder.h" #include "llvm/Support/raw_ostream.h" // The (re)use of existing LoopVectorize classes is subject to future VPlan // refactoring. namespace { // Forward declarations. //class InnerLoopVectorizer; class LoopVectorizationLegality; class LoopVectorizationCostModel; } // namespace namespace llvm { // Forward declarations. class BasicBlock; class InnerLoopVectorizer; class VPBasicBlock; /// In what follows, the term "input IR" refers to code that is fed into the /// vectorizer whereas the term "output IR" refers to code that is generated by /// the vectorizer. /// VPIteration represents a single point in the iteration space of the output /// (vectorized and/or unrolled) IR loop. struct VPIteration { unsigned Part; ///< in [0..UF) unsigned Lane; ///< in [0..VF) }; /// This is a helper struct for maintaining vectorization state. It's used for /// mapping values from the original loop to their corresponding values in /// the new loop. Two mappings are maintained: one for vectorized values and /// one for scalarized values. Vectorized values are represented with UF /// vector values in the new loop, and scalarized values are represented with /// UF x VF scalar values in the new loop. UF and VF are the unroll and /// vectorization factors, respectively. /// /// Entries can be added to either map with setVectorValue and setScalarValue, /// which assert that an entry was not already added before. If an entry is to /// replace an existing one, call resetVectorValue and resetScalarValue. This is /// currently needed to modify the mapped values during "fix-up" operations that /// occur once the first phase of widening is complete. These operations include /// type truncation and the second phase of recurrence widening. /// /// Entries from either map can be retrieved using the getVectorValue and /// getScalarValue functions, which assert that the desired value exists. struct VectorizerValueMap { private: /// The unroll factor. Each entry in the vector map contains UF vector values. unsigned UF; /// The vectorization factor. Each entry in the scalar map contains UF x VF /// scalar values. unsigned VF; /// The vector and scalar map storage. We use std::map and not DenseMap /// because insertions to DenseMap invalidate its iterators. typedef SmallVector VectorParts; typedef SmallVector, 2> ScalarParts; std::map VectorMapStorage; std::map ScalarMapStorage; public: /// Construct an empty map with the given unroll and vectorization factors. VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} /// \return True if the map has any vector entry for \p Key. bool hasAnyVectorValue(Value *Key) const { return VectorMapStorage.count(Key); } /// \return True if the map has a vector entry for \p Key and \p Part. bool hasVectorValue(Value *Key, unsigned Part) const { assert(Part < UF && "Queried Vector Part is too large."); if (!hasAnyVectorValue(Key)) return false; const VectorParts &Entry = VectorMapStorage.find(Key)->second; assert(Entry.size() == UF && "VectorParts has wrong dimensions."); return Entry[Part] != nullptr; } /// \return True if the map has any scalar entry for \p Key. bool hasAnyScalarValue(Value *Key) const { return ScalarMapStorage.count(Key); } /// \return True if the map has a scalar entry for \p Key and \p Instance. bool hasScalarValue(Value *Key, const VPIteration &Instance) const { assert(Instance.Part < UF && "Queried Scalar Part is too large."); assert(Instance.Lane < VF && "Queried Scalar Lane is too large."); if (!hasAnyScalarValue(Key)) return false; const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); assert(Entry[Instance.Part].size() == VF && "ScalarParts has wrong dimensions."); return Entry[Instance.Part][Instance.Lane] != nullptr; } /// Retrieve the existing vector value that corresponds to \p Key and /// \p Part. Value *getVectorValue(Value *Key, unsigned Part) { assert(hasVectorValue(Key, Part) && "Getting non-existent value."); return VectorMapStorage[Key][Part]; } /// Retrieve the existing scalar value that corresponds to \p Key and /// \p Instance. Value *getScalarValue(Value *Key, const VPIteration &Instance) { assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; } /// Set a vector value associated with \p Key and \p Part. Assumes such a /// value is not already set. If it is, use resetVectorValue() instead. void