//===- llvm/Function.h - Class to represent a single function ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the declaration of the Function class, which represents a // single function/procedure in LLVM. // // A function basically consists of a list of basic blocks, a list of arguments, // and a symbol table. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_FUNCTION_H #define LLVM_IR_FUNCTION_H #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/SymbolTableListTraits.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include #include #include #include #include namespace llvm { namespace Intrinsic { typedef unsigned ID; } class AssemblyAnnotationWriter; class Constant; class DISubprogram; class LLVMContext; class Module; template class Optional; class raw_ostream; class Type; class User; class BranchProbabilityInfo; class BlockFrequencyInfo; class Function : public GlobalObject, public ilist_node { public: using BasicBlockListType = SymbolTableList; // BasicBlock iterators... using iterator = BasicBlockListType::iterator; using const_iterator = BasicBlockListType::const_iterator; using arg_iterator = Argument *; using const_arg_iterator = const Argument *; private: // Important things that make up a function! BasicBlockListType BasicBlocks; ///< The basic blocks mutable Argument *Arguments = nullptr; ///< The formal arguments size_t NumArgs; std::unique_ptr SymTab; ///< Symbol table of args/instructions AttributeList AttributeSets; ///< Parameter attributes /* * Value::SubclassData * * bit 0 : HasLazyArguments * bit 1 : HasPrefixData * bit 2 : HasPrologueData * bit 3 : HasPersonalityFn * bits 4-13 : CallingConvention * bits 14 : HasGC * bits 15 : [reserved] */ /// Bits from GlobalObject::GlobalObjectSubclassData. enum { /// Whether this function is materializable. IsMaterializableBit = 0, }; friend class SymbolTableListTraits; /// hasLazyArguments/CheckLazyArguments - The argument list of a function is /// built on demand, so that the list isn't allocated until the first client /// needs it. The hasLazyArguments predicate returns true if the arg list /// hasn't been set up yet. public: bool hasLazyArguments() const { return getSubclassDataFromValue() & (1<<0); } private: void CheckLazyArguments() const { if (hasLazyArguments()) BuildLazyArguments(); } void BuildLazyArguments() const; void clearArguments(); /// Function ctor - If the (optional) Module argument is specified, the /// function is automatically inserted into the end of the function list for /// the module. /// Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N = "", Module *M = nullptr); public: Function(const Function&) = delete; void operator=(const Function&) = delete; ~Function(); // This is here to help easily convert from FunctionT * (Function * or // MachineFunction *) in BlockFrequencyInfoImpl to Function * by calling // FunctionT->getFunction(). const Function &getFunction() const { return *this; } static Function *Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N = "", Module *M = nullptr) { return new Function(Ty, Linkage, AddrSpace, N, M); } // TODO: remove this once all users have been updated to pass an AddrSpace static Function *Create(FunctionType *Ty, LinkageTypes Linkage, const Twine &N = "", Module *M = nullptr) { return new Function(Ty, Linkage, static_cast(-1), N, M); } /// Creates a new function and attaches it to a module. /// /// Places the function in the program address space as specified /// by the module's data layout. static Function *Create(FunctionType *Ty, LinkageTypes Linkage, const Twine &N, Module &M); /// Creates a function with some attributes recorded in llvm.module.flags /// applied. /// /// Use this when synthesizing new functions that need attributes that would /// have been set by command line options. static Function *createWithDefaultAttr(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N = "", Module *M = nullptr); // Provide fast operand accessors. