//=== JSON.cpp - JSON value, parsing and serialization - C++ -----------*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===---------------------------------------------------------------------===// #include "llvm/Support/JSON.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/Format.h" #include namespace llvm { namespace json { Value &Object::operator[](const ObjectKey &K) { return try_emplace(K, nullptr).first->getSecond(); } Value &Object::operator[](ObjectKey &&K) { return try_emplace(std::move(K), nullptr).first->getSecond(); } Value *Object::get(StringRef K) { auto I = find(K); if (I == end()) return nullptr; return &I->second; } const Value *Object::get(StringRef K) const { auto I = find(K); if (I == end()) return nullptr; return &I->second; } llvm::Optional Object::getNull(StringRef K) const { if (auto *V = get(K)) return V->getAsNull(); return llvm::None; } llvm::Optional Object::getBoolean(StringRef K) const { if (auto *V = get(K)) return V->getAsBoolean(); return llvm::None; } llvm::Optional Object::getNumber(StringRef K) const { if (auto *V = get(K)) return V->getAsNumber(); return llvm::None; } llvm::Optional Object::getInteger(StringRef K) const { if (auto *V = get(K)) return V->getAsInteger(); return llvm::None; } llvm::Optional Object::getString(StringRef K) const { if (auto *V = get(K)) return V->getAsString(); return llvm::None; } const json::Object *Object::getObject(StringRef K) const { if (auto *V = get(K)) return V->getAsObject(); return nullptr; } json::Object *Object::getObject(StringRef K) { if (auto *V = get(K)) return V->getAsObject(); return nullptr; } const json::Array *Object::getArray(StringRef K) const { if (auto *V = get(K)) return V->getAsArray(); return nullptr; } json::Array *Object::getArray(StringRef K) { if (auto *V = get(K)) return V->getAsArray(); return nullptr; } bool operator==(const Object &LHS, const Object &RHS) { if (LHS.size() != RHS.size()) return false; for (const auto &L : LHS) { auto R = RHS.find(L.first); if (R == RHS.end() || L.second != R->second) return false; } return true; } Array::Array(std::initializer_list Elements) { V.reserve(Elements.size()); for (const Value &V : Elements) { emplace_back(nullptr); back().moveFrom(std::move(V)); } } Value::Value(std::initializer_list Elements) : Value(json::Array(Elements)) {} void Value::copyFrom(const Value &M) { Type = M.Type; switch (Type) { case T_Null: case T_Boolean: case T_Double: case T_Integer: memcpy(Union.buffer, M.Union.buffer, sizeof(Union.buffer)); break; case T_StringRef: create(M.as()); break; case T_String: create(M.as()); break; case T_Object: create(M.as()); break; case T_Array: create(M.as()); break; } } void Value::moveFrom(const Value &&M) { Type = M.Type; switch (Type) { case T_Null: case T_Boolean: case T_Double: case T_Integer: memcpy(Union.buffer, M.Union.buffer, sizeof(Union.buffer)); break; case T_StringRef: create(M.as()); break; case T_String: create(std::move(M.as())); M.Type = T_Null; break; case T_Object: create(std::move(M.as())); M.Type = T_Null; break; case T_Array: create(std::move(M.as())); M.Type = T_Null; break; } } void Value::destroy() { switch (Type) { case T_Null: case T_Boolean: case T_Double: case T_Integer: break; case T_StringRef: as().~StringRef(); break; case T_String: as().~basic_string(); break; case T_Object: as().~Object(); break; case T_Array: as().