setVectorValue(Value *Key, unsigned Part, Value *Vector) { assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); if (!VectorMapStorage.count(Key)) { VectorParts Entry(UF); VectorMapStorage[Key] = Entry; } VectorMapStorage[Key][Part] = Vector; } /// Set a scalar value associated with \p Key and \p Instance. Assumes such a /// value is not already set. void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); if (!ScalarMapStorage.count(Key)) { ScalarParts Entry(UF); // TODO: Consider storing uniform values only per-part, as they occupy // lane 0 only, keeping the other VF-1 redundant entries null. for (unsigned Part = 0; Part < UF; ++Part) Entry[Part].resize(VF, nullptr); ScalarMapStorage[Key] = Entry; } ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; } /// Reset the vector value associated with \p Key for the given \p Part. /// This function can be used to update values that have already been /// vectorized. This is the case for "fix-up" operations including type /// truncation and the second phase of recurrence vectorization. void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { assert(hasVectorValue(Key, Part) && "Vector value not set for part"); VectorMapStorage[Key][Part] = Vector; } /// Reset the scalar value associated with \p Key for \p Part and \p Lane. /// This function can be used to update values that have already been /// scalarized. This is the case for "fix-up" operations including scalar phi /// nodes for scalarized and predicated instructions. void resetScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { assert(hasScalarValue(Key, Instance) && "Scalar value not set for part and lane"); ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; } }; /// VPTransformState holds information passed down when "executing" a VPlan, /// needed for generating the output IR. struct VPTransformState { VPTransformState(unsigned VF, unsigned UF, class LoopInfo *LI, class DominatorTree *DT, IRBuilder<> &Builder, VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV) : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), ValueMap(ValueMap), ILV(ILV) {} /// The chosen Vectorization and Unroll Factors of the loop being vectorized. unsigned VF; unsigned UF; /// Hold the indices to generate specific scalar instructions. Null indicates /// that all instances are to be generated, using either scalar or vector /// instructions. Optional Instance; /// Hold state information used when constructing the CFG of the output IR, /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. struct CFGState { /// The previous VPBasicBlock visited. Initially set to null. VPBasicBlock *PrevVPBB; /// The previous IR BasicBlock created or used. Initially set to the new /// header BasicBlock. BasicBlock *PrevBB; /// The last IR BasicBlock in the output IR. Set to the new latch /// BasicBlock, used for placing the newly created BasicBlocks. BasicBlock *LastBB; /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case /// of replication, maps the BasicBlock of the last replica created. SmallDenseMap VPBB2IRBB; CFGState() : PrevVPBB(nullptr), PrevBB(nullptr), LastBB(nullptr) {} } CFG; /// Hold a pointer to LoopInfo to register new basic blocks in the loop. class LoopInfo *LI; /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. class DominatorTree *DT; /// Hold a reference to the IRBuilder used to generate output IR code. IRBuilder<> &Builder; /// Hold a reference to the Value state information used when generating the /// Values of the output IR. VectorizerValueMap &ValueMap; /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. class InnerLoopVectorizer *ILV; }; /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. class VPBlockBase { private: const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). /// An optional name for the block. std::string Name; /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if /// it is a topmost VPBlockBase. class VPRegionBlock *Parent; /// List of predecessor blocks. SmallVector Predecessors; /// List of successor blocks. SmallVector Successors; /// Add \p Successor as the last successor to this block. void appendSuccessor(VPBlockBase *Successor) { assert(Successor && "Cannot add nullptr successor!"); Successors.push_back(Successor); } /// Add \p Predecessor as the last predecessor to this block. void