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Returns the number of non-debug IR instructions in this function. /// This is equivalent to the sum of the sizes of each basic block contained /// within this function. unsigned getInstructionCount() const; /// Returns the FunctionType for me. FunctionType *getFunctionType() const { return cast(getValueType()); } /// Returns the type of the ret val. Type *getReturnType() const { return getFunctionType()->getReturnType(); } /// getContext - Return a reference to the LLVMContext associated with this /// function. LLVMContext &getContext() const; /// isVarArg - Return true if this function takes a variable number of /// arguments. bool isVarArg() const { return getFunctionType()->isVarArg(); } bool isMaterializable() const { return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); } void setIsMaterializable(bool V) { unsigned Mask = 1 << IsMaterializableBit; setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | (V ? Mask : 0u)); } /// getIntrinsicID - This method returns the ID number of the specified /// function, or Intrinsic::not_intrinsic if the function is not an /// intrinsic, or if the pointer is null. This value is always defined to be /// zero to allow easy checking for whether a function is intrinsic or not. /// The particular intrinsic functions which correspond to this value are /// defined in llvm/Intrinsics.h. Intrinsic::ID getIntrinsicID() const LLVM_READONLY { return IntID; } /// isIntrinsic - Returns true if the function's name starts with "llvm.". /// It's possible for this function to return true while getIntrinsicID() /// returns Intrinsic::not_intrinsic! bool isIntrinsic() const { return HasLLVMReservedName; } /// isTargetIntrinsic - Returns true if IID is an intrinsic specific to a /// certain target. If it is a generic intrinsic false is returned. static bool isTargetIntrinsic(Intrinsic::ID IID); /// isTargetIntrinsic - Returns true if this function is an intrinsic and the /// intrinsic is specific to a certain target. If this is not an intrinsic /// or a generic intrinsic, false is returned. bool isTargetIntrinsic() const; /// Returns true if the function is one of the "Constrained Floating-Point /// Intrinsics". Returns false if not, and returns false when /// getIntrinsicID() returns Intrinsic::not_intrinsic. bool isConstrainedFPIntrinsic() const; static Intrinsic::ID lookupIntrinsicID(StringRef Name); /// Recalculate the ID for this function if it is an Intrinsic defined /// in llvm/Intrinsics.h. Sets the intrinsic ID to Intrinsic::not_intrinsic /// if the name of this function does not match an intrinsic in that header. /// Note, this method does not need to be called directly, as it is called /// from Value::setName() whenever the name of this function changes. void recalculateIntrinsicID(); /// getCallingConv()/setCallingConv(CC) - These method get and set the /// calling convention of this function. The enum values for the known /// calling conventions are defined in CallingConv.h. CallingConv::ID getCallingConv() const { return static_cast((getSubclassDataFromValue() >> 4) & CallingConv::MaxID); } void setCallingConv(CallingConv::ID CC) { auto ID = static_cast(CC); assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention"); setValueSubclassData((getSubclassDataFromValue() & 0xc00f) | (ID << 4)); } /// Return the attribute list for this Function. AttributeList getAttributes() const { return AttributeSets; } /// Set the attribute list for this Function. void setAttributes(AttributeList Attrs) { AttributeSets = Attrs; } /// Add function attributes to this function. void addFnAttr(Attribute::AttrKind Kind) { addAttribute(AttributeList::FunctionIndex, Kind); } /// Add function attributes to this function. void addFnAttr(StringRef Kind, StringRef Val = StringRef()) { addAttribute(AttributeList::FunctionIndex, Attribute::get(getContext(), Kind, Val)); } /// Add function attributes to this function. void addFnAttr(Attribute Attr) { addAttribute(AttributeList::FunctionIndex, Attr); } /// Remove function attributes from this function. void removeFnAttr(Attribute::AttrKind Kind) { removeAttribute(AttributeList::FunctionIndex, Kind); } /// Remove function attribute from this function. void removeFnAttr(StringRef Kind) { setAttributes(getAttributes().removeAttribute( getContext(), AttributeList::FunctionIndex, Kind)); } /// A function will have the "coroutine.presplit" attribute if it's /// a coroutine and has not gone through full CoroSplit pass. bool isPresplitCoroutine() const { return hasFnAttribute("coroutine.presplit"); } enum ProfileCountType { PCT_Invalid, PCT_Real, PCT_Synthetic }; /// Class to represent profile counts. /// /// This class represents both real and synthetic profile counts. class ProfileCount { private: uint64_t Count; ProfileCountType PCT; static ProfileCount Invalid; public: ProfileCount() : Count(-1), PCT(PCT_Invalid) {} ProfileCount(uint64_t Count, ProfileCountType PCT) : Count(Count), PCT(PCT) {} bool hasValue() const { return PCT != PCT_Invalid; } uint64_t getCount() const { return Count; } ProfileCountType getType() const { return PCT; } bool isSynthetic() const { return PCT == PCT_Synthetic; } explicit operator bool() { return hasValue(); } bool operator!