~Array(); break; } } bool operator==(const Value &L, const Value &R) { if (L.kind() != R.kind()) return false; switch (L.kind()) { case Value::Null: return *L.getAsNull() == *R.getAsNull(); case Value::Boolean: return *L.getAsBoolean() == *R.getAsBoolean(); case Value::Number: return *L.getAsNumber() == *R.getAsNumber(); case Value::String: return *L.getAsString() == *R.getAsString(); case Value::Array: return *L.getAsArray() == *R.getAsArray(); case Value::Object: return *L.getAsObject() == *R.getAsObject(); } llvm_unreachable("Unknown value kind"); } namespace { // Simple recursive-descent JSON parser. class Parser { public: Parser(StringRef JSON) : Start(JSON.begin()), P(JSON.begin()), End(JSON.end()) {} bool checkUTF8() { size_t ErrOffset; if (isUTF8(StringRef(Start, End - Start), &ErrOffset)) return true; P = Start + ErrOffset; // For line/column calculation. return parseError("Invalid UTF-8 sequence"); } bool parseValue(Value &Out); bool assertEnd() { eatWhitespace(); if (P == End) return true; return parseError("Text after end of document"); } Error takeError() { assert(Err); return std::move(*Err); } private: void eatWhitespace() { while (P != End && (*P == ' ' || *P == '\r' || *P == '\n' || *P == '\t')) ++P; } // On invalid syntax, parseX() functions return false and set Err. bool parseNumber(char First, Value &Out); bool parseString(std::string &Out); bool parseUnicode(std::string &Out); bool parseError(const char *Msg); // always returns false char next() { return P == End ? 0 : *P++; } char peek() { return P == End ? 0 : *P; } static bool isNumber(char C) { return C == '0' || C == '1' || C == '2' || C == '3' || C == '4' || C == '5' || C == '6' || C == '7' || C == '8' || C == '9' || C == 'e' || C == 'E' || C == '+' || C == '-' || C == '.'; } Optional Err; const char *Start, *P, *End; }; bool Parser::parseValue(Value &Out) { eatWhitespace(); if (P == End) return parseError("Unexpected EOF"); switch (char C = next()) { // Bare null/true/false are easy - first char identifies them. case 'n': Out = nullptr; return (next() == 'u' && next() == 'l' && next() == 'l') || parseError("Invalid JSON value (null?)"); case 't': Out = true; return (next() == 'r' && next() == 'u' && next() == 'e') || parseError("Invalid JSON value (true?)"); case 'f': Out = false; return (next() == 'a' && next() == 'l' && next() == 's' && next() == 'e') || parseError("Invalid JSON value (false?)"); case '"': { std::string S; if (parseString(S)) { Out = std::move(S); return true; } return false; } case '[': { Out = Array{}; Array &A = *Out.getAsArray(); eatWhitespace(); if (peek() == ']') { ++P; return true; } for (;;) { A.emplace_back(nullptr); if (!parseValue(A.back())) return false; eatWhitespace(); switch (next()) { case ',': eatWhitespace(); continue; case ']': return true; default: return parseError("Expected , or ] after array element"); } } } case '{': { Out = Object{}; Object &O = *Out.getAsObject(); eatWhitespace(); if (peek() == '}') { ++P; return true; } for (;;) { if (next() != '"') return parseError("Expected object key"); std::string K; if (!parseString(K)) return false; eatWhitespace(); if (next() != ':') return parseError("Expected : after object key"); eatWhitespace(); if (!parseValue(O[std::move(K)])) return false; eatWhitespace(); switch (next()) { case ',': eatWhitespace(); continue; case '}': return true; default: return parseError("Expected , or } after object property"); } } } default: if (isNumber(C)) return parseNumber(C, Out); return parseError("Invalid JSON value"); } } bool Parser::parseNumber(char First, Value &Out) { // Read the number into a string. (Must be null-terminated for strto*). SmallString<24> S; S.push_back(First); while (isNumber(peek())) S.push_back(next()); char *End; // Try first to parse as integer, and if so preserve full 64 bits. // strtoll returns long long >= 64 bits, so check it's in range too. auto I = std::strtoll(S.c_str(), &End, 10); if (End == S.end() && I >= std::numeric_limits::min() && I <= std::numeric_limits::max()) { Out = int64_t(I); return true; } // If it's not an integer Out = std::strtod(S.c_str(), &End); return End == S.end() || parseError("Invalid JSON value (number?)"); } bool Parser::parseString(std::string &Out) { // leading quote was already consumed. for (char C = next(); C != '"'; C = next()) { if (LLVM_UNLIKELY(P == End)) return parseError("Unterminated string"); if (LLVM_UNLIKELY((C & 0x1f) == C)) return parseError("Control character in string"); if (LLVM_LIKELY(C != '\\')) { Out.push_back(C); continue; } // Handle escape sequence. switch (C = next()) { case '"': case '\\': case '/': Out.push_back(C); break; case 'b': Out.push_back('\b'); break; case 'f': Out.push_back('\f'); break; case 'n': Out.push_back('\n'); break; case 'r': Out.push_back('\r'); break; case 't': Out.push_back('\t'); break; case 'u': if (!parseUnicode(Out)) return false; break; default: return parseError("Invalid escape sequence"); } } return true; } static void encodeUtf8(uint32_t Rune, std::string &Out) { if (Rune < 0x80) { Out.push_back(Rune & 0x7F); } else if (Rune < 0x800) { uint8_t FirstByte = 0xC0 | ((Rune & 0x7C0) >> 6); uint8_t SecondByte = 0x80 | (Rune & 0x3F); Out.push_back(FirstByte); Out.push_back(SecondByte); } else if (Rune < 0x10000) { uint8_t FirstByte = 0xE0 | ((Rune & 0xF000) >> 12); uint8_t SecondByte = 0x80 | ((Rune & 0xFC0) >> 6); uint8_t ThirdByte = 0x80 | (Rune & 0x3F); Out.push_back(FirstByte); Out.push_back(SecondByte); Out.push_back(ThirdByte); } else if (Rune < 0x110000) { uint8_t FirstByte = 0xF0 | ((Rune & 0x1F0000) >> 18); uint8_t SecondByte = 0x80 | ((Rune & 0x3F000) >> 12); uint8_t ThirdByte = 0x80 | ((Rune & 0xFC0) >> 6); uint8_t FourthByte = 0x80 | (Rune & 0x3F); Out.push_back(FirstByte); Out.push_back(SecondByte); Out.push_back(ThirdByte); Out.push_back(FourthByte); } else { llvm_unreachable("Invalid codepoint"); } } // Parse a UTF-16 \uNNNN escape sequence. "\u" has already been consumed. // May parse several sequential escapes to ensure proper surrogate handling. // We do not use ConvertUTF.h, it can't accept and replace unpaired surrogates. // These are invalid Unicode but valid JSON (RFC 8259, section 8.2). bool Parser::parseUnicode(std::string &Out) { // Invalid UTF is not a JSON error (RFC 8529ยง8.2). It gets replaced by U+FFFD. auto Invalid = [&] { Out.append(/* UTF-8 */ {'\xef', '\xbf', '\xbd'}); }; // Decodes 4 hex digits from the stream into Out, returns false on error. auto Parse4Hex = [this](uint16_t &Out) -> bool { Out = 0; char Bytes[] = {next(), next(), next(), next()}; for (unsigned char C : Bytes) { if (!std::isxdigit(C)) return parseError("Invalid \\u escape sequence"); Out <<= 4; Out |= (C > '9') ? (C & ~0x20) - 'A' + 10 : (C - '0'); } return true; }; uint16_t First; // UTF-16 code unit from the first \u escape. if (!Parse4Hex(First)) return false; // We loop to allow proper surrogate-pair error handling. while (true) { // Case 1: the UTF-16 code unit is already a codepoint in the BMP. if (LLVM_LIKELY(First < 0xD800 || First >= 0xE000)) { encodeUtf8(First, Out); return true; } // Case 2: it's an (unpaired) trailing surrogate. if (LLVM_UNLIKELY(First >= 0xDC00)) { Invalid(); return true; } // Case 3: it's a leading surrogate. We expect a trailing one next. // Case 3a: there's no trailing \u escape. Don't advance in the stream. if (LLVM_UNLIKELY(P + 2 > End || *P != '\\' || *(P + 1) != 'u')) { Invalid(); // Leading surrogate was unpaired. return true; } P += 2; uint16_t Second; if (!Parse4Hex(Second)) return false; // Case 3b: there was another \u escape, but it wasn't a trailing surrogate. if (LLVM_UNLIKELY(Second < 0xDC00 || Second >= 0xE000)) { Invalid(); // Leading surrogate was unpaired. First = Second; // Second escape still needs to be processed. continue; } // Case 3c: a valid surrogate pair encoding an astral codepoint. encodeUtf8(0x10000 | ((First - 0xD800) << 10) | (Second - 0xDC00), Out); return true; } } bool Parser::parseError(const char *Msg) { int Line = 1; const char *StartOfLine = Start; for (const char *X = Start; X < P; ++X) { if (*X == 0x0A) { ++Line; StartOfLine = X + 1; } } Err.emplace( llvm::make_unique(Msg, Line, P - StartOfLine, P - Start)); return false; } } // namespace Expected parse(StringRef JSON) { Parser P(JSON); Value E = nullptr; if (P.checkUTF8()) if (P.parseValue(E)) if (P.assertEnd()) return std::move(E); return P.takeError(); } char ParseError::ID = 0; static std::vector sortedElements(const Object &O) { std::vector Elements; for (const auto &E : O) Elements.push_back(&E); llvm::sort(Elements, [](const Object::value_type *L, const Object::value_type *R) { return L->first < R->first; }); return Elements; } bool isUTF8(llvm::StringRef S, size_t *ErrOffset) { // Fast-path for ASCII, which is valid UTF-8. if (LLVM_LIKELY(isASCII(S))) return true; const UTF8 *Data = reinterpret_cast(S.data()), *Rest = Data; if (LLVM_LIKELY(isLegalUTF8String(&Rest, Data + S.size()))) return true; if (ErrOffset) *ErrOffset = Rest - Data; return false; } std::string fixUTF8(llvm::StringRef S) { // This isn't particularly efficient, but is only for error-recovery. std::vector Codepoints(S.size()); // 1 codepoint per byte suffices. const UTF8 *In8 = reinterpret_cast(S.data()); UTF32 *Out32 = Codepoints.data(); ConvertUTF8toUTF32(&In8, In8 + S.size(), &Out32, Out32 + Codepoints.size(), lenientConversion); Codepoints.resize(Out32 - Codepoints.data()); std::string Res(4 * Codepoints.size(), 0); // 4 bytes per codepoint suffice const UTF32 *In32 = Codepoints.data(); UTF8 *Out8 = reinterpret_cast(&Res[0]); ConvertUTF32toUTF8(&In32, In32 + Codepoints.size(), &Out8, Out8 + Res.size(), strictConversion); Res.resize(reinterpret_cast(Out8) - Res.data()); return Res; } } // namespace json } // namespace llvm static void quote(llvm::raw_ostream &OS, llvm::StringRef S) { OS << '\"'; for (unsigned char C : S) { if (C == 0x22 || C == 0x5C) OS << '\\'; if (C >= 0x20) { OS << C; continue; } OS << '\\'; switch (C) { // A few characters are common enough to make short escapes worthwhile. case '\t': OS << 't'; break; case '\n': OS << 'n'; break; case '\r': OS << 'r'; break; default: OS << 'u'; llvm::write_hex(OS, C, llvm::HexPrintStyle::Lower, 4); break; } } OS << '\"'; } enum IndenterAction { Indent, Outdent, Newline, Space, }; // Prints JSON. The indenter can be used to control formatting. template void llvm::json::Value::print(raw_ostream &OS, const Indenter &I) const { switch (Type) { case T_Null: OS << "null"; break; case T_Boolean: OS << (as() ? "true" : "false"); break; case T_Double: OS << format("%.*g", std::numeric_limits::max_digits10, as()); break; case T_Integer: OS << as(); break; case T_StringRef: quote(OS, as()); break; case T_String: quote(OS, as()); break; case T_Object: { bool Comma = false; OS << '{'; I(Indent); for (const auto *P : sortedElements(as())) { if (Comma) OS << ','; Comma = true; I(Newline); quote(OS, P->first); OS << ':'; I(Space); P->second.print(OS, I); } I(Outdent); if (Comma) I(Newline); OS << '}'; break; } case T_Array: { bool Comma = false; OS << '['; I(Indent); for (const auto &E : as()) { if (Comma) OS << ','; Comma = true; I(Newline); E.print(OS, I); } I(Outdent); if (Comma) I(Newline); OS << ']'; break; } } } void llvm::format_provider::format( const llvm::json::Value &E, raw_ostream &OS, StringRef Options) { if (Options.empty()) { OS << E; return; } unsigned IndentAmount = 0; if (Options.getAsInteger(/*Radix=*/10, IndentAmount)) llvm_unreachable("json::Value format options should be an integer"); unsigned IndentLevel = 0; E.print(OS, [&](IndenterAction A) { switch (A) { case Newline: OS << '\n'; OS.indent(IndentLevel); break; case Space: OS << ' '; break; case Indent: IndentLevel += IndentAmount; break; case Outdent: IndentLevel -= IndentAmount; break; }; }); } llvm::raw_ostream &llvm::json::operator<<(raw_ostream &OS, const Value &E) { E.print(OS, [](IndenterAction A) { /*ignore*/ }); return OS; }