appendPredecessor(VPBlockBase *Predecessor) { assert(Predecessor && "Cannot add nullptr predecessor!"); Predecessors.push_back(Predecessor); } /// Remove \p Predecessor from the predecessors of this block. void removePredecessor(VPBlockBase *Predecessor) { auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); assert(Pos && "Predecessor does not exist"); Predecessors.erase(Pos); } /// Remove \p Successor from the successors of this block. void removeSuccessor(VPBlockBase *Successor) { auto Pos = std::find(Successors.begin(), Successors.end(), Successor); assert(Pos && "Successor does not exist"); Successors.erase(Pos); } protected: VPBlockBase(const unsigned char SC, const std::string &N) : SubclassID(SC), Name(N), Parent(nullptr) {} public: /// An enumeration for keeping track of the concrete subclass of VPBlockBase /// that are actually instantiated. Values of this enumeration are kept in the /// SubclassID field of the VPBlockBase objects. They are used for concrete /// type identification. typedef enum { VPBasicBlockSC, VPRegionBlockSC } VPBlockTy; typedef SmallVectorImpl VPBlocksTy; virtual ~VPBlockBase() {} const std::string &getName() const { return Name; } void setName(const Twine &newName) { Name = newName.str(); } /// \return an ID for the concrete type of this object. /// This is used to implement the classof checks. This should not be used /// for any other purpose, as the values may change as LLVM evolves. unsigned getVPBlockID() const { return SubclassID; } const VPRegionBlock *getParent() const { return Parent; } void setParent(VPRegionBlock *P) { Parent = P; } /// \return the VPBasicBlock that is the entry of this VPBlockBase, /// recursively, if the latter is a VPRegionBlock. Otherwise, if this /// VPBlockBase is a VPBasicBlock, it is returned. const VPBasicBlock *getEntryBasicBlock() const; VPBasicBlock *getEntryBasicBlock(); /// \return the VPBasicBlock that is the exit of this VPBlockBase, /// recursively, if the latter is a VPRegionBlock. Otherwise, if this /// VPBlockBase is a VPBasicBlock, it is returned. const VPBasicBlock *getExitBasicBlock() const; VPBasicBlock *getExitBasicBlock(); const VPBlocksTy &getSuccessors() const { return Successors; } VPBlocksTy &getSuccessors() { return Successors; } const VPBlocksTy &getPredecessors() const { return Predecessors; } VPBlocksTy &getPredecessors() { return Predecessors; } /// \return the successor of this VPBlockBase if it has a single successor. /// Otherwise return a null pointer. VPBlockBase *getSingleSuccessor() const { return (Successors.size() == 1 ? *Successors.begin() : nullptr); } /// \return the predecessor of this VPBlockBase if it has a single /// predecessor. Otherwise return a null pointer. VPBlockBase *getSinglePredecessor() const { return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); } /// An Enclosing Block of a block B is any block containing B, including B /// itself. \return the closest enclosing block starting from "this", which /// has successors. \return the root enclosing block if all enclosing blocks /// have no successors. VPBlockBase *getEnclosingBlockWithSuccessors(); /// \return the closest enclosing block starting from "this", which has /// predecessors. \return the root enclosing block if all enclosing blocks /// have no predecessors. VPBlockBase *getEnclosingBlockWithPredecessors(); /// \return the successors either attached directly to this VPBlockBase or, if /// this VPBlockBase is the exit block of a VPRegionBlock and has no /// successors of its own, search recursively for the first enclosing /// VPRegionBlock that has successors and return them. If no such /// VPRegionBlock exists, return the (empty) successors of the topmost /// VPBlockBase reached. const VPBlocksTy &getHierarchicalSuccessors() { return getEnclosingBlockWithSuccessors()->getSuccessors(); } /// \return the hierarchical successor of this VPBlockBase if it has a single /// hierarchical successor. Otherwise return a null pointer. VPBlockBase *getSingleHierarchicalSuccessor() { return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); } /// \return the predecessors either attached directly to this VPBlockBase or, /// if this VPBlockBase is the entry block of a VPRegionBlock and has no /// predecessors of its own, search recursively for the first enclosing /// VPRegionBlock that