() const { return !hasValue(); } // Update the count retaining the same profile count type. ProfileCount &setCount(uint64_t C) { Count = C; return *this; } static ProfileCount getInvalid() { return ProfileCount(-1, PCT_Invalid); } }; /// Set the entry count for this function. /// /// Entry count is the number of times this function was executed based on /// pgo data. \p Imports points to a set of GUIDs that needs to /// be imported by the function for sample PGO, to enable the same inlines as /// the profiled optimized binary. void setEntryCount(ProfileCount Count, const DenseSet *Imports = nullptr); /// A convenience wrapper for setting entry count void setEntryCount(uint64_t Count, ProfileCountType Type = PCT_Real, const DenseSet *Imports = nullptr); /// Get the entry count for this function. /// /// Entry count is the number of times the function was executed. /// When AllowSynthetic is false, only pgo_data will be returned. ProfileCount getEntryCount(bool AllowSynthetic = false) const; /// Return true if the function is annotated with profile data. /// /// Presence of entry counts from a profile run implies the function has /// profile annotations. If IncludeSynthetic is false, only return true /// when the profile data is real. bool hasProfileData(bool IncludeSynthetic = false) const { return getEntryCount(IncludeSynthetic).hasValue(); } /// Returns the set of GUIDs that needs to be imported to the function for /// sample PGO, to enable the same inlines as the profiled optimized binary. DenseSet getImportGUIDs() const; /// Set the section prefix for this function. void setSectionPrefix(StringRef Prefix); /// Get the section prefix for this function. Optional getSectionPrefix() const; /// Return true if the function has the attribute. bool hasFnAttribute(Attribute::AttrKind Kind) const { return AttributeSets.hasFnAttribute(Kind); } /// Return true if the function has the attribute. bool hasFnAttribute(StringRef Kind) const { return AttributeSets.hasFnAttribute(Kind); } /// Return the attribute for the given attribute kind. Attribute getFnAttribute(Attribute::AttrKind Kind) const { return getAttribute(AttributeList::FunctionIndex, Kind); } /// Return the attribute for the given attribute kind. Attribute getFnAttribute(StringRef Kind) const { return getAttribute(AttributeList::FunctionIndex, Kind); } /// Return the stack alignment for the function. unsigned getFnStackAlignment() const { if (!hasFnAttribute(Attribute::StackAlignment)) return 0; if (const auto MA = AttributeSets.getStackAlignment(AttributeList::FunctionIndex)) return MA->value(); return 0; } /// Return the stack alignment for the function. MaybeAlign getFnStackAlign() const { if (!hasFnAttribute(Attribute::StackAlignment)) return None; return AttributeSets.getStackAlignment(AttributeList::FunctionIndex); } /// hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm /// to use during code generation. bool hasGC() const { return getSubclassDataFromValue() & (1<<14); } const std::string &getGC() const; void setGC(std::string Str); void clearGC(); /// Returns true if the function has ssp, sspstrong, or sspreq fn attrs. bool hasStackProtectorFnAttr() const; /// adds the attribute to the list of attributes. void addAttribute(unsigned i, Attribute::AttrKind Kind); /// adds the attribute to the list of attributes. void addAttribute(unsigned i, Attribute Attr); /// adds the attributes to the list of attributes. void addAttributes(unsigned i, const AttrBuilder &Attrs); /// adds the attribute to the list of attributes for the given arg. void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind); /// adds the attribute to the list of attributes for the given arg. void addParamAttr(unsigned ArgNo, Attribute Attr); /// adds the attributes to the list of attributes for the given arg. void addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs); /// removes the attribute from the list of attributes. void removeAttribute(unsigned i, Attribute::AttrKind Kind); /// removes the attribute from the list of attributes. void removeAttribute(unsigned i, StringRef Kind); /// removes the attributes from the list of attributes. void removeAttributes(unsigned i, const AttrBuilder &Attrs); /// removes the attribute from the list of attributes. void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind); /// removes the attribute from the list of attributes. void removeParamAttr(unsigned ArgNo, StringRef Kind); /// removes the attribute from the list of attributes. void removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs); /// removes noundef and other attributes that imply undefined behavior if a /// `undef` or `poison` value is passed from the list of attributes. void removeParamUndefImplyingAttrs(unsigned ArgNo); /// check if an attributes is in the list of attributes. bool hasAttribute(unsigned i, Attribute::AttrKind Kind) const { return getAttributes().hasAttribute(i, Kind); } /// check if an attributes is in the list of attributes. bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const { return getAttributes().hasParamAttribute(ArgNo, Kind); } /// gets the specified attribute from the list of attributes. Attribute getParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const { return getAttributes().getParamAttr(ArgNo, Kind); } /// gets the attribute from the list of attributes. Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const { return AttributeSets.getAttribute(i, Kind); } /// gets the attribute from the list of attributes. Attribute getAttribute(unsigned i, StringRef Kind) const { return AttributeSets.getAttribute(i, Kind); } /// adds the dereferenceable attribute to the list of attributes. void addDereferenceableAttr(unsigned i, uint64_t Bytes); /// adds the dereferenceable attribute to the list of attributes for /// the given arg. void addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes); /// adds the dereferenceable_or_null attribute to the list of /// attributes. void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes); /// adds the dereferenceable_or_null attribute to the list of /// attributes for the given arg. void addDereferenceableOrNullParamAttr(unsigned ArgNo, uint64_t Bytes); /// Extract the alignment for a call or parameter (0=unknown). /// FIXME: Remove this function once transition to Align is over. /// Use getParamAlign() instead. unsigned getParamAlignment(unsigned ArgNo) const { if (const auto MA = getParamAlign(ArgNo)) return MA->value(); return 0; } MaybeAlign getParamAlign(unsigned ArgNo) const { return AttributeSets.getParamAlignment(ArgNo); } MaybeAlign getParamStackAlign(unsigned ArgNo) const { return AttributeSets.getParamStackAlignment(ArgNo); } /// Extract the byval type for a parameter. Type *getParamByValType(unsigned ArgNo) const { return AttributeSets.getParamByValType(ArgNo); } /// Extract the sret type for a parameter. Type *getParamStructRetType(unsigned ArgNo) const { return AttributeSets.getParamStructRetType(ArgNo); } /// Extract the inalloca type for a parameter. Type *getParamInAllocaType(unsigned ArgNo) const { return AttributeSets.getParamInAllocaType(ArgNo); } /// Extract the byref type for a parameter. Type *getParamByRefType(unsigned ArgNo) const { return AttributeSets.getParamByRefType(ArgNo); } /// Extract the number of dereferenceable bytes for a call or /// parameter (0=unknown). /// @param i AttributeList index, referring to a return value or argument. uint64_t getDereferenceableBytes(unsigned i) const { return AttributeSets.getDereferenceableBytes(i); } /// Extract the number of dereferenceable bytes for a parameter. /// @param ArgNo Index of an argument, with 0 being the first function arg. uint64_t getParamDereferenceableBytes(unsigned ArgNo) const { return AttributeSets.getParamDereferenceableBytes(ArgNo); } /// Extract the number of dereferenceable_or_null bytes for a call or /// parameter (0=unknown). /// @param i AttributeList index, referring to a return value or argument. uint64_t getDereferenceableOrNullBytes(unsigned i) const { return AttributeSets.getDereferenceableOrNullBytes(i); } /// Extract the number of dereferenceable_or_null bytes for a /// parameter. /// @param ArgNo AttributeList ArgNo, referring to an argument. uint64_t getParamDereferenceableOrNullBytes(unsigned ArgNo) const { return AttributeSets.getParamDereferenceableOrNullBytes(ArgNo); } /// Determine if the function does not access memory. bool doesNotAccessMemory() const { return hasFnAttribute(Attribute::ReadNone); } void setDoesNotAccessMemory() { addFnAttr(Attribute::ReadNone); } /// Determine if the