has predecessors and return them. If no such /// VPRegionBlock exists, return the (empty) predecessors of the topmost /// VPBlockBase reached. const VPBlocksTy &getHierarchicalPredecessors() { return getEnclosingBlockWithPredecessors()->getPredecessors(); } /// \return the hierarchical predecessor of this VPBlockBase if it has a /// single hierarchical predecessor. Otherwise return a null pointer. VPBlockBase *getSingleHierarchicalPredecessor() { return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); } /// Sets a given VPBlockBase \p Successor as the single successor and \return /// \p Successor. The parent of this Block is copied to be the parent of /// \p Successor. VPBlockBase *setOneSuccessor(VPBlockBase *Successor) { assert(Successors.empty() && "Setting one successor when others exist."); appendSuccessor(Successor); Successor->appendPredecessor(this); Successor->Parent = Parent; return Successor; } /// Sets two given VPBlockBases \p IfTrue and \p IfFalse to be the two /// successors. The parent of this Block is copied to be the parent of both /// \p IfTrue and \p IfFalse. void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { assert(Successors.empty() && "Setting two successors when others exist."); appendSuccessor(IfTrue); appendSuccessor(IfFalse); IfTrue->appendPredecessor(this); IfFalse->appendPredecessor(this); IfTrue->Parent = Parent; IfFalse->Parent = Parent; } void disconnectSuccessor(VPBlockBase *Successor) { assert(Successor && "Successor to disconnect is null."); removeSuccessor(Successor); Successor->removePredecessor(this); } /// The method which generates the output IR that correspond to this /// VPBlockBase, thereby "executing" the VPlan. virtual void execute(struct VPTransformState *State) = 0; /// Delete all blocks reachable from a given VPBlockBase, inclusive. static void deleteCFG(VPBlockBase *Entry); }; /// VPRecipeBase is a base class modeling a sequence of one or more output IR /// instructions. class VPRecipeBase : public ilist_node_with_parent { friend VPBasicBlock; private: const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). /// Each VPRecipe belongs to a single VPBasicBlock. VPBasicBlock *Parent; public: /// An enumeration for keeping track of the concrete subclass of VPRecipeBase /// that is actually instantiated. Values of this enumeration are kept in the /// SubclassID field of the VPRecipeBase objects. They are used for concrete /// type identification. typedef enum { VPBranchOnMaskSC, VPInterleaveSC, VPPredInstPHISC, VPReplicateSC, VPWidenIntOrFpInductionSC, VPWidenPHISC, VPWidenSC, } VPRecipeTy; VPRecipeBase(const unsigned char SC) : SubclassID(SC), Parent(nullptr) {} virtual ~VPRecipeBase() {} /// \return an ID for the concrete type of this object. /// This is used to implement the classof checks. This should not be used /// for any other purpose, as the values may change as LLVM evolves. unsigned getVPRecipeID() const { return SubclassID; } /// \return the VPBasicBlock which this VPRecipe belongs to. VPBasicBlock *getParent() { return Parent; } const VPBasicBlock *getParent() const { return Parent; } /// The method which generates the output IR instructions that correspond to /// this VPRecipe, thereby "executing" the VPlan. virtual void execute(struct VPTransformState &State) = 0; /// Each recipe prints itself. virtual void print(raw_ostream &O, const Twine &Indent) const = 0; }; /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It /// holds a sequence of zero or more VPRecipe's each representing a sequence of /// output IR instructions. class VPBasicBlock : public VPBlockBase { public: typedef iplist RecipeListTy; private: /// The VPRecipes held in the order of output instructions to generate. RecipeListTy Recipes; public: /// Instruction iterators... typedef RecipeListTy::iterator iterator; typedef RecipeListTy::const_iterator const_iterator; typedef RecipeListTy::reverse_iterator reverse_iterator; typedef RecipeListTy::const_reverse_iterator const_reverse_iterator; //===--------------------------------------------------------------------===// /// Recipe iterator methods /// inline iterator begin() { return Recipes.begin(); } inline const_iterator begin() const { return Recipes.begin(); } inline iterator end() { return Recipes.end(); } inline const_iterator end() const { return