function does not access or only reads memory. bool onlyReadsMemory() const { return doesNotAccessMemory() || hasFnAttribute(Attribute::ReadOnly); } void setOnlyReadsMemory() { addFnAttr(Attribute::ReadOnly); } /// Determine if the function does not access or only writes memory. bool doesNotReadMemory() const { return doesNotAccessMemory() || hasFnAttribute(Attribute::WriteOnly); } void setDoesNotReadMemory() { addFnAttr(Attribute::WriteOnly); } /// Determine if the call can access memmory only using pointers based /// on its arguments. bool onlyAccessesArgMemory() const { return hasFnAttribute(Attribute::ArgMemOnly); } void setOnlyAccessesArgMemory() { addFnAttr(Attribute::ArgMemOnly); } /// Determine if the function may only access memory that is /// inaccessible from the IR. bool onlyAccessesInaccessibleMemory() const { return hasFnAttribute(Attribute::InaccessibleMemOnly); } void setOnlyAccessesInaccessibleMemory() { addFnAttr(Attribute::InaccessibleMemOnly); } /// Determine if the function may only access memory that is /// either inaccessible from the IR or pointed to by its arguments. bool onlyAccessesInaccessibleMemOrArgMem() const { return hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly); } void setOnlyAccessesInaccessibleMemOrArgMem() { addFnAttr(Attribute::InaccessibleMemOrArgMemOnly); } /// Determine if the function cannot return. bool doesNotReturn() const { return hasFnAttribute(Attribute::NoReturn); } void setDoesNotReturn() { addFnAttr(Attribute::NoReturn); } /// Determine if the function should not perform indirect branch tracking. bool doesNoCfCheck() const { return hasFnAttribute(Attribute::NoCfCheck); } /// Determine if the function cannot unwind. bool doesNotThrow() const { return hasFnAttribute(Attribute::NoUnwind); } void setDoesNotThrow() { addFnAttr(Attribute::NoUnwind); } /// Determine if the call cannot be duplicated. bool cannotDuplicate() const { return hasFnAttribute(Attribute::NoDuplicate); } void setCannotDuplicate() { addFnAttr(Attribute::NoDuplicate); } /// Determine if the call is convergent. bool isConvergent() const { return hasFnAttribute(Attribute::Convergent); } void setConvergent() { addFnAttr(Attribute::Convergent); } void setNotConvergent() { removeFnAttr(Attribute::Convergent); } /// Determine if the call has sideeffects. bool isSpeculatable() const { return hasFnAttribute(Attribute::Speculatable); } void setSpeculatable() { addFnAttr(Attribute::Speculatable); } /// Determine if the call might deallocate memory. bool doesNotFreeMemory() const { return onlyReadsMemory() || hasFnAttribute(Attribute::NoFree); } void setDoesNotFreeMemory() { addFnAttr(Attribute::NoFree); } /// Determine if the call can synchroize with other threads bool hasNoSync() const { return hasFnAttribute(Attribute::NoSync); } void setNoSync() { addFnAttr(Attribute::NoSync); } /// Determine if the function is known not to recurse, directly or /// indirectly. bool doesNotRecurse() const { return hasFnAttribute(Attribute::NoRecurse); } void setDoesNotRecurse() { addFnAttr(Attribute::NoRecurse); } /// Determine if the function is required to make forward progress. bool mustProgress() const { return hasFnAttribute(Attribute::MustProgress) || hasFnAttribute(Attribute::WillReturn); } void setMustProgress() { addFnAttr(Attribute::MustProgress); } /// Determine if the function will return. bool willReturn() const { return hasFnAttribute(Attribute::WillReturn); } void setWillReturn() { addFnAttr(Attribute::WillReturn); } /// True if the ABI mandates (or the user requested) that this /// function be in a unwind table. bool hasUWTable() const { return hasFnAttribute(Attribute::UWTable); } void setHasUWTable() { addFnAttr(Attribute::UWTable); } /// True if this function needs an unwind table. bool needsUnwindTableEntry() const { return hasUWTable() || !doesNotThrow() || hasPersonalityFn(); } /// Determine if the function returns a structure through first /// or second pointer argument. bool hasStructRetAttr() const { return AttributeSets.hasParamAttribute(0, Attribute::StructRet) || AttributeSets.hasParamAttribute(1, Attribute::StructRet); } /// Determine if the parameter or return value is marked with NoAlias /// attribute. bool returnDoesNotAlias() const { return AttributeSets.hasAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); } void setReturnDoesNotAlias() { addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); } /// Do not optimize this function (-O0). bool hasOptNone() const { return hasFnAttribute(Attribute::OptimizeNone); } /// Optimize this function for minimum size (-Oz). bool hasMinSize() const { return hasFnAttribute(Attribute::MinSize); } /// Optimize this function for size (-Os) or minimum size (-Oz). bool hasOptSize() const { return hasFnAttribute(Attribute::OptimizeForSize) || hasMinSize(); } /// Returns the denormal handling type for the default rounding mode of the /// function. DenormalMode getDenormalMode(const fltSemantics &FPType) const; /// copyAttributesFrom - copy all additional attributes (those not needed to /// create a Function) from the Function Src to this one. void copyAttributesFrom(const Function *Src); /// deleteBody - This method deletes the body of the function, and converts /// the linkage to external. /// void deleteBody() { dropAllReferences(); setLinkage(ExternalLinkage); } /// removeFromParent - This method unlinks 'this' from the containing module, /// but does not delete it. /// void removeFromParent(); /// eraseFromParent - This method unlinks 'this' from the containing module /// and deletes it. /// void eraseFromParent(); /// Steal arguments from another function. /// /// Drop this function's arguments and splice in the ones from \c Src. /// Requires that this has no function body. void stealArgumentListFrom(Function &Src); /// Get the underlying elements of the Function... the basic block list is /// empty for external functions. /// const BasicBlockListType &getBasicBlockList() const { return BasicBlocks; } BasicBlockListType &getBasicBlockList() { return BasicBlocks; } static BasicBlockListType Function::*getSublistAccess(BasicBlock*) { return &Function::BasicBlocks; } const BasicBlock &getEntryBlock() const { return front(); } BasicBlock &getEntryBlock() { return front(); } //===--------------------------------------------------------------------===// // Symbol Table Accessing functions... /// getSymbolTable() - Return the symbol table if any, otherwise nullptr. /// inline ValueSymbolTable *getValueSymbolTable() { return SymTab.get(); } inline const ValueSymbolTable *getValueSymbolTable() const { return SymTab.get(); } //===--------------------------------------------------------------------===// // BasicBlock iterator forwarding functions // iterator begin() { return BasicBlocks.begin(); } const_iterator begin() const { return BasicBlocks.begin(); } iterator end () { return BasicBlocks.end(); } const_iterator end () const { return BasicBlocks.end(); } size_t size() const { return BasicBlocks.size(); } bool empty() const { return BasicBlocks.empty(); } const BasicBlock &front() const { return BasicBlocks.front(); } BasicBlock &front() { return BasicBlocks.front(); } const BasicBlock &back() const { return BasicBlocks.back(); } BasicBlock &back() { return BasicBlocks.back(); } /// @name Function Argument Iteration /// @{ arg_iterator arg_begin() { CheckLazyArguments(); return Arguments; } const_arg_iterator arg_begin() const { CheckLazyArguments(); return Arguments; } arg_iterator arg_end() { CheckLazyArguments(); return Arguments + NumArgs; } const_arg_iterator arg_end() const { CheckLazyArguments(); return Arguments + NumArgs; } Argument* getArg(unsigned i) const { assert (i < NumArgs && "getArg() out of range!"); CheckLazyArguments(); return Arguments + i; } iterator_range args() { return make_range(arg_begin(), arg_end()); } iterator_range args() const { return make_range(arg_begin(), arg_end()); } /// @} size_t arg_size() const { return NumArgs; } bool arg_empty() const { return arg_size() == 0; } /// Check whether this function has a personality function. bool hasPersonalityFn() const { return getSubclassDataFromValue() & (1<<3); } /// Get the personality function associated with this function. Constant *getPersonalityFn() const; void setPersonalityFn(Constant *Fn); /// Check whether this function has prefix data. bool hasPrefixData() const { return getSubclassDataFromValue() & (1<<1); } /// Get the prefix data associated with this function. Constant *getPrefixData() const; void setPrefixData(Constant *PrefixData); /// Check whether this function has prologue data. bool hasPrologueData() const { return getSubclassDataFromValue() & (1<<2); } /// Get the prologue data associated with this function. Constant *getPrologueData() const; void setPrologueData(Constant *PrologueData); /// Print the function to an output stream with an optional /// AssemblyAnnotationWriter. void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW = nullptr, bool ShouldPreserveUseListOrder = false, bool IsForDebug = false) const; /// viewCFG - This function is meant for use from the debugger. You can just /// say 'call F->viewCFG()' and a ghostview window should pop up from the /// program, displaying the CFG of the current function with the code for each /// basic block inside. This depends on there being a 'dot' and 'gv' program /// in your path. /// void viewCFG() const; /// Extended form to print edge weights. void viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI, const BranchProbabilityInfo *BPI) const; /// viewCFGOnly - This function is meant for use from the debugger. It works /// just like viewCFG, but it does not include the contents of basic blocks /// into the nodes, just the label. If you are only interested in the CFG /// this can make the graph smaller. /// void viewCFGOnly() const; /// Extended form to print edge weights. void viewCFGOnly(const BlockFrequencyInfo *BFI, const BranchProbabilityInfo *BPI) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == Value::FunctionVal; } /// dropAllReferences() - This method causes all the subinstructions to "let /// go" of all references that they are maintaining. This allows one to /// 'delete' a whole module at a time, even though there may be circular /// references... first all references are dropped, and all use counts go to /// zero. Then everything is deleted for real. Note that no operations are /// valid on an object that has "dropped all references", except operator /// delete. /// /// Since no other object in the module can have references into the body of a /// function, dropping all references deletes the entire body of the function, /// including any contained basic blocks. /// void dropAllReferences(); /// hasAddressTaken - returns true if there are any uses of this function /// other than direct calls or invokes to it, or blockaddress expressions. /// Optionally passes back an offending user for diagnostic purposes, /// ignores callback uses, assume like pointer annotation calls, and /// references in llvm.used and llvm.compiler.used variables. /// bool hasAddressTaken(const User ** = nullptr, bool IgnoreCallbackUses = false, bool IgnoreAssumeLikeCalls = true, bool IngoreLLVMUsed = false) const; /// isDefTriviallyDead - Return true if it is trivially safe to remove /// this function definition from the module (because it isn't externally /// visible, does not have its address taken, and has no callers). To make /// this more accurate, call removeDeadConstantUsers first. bool isDefTriviallyDead() const; /// callsFunctionThatReturnsTwice - Return true if the function has a call to /// setjmp or other function that gcc recognizes as "returning twice". bool callsFunctionThatReturnsTwice() const; /// Set the attached subprogram. /// /// Calls \a setMetadata() with \a LLVMContext::MD_dbg. void setSubprogram(DISubprogram *SP); /// Get the attached subprogram. /// /// Calls \a getMetadata() with \a LLVMContext::MD_dbg and casts the result /// to \a DISubprogram. DISubprogram *getSubprogram() const; /// Returns true if we should emit debug info for profiling. bool isDebugInfoForProfiling() const; /// Check if null pointer dereferencing is considered undefined behavior for /// the function. /// Return value: false => null pointer dereference is undefined. /// Return value: true => null pointer dereference is not undefined. bool nullPointerIsDefined() const; private: void allocHungoffUselist(); template void setHungoffOperand(Constant *C); /// Shadow Value::setValueSubclassData with a private forwarding method so /// that subclasses cannot accidentally use it. void setValueSubclassData(unsigned short D) { Value::setValueSubclassData(D); } void setValueSubclassDataBit(unsigned Bit, bool On); }; /// Check whether null pointer dereferencing is considered undefined behavior /// for a given function or an address space. /// Null pointer access in non-zero address space is not considered undefined. /// Return value: false => null pointer dereference is undefined. /// Return value: true => null pointer dereference is not undefined. bool NullPointerIsDefined(const Function *F, unsigned AS = 0); template <> struct OperandTraits : public HungoffOperandTraits<3> {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(Function, Value) } // end namespace llvm #endif // LLVM_IR_FUNCTION_H