Recipes.end(); } inline reverse_iterator rbegin() { return Recipes.rbegin(); } inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } inline reverse_iterator rend() { return Recipes.rend(); } inline const_reverse_iterator rend() const { return Recipes.rend(); } inline size_t size() const { return Recipes.size(); } inline bool empty() const { return Recipes.empty(); } inline const VPRecipeBase &front() const { return Recipes.front(); } inline VPRecipeBase &front() { return Recipes.front(); } inline const VPRecipeBase &back() const { return Recipes.back(); } inline VPRecipeBase &back() { return Recipes.back(); } /// \brief Returns a pointer to a member of the recipe list. static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { return &VPBasicBlock::Recipes; } VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) : VPBlockBase(VPBasicBlockSC, Name.str()) { if (Recipe) appendRecipe(Recipe); } ~VPBasicBlock() { Recipes.clear(); } /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPBlockBase *V) { return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; } /// Augment the existing recipes of a VPBasicBlock with an additional /// \p Recipe as the last recipe. void appendRecipe(VPRecipeBase *Recipe) { assert(Recipe && "No recipe to append."); assert(!Recipe->Parent && "Recipe already in VPlan"); Recipe->Parent = this; return Recipes.push_back(Recipe); } /// The method which generates the output IR instructions that correspond to /// this VPBasicBlock, thereby "executing" the VPlan. void execute(struct VPTransformState *State) override; private: /// Create an IR BasicBlock to hold the output instructions generated by this /// VPBasicBlock, and return it. Update the CFGState accordingly. BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); }; /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. /// A VPRegionBlock may indicate that its contents are to be replicated several /// times. This is designed to support predicated scalarization, in which a /// scalar if-then code structure needs to be generated VF * UF times. Having /// this replication indicator helps to keep a single model for multiple /// candidate VF's. The actual replication takes place only once the desired VF /// and UF have been determined. class VPRegionBlock : public VPBlockBase { private: /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. VPBlockBase *Entry; /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. VPBlockBase *Exit; /// An indicator whether this region is to generate multiple replicated /// instances of output IR corresponding to its VPBlockBases. bool IsReplicator; public: VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, const std::string &Name = "", bool IsReplicator = false) : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), IsReplicator(IsReplicator) { assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); assert(Exit->getSuccessors().empty() && "Exit block has successors."); Entry->setParent(this); Exit->setParent(this); } ~VPRegionBlock() { if (Entry) deleteCFG(Entry); } /// Method to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const VPBlockBase *V) { return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; } const VPBlockBase *getEntry() const { return Entry; } VPBlockBase *getEntry() { return Entry; } const VPBlockBase *getExit() const { return Exit; } VPBlockBase *getExit() { return Exit; } /// An indicator whether this region is to generate multiple replicated /// instances of output IR corresponding to its VPBlockBases. bool isReplicator() const { return IsReplicator; } /// The method which generates the output IR instructions that correspond to /// this VPRegionBlock, thereby "executing" the VPlan. void execute(struct VPTransformState *State) override; }; /// VPlan models a candidate for vectorization, encoding various decisions take /// to produce efficient output IR, including which branches, basic-blocks and /// output IR instructions to generate, and their cost. VPlan holds a /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry /// VPBlock. class VPlan { private: /// Hold the single entry to the Hierarchical CFG of the VPlan. VPBlockBase *Entry; /// Holds the VFs applicable to this VPlan. SmallSet VFs; /// Holds the name of the VPlan, for printing. std::string Name; public: VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {} ~VPlan() { if (Entry) VPBlockBase::deleteCFG(Entry); } /// Generate the IR code for this VPlan. void execute(struct VPTransformState *State); VPBlockBase *getEntry() { return Entry; } const VPBlockBase *getEntry() const { return Entry; } VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; } void addVF(unsigned VF) { VFs.insert(VF); } bool hasVF(unsigned VF) { return VFs.count(VF); } const std::string &getName() const { return Name; } void setName(const Twine &newName) { Name = newName.str(); } private: /// Add to the given dominator tree the header block and every new basic block /// that was created between it and the latch block, inclusive. static void updateDominatorTree(class DominatorTree *DT, BasicBlock *LoopPreHeaderBB, BasicBlock *LoopLatchBB); }; /// VPlanPrinter prints a given VPlan to a given output stream. The printing is /// indented and follows the dot format. class VPlanPrinter { friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan); friend inline raw_ostream &operator<<(raw_ostream &OS, const struct VPlanIngredient &I); private: raw_ostream &OS; VPlan &Plan; unsigned Depth; unsigned TabWidth = 2; std::string Indent; unsigned BID = 0; SmallDenseMap BlockID; /// Handle indentation. void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } /// Print a given \p Block of the Plan. void dumpBlock(const VPBlockBase *Block); /// Print the information related to the CFG edges going out of a given /// \p Block, followed by printing the successor blocks themselves. void dumpEdges(const VPBlockBase *Block); /// Print a given \p BasicBlock, including its VPRecipes, followed by printing /// its successor blocks. void dumpBasicBlock(const VPBasicBlock *BasicBlock); /// Print a given \p Region of the Plan. void dumpRegion(const VPRegionBlock *Region); unsigned getOrCreateBID(const VPBlockBase *Block) { return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; } const Twine getOrCreateName(const VPBlockBase *Block); const Twine getUID(const VPBlockBase *Block); /// Print the information related to a CFG edge between two VPBlockBases. void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, const Twine &Label); VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {} void dump(); static void printAsIngredient(raw_ostream &O, Value *V); }; struct VPlanIngredient { Value *V; VPlanIngredient(Value *V) : V(V) {} }; inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { VPlanPrinter::printAsIngredient(OS, I.V); return OS; } inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) { VPlanPrinter Printer(OS, Plan); Printer.dump(); return OS; } //===--------------------------------------------------------------------===// // GraphTraits specializations for VPlan/VPRegionBlock Control-Flow Graphs // //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a VPBlockBase as a // graph of VPBlockBase nodes... template <> struct GraphTraits { typedef VPBlockBase *NodeRef; typedef SmallVectorImpl::iterator ChildIteratorType; static NodeRef getEntryNode(NodeRef N) { return N; } static inline ChildIteratorType child_begin(NodeRef N) { return N->getSuccessors().begin(); } static inline ChildIteratorType child_end(NodeRef N) { return N->getSuccessors().end(); } }; template <> struct GraphTraits { typedef const VPBlockBase *NodeRef; typedef SmallVectorImpl::const_iterator ChildIteratorType; static NodeRef getEntryNode(NodeRef N) { return N; } static inline ChildIteratorType child_begin(NodeRef N) { return N->getSuccessors().begin(); } static inline ChildIteratorType child_end(NodeRef N) { return N->getSuccessors().end(); } }; // Provide specializations of GraphTraits to be able to treat a VPBlockBase as a // graph of VPBlockBase nodes... and to walk it in inverse order. Inverse order // for a VPBlockBase is considered to be when traversing the predecessors of a // VPBlockBase instead of its successors. // template <> struct GraphTraits> { typedef VPBlockBase *NodeRef; typedef SmallVectorImpl::iterator ChildIteratorType; static Inverse getEntryNode(Inverse B) { return B; } static inline ChildIteratorType child_begin(NodeRef N) { return N->getPredecessors().begin(); } static inline ChildIteratorType child_end(NodeRef N) { return N->getPredecessors().end(); } }; } // namespace llvm #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H