//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a simple pass that applies a variety of small // optimizations for calls to specific well-known function calls (e.g. runtime // library functions). Any optimization that takes the very simple form // "replace call to library function with simpler code that provides the same // result" belongs in this file. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "simplify-libcalls" #include "llvm/Transforms/Scalar.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Config/config.h" using namespace llvm; STATISTIC(NumSimplified, "Number of library calls simplified"); STATISTIC(NumAnnotated, "Number of attributes added to library functions"); //===----------------------------------------------------------------------===// // Optimizer Base Class //===----------------------------------------------------------------------===// /// This class is the abstract base class for the set of optimizations that /// corresponds to one library call. namespace { class LibCallOptimization { protected: Function *Caller; const TargetData *TD; LLVMContext* Context; public: LibCallOptimization() { } virtual ~LibCallOptimization() {} /// CallOptimizer - This pure virtual method is implemented by base classes to /// do various optimizations. If this returns null then no transformation was /// performed. If it returns CI, then it transformed the call and CI is to be /// deleted. If it returns something else, replace CI with the new value and /// delete CI. virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) =0; Value *OptimizeCall(CallInst *CI, const TargetData *TD, IRBuilder<> &B) { Caller = CI->getParent()->getParent(); this->TD = TD; if (CI->getCalledFunction()) Context = &CI->getCalledFunction()->getContext(); return CallOptimizer(CI->getCalledFunction(), CI, B); } /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*. Value *CastToCStr(Value *V, IRBuilder<> &B); /// EmitStrLen - Emit a call to the strlen function to the builder, for the /// specified pointer. Ptr is required to be some pointer type, and the /// return value has 'intptr_t' type. Value *EmitStrLen(Value *Ptr, IRBuilder<> &B); /// EmitStrChr - Emit a call to the strchr function to the builder, for the /// specified pointer and character. Ptr is required to be some pointer type, /// and the return value has 'i8*' type. Value *EmitStrChr(Value *Ptr, char C, IRBuilder<> &B); /// EmitMemCpy - Emit a call to the memcpy function to the builder. This /// always expects that the size has type 'intptr_t' and Dst/Src are pointers. Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len, unsigned Align, IRBuilder<> &B); /// EmitMemMove - Emit a call to the memmove function to the builder. This /// always expects that the size has type 'intptr_t' and Dst/Src are pointers. Value *EmitMemMove(Value *Dst, Value *Src, Value *Len, unsigned Align, IRBuilder<> &B); /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value. Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B); /// EmitMemCmp - Emit a call to the memcmp function. Value *EmitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B); /// EmitMemSet - Emit a call to the memset function Value *EmitMemSet(Value *Dst, Value *Val, Value *Len, IRBuilder<> &B); /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g. /// 'floor'). This function is known to take a single of type matching 'Op' /// and returns one value with the same type. If 'Op' is a long double, 'l' /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix. Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B, const AttrListPtr &Attrs); /// EmitPutChar - Emit a call to the putchar function. This assumes that Char /// is an integer. Value *EmitPutChar(Value *Char, IRBuilder<> &B); /// EmitPutS - Emit a call to the puts function. This assumes that Str is /// some pointer. void EmitPutS(Value *Str, IRBuilder<> &B); /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is /// an i32, and File is a pointer to FILE. void EmitFPutC(Value *Char, Value *File, IRBuilder<> &B); /// EmitFPutS - Emit a call to the puts function. Str is required to be a /// pointer and File is a pointer to FILE. void EmitFPutS(Value *Str, Value *File, IRBuilder<> &B); /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE. void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B); }; } // End anonymous namespace. /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*. Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder<> &B) { return B.CreateBitCast(V, Type::getInt8PtrTy(*Context), "cstr"); } /// EmitStrLen - Emit a call to the strlen function to the builder, for the /// specified pointer. This always returns an integer value of size intptr_t. Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder<> &B) { Module *M = Caller->getParent(); AttributeWithIndex AWI[2]; AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture); AWI[1] = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind); Constant *StrLen =M->getOrInsertFunction("strlen", AttrListPtr::get(AWI, 2), TD->getIntPtrType(*Context), Type::getInt8PtrTy(*Context), NULL); CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen"); if (const Function *F = dyn_cast(StrLen->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } /// EmitStrChr - Emit a call to the strchr function to the builder, for the /// specified pointer and character. Ptr is required to be some pointer type, /// and the return value has 'i8*' type. Value *LibCallOptimization::EmitStrChr(Value *Ptr, char C, IRBuilder<> &B) { Module *M = Caller->getParent(); AttributeWithIndex AWI = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind); const Type *I8Ptr = Type::getInt8PtrTy(*Context); const Type *I32Ty = Type::getInt32Ty(*Context); Constant *StrChr = M->getOrInsertFunction("strchr", AttrListPtr::get(&AWI, 1), I8Ptr, I8Ptr, I32Ty, NULL); CallInst *CI = B.CreateCall2(StrChr, CastToCStr(Ptr, B), ConstantInt::get(I32Ty, C), "strchr"); if (const Function *F = dyn_cast(StrChr->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } /// EmitMemCpy - Emit a call to the memcpy function to the builder. This always /// expects that the size has type 'intptr_t' and Dst/Src are pointers. Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len, unsigned Align, IRBuilder<> &B) { Module *M = Caller->getParent(); const Type *Ty = Len->getType(); Value *MemCpy = Intrinsic::getDeclaration(M, Intrinsic::memcpy, &Ty, 1); Dst = CastToCStr(Dst, B); Src = CastToCStr(Src, B); return B.CreateCall4(MemCpy, Dst, Src, Len, ConstantInt::get(Type::getInt32Ty(*Context), Align)); } /// EmitMemMove - Emit a call to the memmove function to the builder. This /// always expects that the size has type 'intptr_t' and Dst/Src are pointers. Value *LibCallOptimization::EmitMemMove(Value *Dst, Value *Src, Value *Len, unsigned Align, IRBuilder<> &B) { Module *M = Caller->getParent(); const Type *Ty = TD->getIntPtrType(*Context); Value *MemMove = Intrinsic::getDeclaration(M, Intrinsic::memmove, &Ty, 1); Dst = CastToCStr(Dst, B); Src = CastToCStr(Src, B); Value *A = ConstantInt::get(Type::getInt32Ty(*Context), Align); return B.CreateCall4(MemMove, Dst, Src, Len, A); } /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value. Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B) { Module *M = Caller->getParent(); AttributeWithIndex AWI; AWI = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind); Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(&AWI, 1), Type::getInt8PtrTy(*Context), Type::getInt8PtrTy(*Context), Type::getInt32Ty(*Context), TD->getIntPtrType(*Context), NULL); CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr"); if (const Function *F = dyn_cast(MemChr->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } /// EmitMemCmp - Emit a call to the memcmp function. Value *LibCallOptimization::EmitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B) { Module *M = Caller->getParent(); AttributeWithIndex AWI[3]; AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture); AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture); AWI[2] = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind); Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI, 3), Type::getInt32Ty(*Context), Type::getInt8PtrTy(*Context), Type::getInt8PtrTy(*Context), TD->getIntPtrType(*Context), NULL); CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B), Len, "memcmp"); if (const Function *F = dyn_cast(MemCmp->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } /// EmitMemSet - Emit a call to the memset function Value *LibCallOptimization::EmitMemSet(Value *Dst, Value *Val, Value *Len, IRBuilder<> &B) { Module *M = Caller->getParent(); Intrinsic::ID IID = Intrinsic::memset; const Type *Tys[1]; Tys[0] = Len->getType(); Value *MemSet = Intrinsic::getDeclaration(M, IID, Tys, 1); Value *Align = ConstantInt::get(Type::getInt32Ty(*Context), 1); return B.CreateCall4(MemSet, CastToCStr(Dst, B), Val, Len, Align); } /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g. /// 'floor'). This function is known to take a single of type matching 'Op' and /// returns one value with the same type. If 'Op' is a long double, 'l' is /// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix. Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B, const AttrListPtr &Attrs) { char NameBuffer[20]; if (!Op->getType()->isDoubleTy()) { // If we need to add a suffix, copy into NameBuffer. unsigned NameLen = strlen(Name); assert(NameLen < sizeof(NameBuffer)-2); memcpy(NameBuffer, Name, NameLen); if (Op->getType()->isFloatTy()) NameBuffer[NameLen] = 'f'; // floorf else NameBuffer[NameLen] = 'l'; // floorl NameBuffer[NameLen+1] = 0; Name = NameBuffer; } Module *M = Caller->getParent(); Value *Callee = M->getOrInsertFunction(Name, Op->getType(), Op->getType(), NULL); CallInst *CI = B.CreateCall(Callee, Op, Name); CI->setAttributes(Attrs); if (const Function *F = dyn_cast(Callee->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } /// EmitPutChar - Emit a call to the putchar function. This assumes that Char /// is an integer. Value *LibCallOptimization::EmitPutChar(Value *Char, IRBuilder<> &B) { Module *M = Caller->getParent(); Value *PutChar = M->getOrInsertFunction("putchar", Type::getInt32Ty(*Context), Type::getInt32Ty(*Context), NULL); CallInst *CI = B.CreateCall(PutChar, B.CreateIntCast(Char, Type::getInt32Ty(*Context), /*isSigned*/true, "chari"), "putchar"); if (const Function *F = dyn_cast(PutChar->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } /// EmitPutS - Emit a call to the puts function. This assumes that Str is /// some pointer. void LibCallOptimization::EmitPutS(Value *Str, IRBuilder<> &B) { Module *M = Caller->getParent(); AttributeWithIndex AWI[2]; AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture); AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind); Value *PutS = M->getOrInsertFunction("puts", AttrListPtr::get(AWI, 2), Type::getInt32Ty(*Context), Type::getInt8PtrTy(*Context), NULL); CallInst *CI = B.CreateCall(PutS, CastToCStr(Str, B), "puts"); if (const Function *F = dyn_cast(PutS->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); } /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is /// an integer and File is a pointer to FILE. void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B) { Module *M = Caller->getParent(); AttributeWithIndex AWI[2]; AWI[0] = AttributeWithIndex::get(2, Attribute::NoCapture); AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind); Constant *F; if (isa(File->getType())) F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI, 2), Type::getInt32Ty(*Context), Type::getInt32Ty(*Context), File->getType(), NULL); else F = M->getOrInsertFunction("fputc", Type::getInt32Ty(*Context), Type::getInt32Ty(*Context), File->getType(), NULL); Char = B.CreateIntCast(Char, Type::getInt32Ty(*Context), /*isSigned*/true, "chari"); CallInst *CI = B.CreateCall2(F, Char, File, "fputc"); if (const Function *Fn = dyn_cast(F->stripPointerCasts())) CI->setCallingConv(Fn->getCallingConv()); } /// EmitFPutS - Emit a call to the puts function. Str is required to be a /// pointer and File is a pointer to FILE. void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B) { Module *M = Caller->getParent(); AttributeWithIndex AWI[3]; AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture); AWI[1] = AttributeWithIndex::get(2, Attribute::NoCapture); AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind); Constant *F; if (isa(File->getType())) F = M->getOrInsertFunction("fputs", AttrListPtr::get(AWI, 3), Type::getInt32Ty(*Context), Type::getInt8PtrTy(*Context), File->getType(), NULL); else F = M->getOrInsertFunction("fputs", Type::getInt32Ty(*Context), Type::getInt8PtrTy(*Context), File->getType(), NULL); CallInst *CI = B.CreateCall2(F, CastToCStr(Str, B), File, "fputs"); if (const Function *Fn = dyn_cast(F->stripPointerCasts())) CI->setCallingConv(Fn->getCallingConv()); } /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE. void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B) { Module *M = Caller->getParent(); AttributeWithIndex AWI[3]; AWI[0] = AttributeWithIndex::get(1, Attribute::NoCapture); AWI[1] = AttributeWithIndex::get(4, Attribute::NoCapture); AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind); Constant *F; if (isa(File->getType())) F = M->getOrInsertFunction("fwrite", AttrListPtr::get(AWI, 3), TD->getIntPtrType(*Context), Type::getInt8PtrTy(*Context), TD->getIntPtrType(*Context), TD->getIntPtrType(*Context), File->getType(), NULL); else F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(*Context), Type::getInt8PtrTy(*Context), TD->getIntPtrType(*Context), TD->getIntPtrType(*Context), File->getType(), NULL); CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size, ConstantInt::get(TD->getIntPtrType(*Context), 1), File); if (const Function *Fn = dyn_cast(F->stripPointerCasts())) CI->setCallingConv(Fn->getCallingConv()); } //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// /// GetStringLengthH - If we can compute the length of the string pointed to by /// the specified pointer, return 'len+1'. If we can't, return 0. static uint64_t GetStringLengthH(Value *V, SmallPtrSet &PHIs) { // Look through noop bitcast instructions. if (BitCastInst *BCI = dyn_cast(V)) return GetStringLengthH(BCI->getOperand(0), PHIs); // If this is a PHI node, there are two cases: either we have already seen it // or we haven't. if (PHINode *PN = dyn_cast(V)) { if (!PHIs.insert(PN)) return ~0ULL; // already in the set. // If it was new, see if all the input strings are the same length. uint64_t LenSoFar = ~0ULL; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); if (Len == 0) return 0; // Unknown length -> unknown. if (Len == ~0ULL) continue; if (Len != LenSoFar && LenSoFar != ~0ULL) return 0; // Disagree -> unknown. LenSoFar = Len; } // Success, all agree. return LenSoFar; } // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) if (SelectInst *SI = dyn_cast(V)) { uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); if (Len1 == 0) return 0; uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); if (Len2 == 0) return 0; if (Len1 == ~0ULL) return Len2; if (Len2 == ~0ULL) return Len1; if (Len1 != Len2) return 0; return Len1; } // If the value is not a GEP instruction nor a constant expression with a // GEP instruction, then return unknown. User *GEP = 0; if (GetElementPtrInst *GEPI = dyn_cast(V)) { GEP = GEPI; } else if (ConstantExpr *CE = dyn_cast(V)) { if (CE->getOpcode() != Instruction::GetElementPtr) return 0; GEP = CE; } else { return 0; } // Make sure the GEP has exactly three arguments. if (GEP->getNumOperands() != 3) return 0; // Check to make sure that the first operand of the GEP is an integer and // has value 0 so that we are sure we're indexing into the initializer. if (ConstantInt *Idx = dyn_cast(GEP->getOperand(1))) { if (!Idx->isZero()) return 0; } else return 0; // If the second index isn't a ConstantInt, then this is a variable index // into the array. If this occurs, we can't say anything meaningful about // the string. uint64_t StartIdx = 0; if (ConstantInt *CI = dyn_cast(GEP->getOperand(2))) StartIdx = CI->getZExtValue(); else return 0; // The GEP instruction, constant or instruction, must reference a global // variable that is a constant and is initialized. The referenced constant // initializer is the array that we'll use for optimization. GlobalVariable* GV = dyn_cast(GEP->getOperand(0)); if (!GV || !GV->isConstant() || !GV->hasInitializer() || GV->mayBeOverridden()) return 0; Constant *GlobalInit = GV->getInitializer(); // Handle the ConstantAggregateZero case, which is a degenerate case. The // initializer is constant zero so the length of the string must be zero. if (isa(GlobalInit)) return 1; // Len = 0 offset by 1. // Must be a Constant Array ConstantArray *Array = dyn_cast(GlobalInit); if (!Array || Array->getType()->getElementType() != Type::getInt8Ty(V->getContext())) return false; // Get the number of elements in the array uint64_t NumElts = Array->getType()->getNumElements(); // Traverse the constant array from StartIdx (derived above) which is // the place the GEP refers to in the array. for (unsigned i = StartIdx; i != NumElts; ++i) { Constant *Elt = Array->getOperand(i); ConstantInt *CI = dyn_cast(Elt); if (!CI) // This array isn't suitable, non-int initializer. return 0; if (CI->isZero()) return i-StartIdx+1; // We found end of string, success! } return 0; // The array isn't null terminated, conservatively return 'unknown'. } /// GetStringLength - If we can compute the length of the string pointed to by /// the specified pointer, return 'len+1'. If we can't, return 0. static uint64_t GetStringLength(Value *V) { if (!isa(V->getType())) return 0; SmallPtrSet PHIs; uint64_t Len = GetStringLengthH(V, PHIs); // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return // an empty string as a length. return Len == ~0ULL ? 1 : Len; } /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the /// value is equal or not-equal to zero. static bool IsOnlyUsedInZeroEqualityComparison(Value *V) { for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) { if (ICmpInst *IC = dyn_cast(*UI)) if (IC->isEquality()) if (Constant *C = dyn_cast(IC->getOperand(1))) if (C->isNullValue()) continue; // Unknown instruction. return false; } return true; } //===----------------------------------------------------------------------===// // String and Memory LibCall Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'strcat' Optimizations namespace { struct StrCatOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strcat" function prototype. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != Type::getInt8PtrTy(*Context) || FT->getParamType(0) != FT->getReturnType() || FT->getParamType(1) != FT->getReturnType()) return 0; // Extract some information from the instruction Value *Dst = CI->getOperand(1); Value *Src = CI->getOperand(2); // See if we can get the length of the input string. uint64_t Len = GetStringLength(Src); if (Len == 0) return 0; --Len; // Unbias length. // Handle the simple, do-nothing case: strcat(x, "") -> x if (Len == 0) return Dst; // These optimizations require TargetData. if (!TD) return 0; EmitStrLenMemCpy(Src, Dst, Len, B); return Dst; } void EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) { // We need to find the end of the destination string. That's where the // memory is to be moved to. We just generate a call to strlen. Value *DstLen = EmitStrLen(Dst, B); // Now that we have the destination's length, we must index into the // destination's pointer to get the actual memcpy destination (end of // the string .. we're concatenating). Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); // We have enough information to now generate the memcpy call to do the // concatenation for us. Make a memcpy to copy the nul byte with align = 1. EmitMemCpy(CpyDst, Src, ConstantInt::get(TD->getIntPtrType(*Context), Len+1), 1, B); } }; //===---------------------------------------===// // 'strncat' Optimizations struct StrNCatOpt : public StrCatOpt { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strncat" function prototype. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != Type::getInt8PtrTy(*Context) || FT->getParamType(0) != FT->getReturnType() || FT->getParamType(1) != FT->getReturnType() || !isa(FT->getParamType(2))) return 0; // Extract some information from the instruction Value *Dst = CI->getOperand(1); Value *Src = CI->getOperand(2); uint64_t Len; // We don't do anything if length is not constant if (ConstantInt *LengthArg = dyn_cast(CI->getOperand(3))) Len = LengthArg->getZExtValue(); else return 0; // See if we can get the length of the input string. uint64_t SrcLen = GetStringLength(Src); if (SrcLen == 0) return 0; --SrcLen; // Unbias length. // Handle the simple, do-nothing cases: // strncat(x, "", c) -> x // strncat(x, c, 0) -> x if (SrcLen == 0 || Len == 0) return Dst; // These optimizations require TargetData. if (!TD) return 0; // We don't optimize this case if (Len < SrcLen) return 0; // strncat(x, s, c) -> strcat(x, s) // s is constant so the strcat can be optimized further EmitStrLenMemCpy(Src, Dst, SrcLen, B); return Dst; } }; //===---------------------------------------===// // 'strchr' Optimizations struct StrChrOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strchr" function prototype. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != Type::getInt8PtrTy(*Context) || FT->getParamType(0) != FT->getReturnType()) return 0; Value *SrcStr = CI->getOperand(1); // If the second operand is non-constant, see if we can compute the length // of the input string and turn this into memchr. ConstantInt *CharC = dyn_cast(CI->getOperand(2)); if (CharC == 0) { // These optimizations require TargetData. if (!TD) return 0; uint64_t Len = GetStringLength(SrcStr); if (Len == 0 || FT->getParamType(1) != Type::getInt32Ty(*Context)) // memchr needs i32. return 0; return EmitMemChr(SrcStr, CI->getOperand(2), // include nul. ConstantInt::get(TD->getIntPtrType(*Context), Len), B); } // Otherwise, the character is a constant, see if the first argument is // a string literal. If so, we can constant fold. std::string Str; if (!GetConstantStringInfo(SrcStr, Str)) return 0; // strchr can find the nul character. Str += '\0'; char CharValue = CharC->getSExtValue(); // Compute the offset. uint64_t i = 0; while (1) { if (i == Str.size()) // Didn't find the char. strchr returns null. return Constant::getNullValue(CI->getType()); // Did we find our match? if (Str[i] == CharValue) break; ++i; } // strchr(s+n,c) -> gep(s+n+i,c) Value *Idx = ConstantInt::get(Type::getInt64Ty(*Context), i); return B.CreateGEP(SrcStr, Idx, "strchr"); } }; //===---------------------------------------===// // 'strcmp' Optimizations struct StrCmpOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strcmp" function prototype. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != Type::getInt32Ty(*Context) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(*Context)) return 0; Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2); if (Str1P == Str2P) // strcmp(x,x) -> 0 return ConstantInt::get(CI->getType(), 0); std::string Str1, Str2; bool HasStr1 = GetConstantStringInfo(Str1P, Str1); bool HasStr2 = GetConstantStringInfo(Str2P, Str2); if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()); if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); // strcmp(x, y) -> cnst (if both x and y are constant strings) if (HasStr1 && HasStr2) return ConstantInt::get(CI->getType(), strcmp(Str1.c_str(),Str2.c_str())); // strcmp(P, "x") -> memcmp(P, "x", 2) uint64_t Len1 = GetStringLength(Str1P); uint64_t Len2 = GetStringLength(Str2P); if (Len1 && Len2) { // These optimizations require TargetData. if (!TD) return 0; return EmitMemCmp(Str1P, Str2P, ConstantInt::get(TD->getIntPtrType(*Context), std::min(Len1, Len2)), B); } return 0; } }; //===---------------------------------------===// // 'strncmp' Optimizations struct StrNCmpOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strncmp" function prototype. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != Type::getInt32Ty(*Context) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(*Context) || !isa(FT->getParamType(2))) return 0; Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2); if (Str1P == Str2P) // strncmp(x,x,n) -> 0 return ConstantInt::get(CI->getType(), 0); // Get the length argument if it is constant. uint64_t Length; if (ConstantInt *LengthArg = dyn_cast(CI->getOperand(3))) Length = LengthArg->getZExtValue(); else return 0; if (Length == 0) // strncmp(x,y,0) -> 0 return ConstantInt::get(CI->getType(), 0); std::string Str1, Str2; bool HasStr1 = GetConstantStringInfo(Str1P, Str1); bool HasStr2 = GetConstantStringInfo(Str2P, Str2); if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()); if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); // strncmp(x, y) -> cnst (if both x and y are constant strings) if (HasStr1 && HasStr2) return ConstantInt::get(CI->getType(), strncmp(Str1.c_str(), Str2.c_str(), Length)); return 0; } }; //===---------------------------------------===// // 'strcpy' Optimizations struct StrCpyOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strcpy" function prototype. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(*Context)) return 0; Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2); if (Dst == Src) // strcpy(x,x) -> x return Src; // These optimizations require TargetData. if (!TD) return 0; // See if we can get the length of the input string. uint64_t Len = GetStringLength(Src); if (Len == 0) return 0; // We have enough information to now generate the memcpy call to do the // concatenation for us. Make a memcpy to copy the nul byte with align = 1. EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(*Context), Len), 1, B); return Dst; } }; //===---------------------------------------===// // 'strncpy' Optimizations struct StrNCpyOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(*Context) || !isa(FT->getParamType(2))) return 0; Value *Dst = CI->getOperand(1); Value *Src = CI->getOperand(2); Value *LenOp = CI->getOperand(3); // See if we can get the length of the input string. uint64_t SrcLen = GetStringLength(Src); if (SrcLen == 0) return 0; --SrcLen; if (SrcLen == 0) { // strncpy(x, "", y) -> memset(x, '\0', y, 1) EmitMemSet(Dst, ConstantInt::get(Type::getInt8Ty(*Context), '\0'), LenOp, B); return Dst; } uint64_t Len; if (ConstantInt *LengthArg = dyn_cast(LenOp)) Len = LengthArg->getZExtValue(); else return 0; if (Len == 0) return Dst; // strncpy(x, y, 0) -> x // These optimizations require TargetData. if (!TD) return 0; // Let strncpy handle the zero padding if (Len > SrcLen+1) return 0; // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(*Context), Len), 1, B); return Dst; } }; //===---------------------------------------===// // 'strlen' Optimizations struct StrLenOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 1 || FT->getParamType(0) != Type::getInt8PtrTy(*Context) || !isa(FT->getReturnType())) return 0; Value *Src = CI->getOperand(1); // Constant folding: strlen("xyz") -> 3 if (uint64_t Len = GetStringLength(Src)) return ConstantInt::get(CI->getType(), Len-1); // Handle strlen(p) != 0. if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0; // strlen(x) != 0 --> *x != 0 // strlen(x) == 0 --> *x == 0 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); } }; //===---------------------------------------===// // 'strto*' Optimizations. This handles strtol, strtod, strtof, strtoul, etc. struct StrToOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1))) return 0; Value *EndPtr = CI->getOperand(2); if (isa(EndPtr)) { CI->setOnlyReadsMemory(); CI->addAttribute(1, Attribute::NoCapture); } return 0; } }; //===---------------------------------------===// // 'strstr' Optimizations struct StrStrOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || !isa(FT->getReturnType())) return 0; // fold strstr(x, x) -> x. if (CI->getOperand(1) == CI->getOperand(2)) return B.CreateBitCast(CI->getOperand(1), CI->getType()); // See if either input string is a constant string. std::string SearchStr, ToFindStr; bool HasStr1 = GetConstantStringInfo(CI->getOperand(1), SearchStr); bool HasStr2 = GetConstantStringInfo(CI->getOperand(2), ToFindStr); // fold strstr(x, "") -> x. if (HasStr2 && ToFindStr.empty()) return B.CreateBitCast(CI->getOperand(1), CI->getType()); // If both strings are known, constant fold it. if (HasStr1 && HasStr2) { std::string::size_type Offset = SearchStr.find(ToFindStr); if (Offset == std::string::npos) // strstr("foo", "bar") -> null return Constant::getNullValue(CI->getType()); // strstr("abcd", "bc") -> gep((char*)"abcd", 1) Value *Result = CastToCStr(CI->getOperand(1), B); Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); return B.CreateBitCast(Result, CI->getType()); } // fold strstr(x, "y") -> strchr(x, 'y'). if (HasStr2 && ToFindStr.size() == 1) return B.CreateBitCast(EmitStrChr(CI->getOperand(1), ToFindStr[0], B), CI->getType()); return 0; } }; //===---------------------------------------===// // 'memcmp' Optimizations struct MemCmpOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || FT->getReturnType() != Type::getInt32Ty(*Context)) return 0; Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2); if (LHS == RHS) // memcmp(s,s,x) -> 0 return Constant::getNullValue(CI->getType()); // Make sure we have a constant length. ConstantInt *LenC = dyn_cast(CI->getOperand(3)); if (!LenC) return 0; uint64_t Len = LenC->getZExtValue(); if (Len == 0) // memcmp(s1,s2,0) -> 0 return Constant::getNullValue(CI->getType()); if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv"); Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv"); return B.CreateSExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType()); } // memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS) != 0 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS) != 0 if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) { const Type *PTy = PointerType::getUnqual(Len == 2 ? Type::getInt16Ty(*Context) : Type::getInt32Ty(*Context)); LHS = B.CreateBitCast(LHS, PTy, "tmp"); RHS = B.CreateBitCast(RHS, PTy, "tmp"); LoadInst *LHSV = B.CreateLoad(LHS, "lhsv"); LoadInst *RHSV = B.CreateLoad(RHS, "rhsv"); LHSV->setAlignment(1); RHSV->setAlignment(1); // Unaligned loads. return B.CreateZExt(B.CreateXor(LHSV, RHSV, "shortdiff"), CI->getType()); } // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) std::string LHSStr, RHSStr; if (GetConstantStringInfo(LHS, LHSStr) && GetConstantStringInfo(RHS, RHSStr)) { // Make sure we're not reading out-of-bounds memory. if (Len > LHSStr.length() || Len > RHSStr.length()) return 0; uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len); return ConstantInt::get(CI->getType(), Ret); } return 0; } }; //===---------------------------------------===// // 'memcpy' Optimizations struct MemCpyOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || FT->getParamType(2) != TD->getIntPtrType(*Context)) return 0; // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B); return CI->getOperand(1); } }; //===---------------------------------------===// // 'memmove' Optimizations struct MemMoveOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || FT->getParamType(2) != TD->getIntPtrType(*Context)) return 0; // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) EmitMemMove(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B); return CI->getOperand(1); } }; //===---------------------------------------===// // 'memset' Optimizations struct MemSetOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || FT->getParamType(2) != TD->getIntPtrType(*Context)) return 0; // memset(p, v, n) -> llvm.memset(p, v, n, 1) Value *Val = B.CreateIntCast(CI->getOperand(2), Type::getInt8Ty(*Context), false); EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B); return CI->getOperand(1); } }; //===----------------------------------------------------------------------===// // Object Size Checking Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'object size' namespace { struct SizeOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // TODO: We can do more with this, but delaying to here should be no change // in behavior. ConstantInt *Const = dyn_cast(CI->getOperand(2)); if (!Const) return 0; const Type *Ty = Callee->getFunctionType()->getReturnType(); if (Const->getZExtValue() == 0) return Constant::getAllOnesValue(Ty); else return ConstantInt::get(Ty, 0); } }; } //===---------------------------------------===// // 'memcpy_chk' Optimizations struct MemCpyChkOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || !isa(FT->getParamType(3)) || FT->getParamType(2) != TD->getIntPtrType(*Context)) return 0; ConstantInt *SizeCI = dyn_cast(CI->getOperand(4)); if (!SizeCI) return 0; if (SizeCI->isAllOnesValue()) { EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B); return CI->getOperand(1); } return 0; } }; //===---------------------------------------===// // 'memset_chk' Optimizations struct MemSetChkOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || !isa(FT->getParamType(3)) || FT->getParamType(2) != TD->getIntPtrType(*Context)) return 0; ConstantInt *SizeCI = dyn_cast(CI->getOperand(4)); if (!SizeCI) return 0; if (SizeCI->isAllOnesValue()) { Value *Val = B.CreateIntCast(CI->getOperand(2), Type::getInt8Ty(*Context), false); EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B); return CI->getOperand(1); } return 0; } }; //===---------------------------------------===// // 'memmove_chk' Optimizations struct MemMoveChkOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || !isa(FT->getParamType(3)) || FT->getParamType(2) != TD->getIntPtrType(*Context)) return 0; ConstantInt *SizeCI = dyn_cast(CI->getOperand(4)); if (!SizeCI) return 0; if (SizeCI->isAllOnesValue()) { EmitMemMove(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B); return CI->getOperand(1); } return 0; } }; //===----------------------------------------------------------------------===// // Math Library Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'pow*' Optimizations struct PowOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 2 arguments of the same FP type, which match the // result type. if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || !FT->getParamType(0)->isFloatingPoint()) return 0; Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2); if (ConstantFP *Op1C = dyn_cast(Op1)) { if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0 return Op1C; if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x) return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); } ConstantFP *Op2C = dyn_cast(Op2); if (Op2C == 0) return 0; if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 return ConstantFP::get(CI->getType(), 1.0); if (Op2C->isExactlyValue(0.5)) { // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). // This is faster than calling pow, and still handles negative zero // and negative infinite correctly. // TODO: In fast-math mode, this could be just sqrt(x). // TODO: In finite-only mode, this could be just fabs(sqrt(x)). Value *Inf = ConstantFP::getInfinity(CI->getType()); Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf, "tmp"); Value *Sel = B.CreateSelect(FCmp, Inf, FAbs, "tmp"); return Sel; } if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x return Op1; if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x return B.CreateFMul(Op1, Op1, "pow2"); if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); return 0; } }; //===---------------------------------------===// // 'exp2' Optimizations struct Exp2Opt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 1 argument of FP type, which matches the // result type. if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isFloatingPoint()) return 0; Value *Op = CI->getOperand(1); // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 Value *LdExpArg = 0; if (SIToFPInst *OpC = dyn_cast(Op)) { if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) LdExpArg = B.CreateSExt(OpC->getOperand(0), Type::getInt32Ty(*Context), "tmp"); } else if (UIToFPInst *OpC = dyn_cast(Op)) { if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) LdExpArg = B.CreateZExt(OpC->getOperand(0), Type::getInt32Ty(*Context), "tmp"); } if (LdExpArg) { const char *Name; if (Op->getType()->isFloatTy()) Name = "ldexpf"; else if (Op->getType()->isDoubleTy()) Name = "ldexp"; else Name = "ldexpl"; Constant *One = ConstantFP::get(*Context, APFloat(1.0f)); if (!Op->getType()->isFloatTy()) One = ConstantExpr::getFPExtend(One, Op->getType()); Module *M = Caller->getParent(); Value *Callee = M->getOrInsertFunction(Name, Op->getType(), Op->getType(), Type::getInt32Ty(*Context),NULL); CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); if (const Function *F = dyn_cast(Callee->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } return 0; } }; //===---------------------------------------===// // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' struct UnaryDoubleFPOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || !FT->getParamType(0)->isDoubleTy()) return 0; // If this is something like 'floor((double)floatval)', convert to floorf. FPExtInst *Cast = dyn_cast(CI->getOperand(1)); if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy()) return 0; // floor((double)floatval) -> (double)floorf(floatval) Value *V = Cast->getOperand(0); V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B, Callee->getAttributes()); return B.CreateFPExt(V, Type::getDoubleTy(*Context)); } }; //===----------------------------------------------------------------------===// // Integer Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'ffs*' Optimizations struct FFSOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 2 arguments of the same FP type, which match the // result type. if (FT->getNumParams() != 1 || FT->getReturnType() != Type::getInt32Ty(*Context) || !isa(FT->getParamType(0))) return 0; Value *Op = CI->getOperand(1); // Constant fold. if (ConstantInt *CI = dyn_cast(Op)) { if (CI->getValue() == 0) // ffs(0) -> 0. return Constant::getNullValue(CI->getType()); return ConstantInt::get(Type::getInt32Ty(*Context), // ffs(c) -> cttz(c)+1 CI->getValue().countTrailingZeros()+1); } // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 const Type *ArgType = Op->getType(); Value *F = Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, &ArgType, 1); Value *V = B.CreateCall(F, Op, "cttz"); V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1), "tmp"); V = B.CreateIntCast(V, Type::getInt32Ty(*Context), false, "tmp"); Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp"); return B.CreateSelect(Cond, V, ConstantInt::get(Type::getInt32Ty(*Context), 0)); } }; //===---------------------------------------===// // 'isdigit' Optimizations struct IsDigitOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); // We require integer(i32) if (FT->getNumParams() != 1 || !isa(FT->getReturnType()) || FT->getParamType(0) != Type::getInt32Ty(*Context)) return 0; // isdigit(c) -> (c-'0') getOperand(1); Op = B.CreateSub(Op, ConstantInt::get(Type::getInt32Ty(*Context), '0'), "isdigittmp"); Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 10), "isdigit"); return B.CreateZExt(Op, CI->getType()); } }; //===---------------------------------------===// // 'isascii' Optimizations struct IsAsciiOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); // We require integer(i32) if (FT->getNumParams() != 1 || !isa(FT->getReturnType()) || FT->getParamType(0) != Type::getInt32Ty(*Context)) return 0; // isascii(c) -> c getOperand(1); Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 128), "isascii"); return B.CreateZExt(Op, CI->getType()); } }; //===---------------------------------------===// // 'abs', 'labs', 'llabs' Optimizations struct AbsOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); // We require integer(integer) where the types agree. if (FT->getNumParams() != 1 || !isa(FT->getReturnType()) || FT->getParamType(0) != FT->getReturnType()) return 0; // abs(x) -> x >s -1 ? x : -x Value *Op = CI->getOperand(1); Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); Value *Neg = B.CreateNeg(Op, "neg"); return B.CreateSelect(Pos, Op, Neg); } }; //===---------------------------------------===// // 'toascii' Optimizations struct ToAsciiOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { const FunctionType *FT = Callee->getFunctionType(); // We require i32(i32) if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != Type::getInt32Ty(*Context)) return 0; // isascii(c) -> c & 0x7f return B.CreateAnd(CI->getOperand(1), ConstantInt::get(CI->getType(),0x7F)); } }; //===----------------------------------------------------------------------===// // Formatting and IO Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'printf' Optimizations struct PrintFOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require one fixed pointer argument and an integer/void result. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() < 1 || !isa(FT->getParamType(0)) || !(isa(FT->getReturnType()) || FT->getReturnType()->isVoidTy())) return 0; // Check for a fixed format string. std::string FormatStr; if (!GetConstantStringInfo(CI->getOperand(1), FormatStr)) return 0; // Empty format string -> noop. if (FormatStr.empty()) // Tolerate printf's declared void. return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 0); // printf("x") -> putchar('x'), even for '%'. Return the result of putchar // in case there is an error writing to stdout. if (FormatStr.size() == 1) { Value *Res = EmitPutChar(ConstantInt::get(Type::getInt32Ty(*Context), FormatStr[0]), B); if (CI->use_empty()) return CI; return B.CreateIntCast(Res, CI->getType(), true); } // printf("foo\n") --> puts("foo") if (FormatStr[FormatStr.size()-1] == '\n' && FormatStr.find('%') == std::string::npos) { // no format characters. // Create a string literal with no \n on it. We expect the constant merge // pass to be run after this pass, to merge duplicate strings. FormatStr.erase(FormatStr.end()-1); Constant *C = ConstantArray::get(*Context, FormatStr, true); C = new GlobalVariable(*Callee->getParent(), C->getType(), true, GlobalVariable::InternalLinkage, C, "str"); EmitPutS(C, B); return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), FormatStr.size()+1); } // Optimize specific format strings. // printf("%c", chr) --> putchar(*(i8*)dst) if (FormatStr == "%c" && CI->getNumOperands() > 2 && isa(CI->getOperand(2)->getType())) { Value *Res = EmitPutChar(CI->getOperand(2), B); if (CI->use_empty()) return CI; return B.CreateIntCast(Res, CI->getType(), true); } // printf("%s\n", str) --> puts(str) if (FormatStr == "%s\n" && CI->getNumOperands() > 2 && isa(CI->getOperand(2)->getType()) && CI->use_empty()) { EmitPutS(CI->getOperand(2), B); return CI; } return 0; } }; //===---------------------------------------===// // 'sprintf' Optimizations struct SPrintFOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require two fixed pointer arguments and an integer result. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || !isa(FT->getReturnType())) return 0; // Check for a fixed format string. std::string FormatStr; if (!GetConstantStringInfo(CI->getOperand(2), FormatStr)) return 0; // If we just have a format string (nothing else crazy) transform it. if (CI->getNumOperands() == 3) { // Make sure there's no % in the constant array. We could try to handle // %% -> % in the future if we cared. for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') return 0; // we found a format specifier, bail out. // These optimizations require TargetData. if (!TD) return 0; // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte. ConstantInt::get(TD->getIntPtrType(*Context), FormatStr.size()+1),1,B); return ConstantInt::get(CI->getType(), FormatStr.size()); } // The remaining optimizations require the format string to be "%s" or "%c" // and have an extra operand. if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4) return 0; // Decode the second character of the format string. if (FormatStr[1] == 'c') { // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 if (!isa(CI->getOperand(3)->getType())) return 0; Value *V = B.CreateTrunc(CI->getOperand(3), Type::getInt8Ty(*Context), "char"); Value *Ptr = CastToCStr(CI->getOperand(1), B); B.CreateStore(V, Ptr); Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::getInt32Ty(*Context), 1), "nul"); B.CreateStore(Constant::getNullValue(Type::getInt8Ty(*Context)), Ptr); return ConstantInt::get(CI->getType(), 1); } if (FormatStr[1] == 's') { // These optimizations require TargetData. if (!TD) return 0; // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) if (!isa(CI->getOperand(3)->getType())) return 0; Value *Len = EmitStrLen(CI->getOperand(3), B); Value *IncLen = B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B); // The sprintf result is the unincremented number of bytes in the string. return B.CreateIntCast(Len, CI->getType(), false); } return 0; } }; //===---------------------------------------===// // 'fwrite' Optimizations struct FWriteOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require a pointer, an integer, an integer, a pointer, returning integer. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 4 || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || !isa(FT->getParamType(2)) || !isa(FT->getParamType(3)) || !isa(FT->getReturnType())) return 0; // Get the element size and count. ConstantInt *SizeC = dyn_cast(CI->getOperand(2)); ConstantInt *CountC = dyn_cast(CI->getOperand(3)); if (!SizeC || !CountC) return 0; uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue(); // If this is writing zero records, remove the call (it's a noop). if (Bytes == 0) return ConstantInt::get(CI->getType(), 0); // If this is writing one byte, turn it into fputc. if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F) Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char"); EmitFPutC(Char, CI->getOperand(4), B); return ConstantInt::get(CI->getType(), 1); } return 0; } }; //===---------------------------------------===// // 'fputs' Optimizations struct FPutsOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; // Require two pointers. Also, we can't optimize if return value is used. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || !CI->use_empty()) return 0; // fputs(s,F) --> fwrite(s,1,strlen(s),F) uint64_t Len = GetStringLength(CI->getOperand(1)); if (!Len) return 0; EmitFWrite(CI->getOperand(1), ConstantInt::get(TD->getIntPtrType(*Context), Len-1), CI->getOperand(2), B); return CI; // Known to have no uses (see above). } }; //===---------------------------------------===// // 'fprintf' Optimizations struct FPrintFOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require two fixed paramters as pointers and integer result. const FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !isa(FT->getParamType(0)) || !isa(FT->getParamType(1)) || !isa(FT->getReturnType())) return 0; // All the optimizations depend on the format string. std::string FormatStr; if (!GetConstantStringInfo(CI->getOperand(2), FormatStr)) return 0; // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) if (CI->getNumOperands() == 3) { for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') // Could handle %% -> % if we cared. return 0; // We found a format specifier. // These optimizations require TargetData. if (!TD) return 0; EmitFWrite(CI->getOperand(2), ConstantInt::get(TD->getIntPtrType(*Context), FormatStr.size()), CI->getOperand(1), B); return ConstantInt::get(CI->getType(), FormatStr.size()); } // The remaining optimizations require the format string to be "%s" or "%c" // and have an extra operand. if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4) return 0; // Decode the second character of the format string. if (FormatStr[1] == 'c') { // fprintf(F, "%c", chr) --> *(i8*)dst = chr if (!isa(CI->getOperand(3)->getType())) return 0; EmitFPutC(CI->getOperand(3), CI->getOperand(1), B); return ConstantInt::get(CI->getType(), 1); } if (FormatStr[1] == 's') { // fprintf(F, "%s", str) -> fputs(str, F) if (!isa(CI->getOperand(3)->getType()) || !CI->use_empty()) return 0; EmitFPutS(CI->getOperand(3), CI->getOperand(1), B); return CI; } return 0; } }; } // end anonymous namespace. //===----------------------------------------------------------------------===// // SimplifyLibCalls Pass Implementation //===----------------------------------------------------------------------===// namespace { /// This pass optimizes well known library functions from libc and libm. /// class SimplifyLibCalls : public FunctionPass { StringMap Optimizations; // String and Memory LibCall Optimizations StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrCmpOpt StrCmp; StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrNCpyOpt StrNCpy; StrLenOpt StrLen; StrToOpt StrTo; StrStrOpt StrStr; MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet; // Math Library Optimizations PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP; // Integer Optimizations FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii; ToAsciiOpt ToAscii; // Formatting and IO Optimizations SPrintFOpt SPrintF; PrintFOpt PrintF; FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF; // Object Size Checking SizeOpt ObjectSize; MemCpyChkOpt MemCpyChk; MemSetChkOpt MemSetChk; MemMoveChkOpt MemMoveChk; bool Modified; // This is only used by doInitialization. public: static char ID; // Pass identification SimplifyLibCalls() : FunctionPass(&ID) {} void InitOptimizations(); bool runOnFunction(Function &F); void setDoesNotAccessMemory(Function &F); void setOnlyReadsMemory(Function &F); void setDoesNotThrow(Function &F); void setDoesNotCapture(Function &F, unsigned n); void setDoesNotAlias(Function &F, unsigned n); bool doInitialization(Module &M); virtual void getAnalysisUsage(AnalysisUsage &AU) const { } }; char SimplifyLibCalls::ID = 0; } // end anonymous namespace. static RegisterPass X("simplify-libcalls", "Simplify well-known library calls"); // Public interface to the Simplify LibCalls pass. FunctionPass *llvm::createSimplifyLibCallsPass() { return new SimplifyLibCalls(); } /// Optimizations - Populate the Optimizations map with all the optimizations /// we know. void SimplifyLibCalls::InitOptimizations() { // String and Memory LibCall Optimizations Optimizations["strcat"] = &StrCat; Optimizations["strncat"] = &StrNCat; Optimizations["strchr"] = &StrChr; Optimizations["strcmp"] = &StrCmp; Optimizations["strncmp"] = &StrNCmp; Optimizations["strcpy"] = &StrCpy; Optimizations["strncpy"] = &StrNCpy; Optimizations["strlen"] = &StrLen; Optimizations["strtol"] = &StrTo; Optimizations["strtod"] = &StrTo; Optimizations["strtof"] = &StrTo; Optimizations["strtoul"] = &StrTo; Optimizations["strtoll"] = &StrTo; Optimizations["strtold"] = &StrTo; Optimizations["strtoull"] = &StrTo; Optimizations["strstr"] = &StrStr; Optimizations["memcmp"] = &MemCmp; Optimizations["memcpy"] = &MemCpy; Optimizations["memmove"] = &MemMove; Optimizations["memset"] = &MemSet; // Math Library Optimizations Optimizations["powf"] = &Pow; Optimizations["pow"] = &Pow; Optimizations["powl"] = &Pow; Optimizations["llvm.pow.f32"] = &Pow; Optimizations["llvm.pow.f64"] = &Pow; Optimizations["llvm.pow.f80"] = &Pow; Optimizations["llvm.pow.f128"] = &Pow; Optimizations["llvm.pow.ppcf128"] = &Pow; Optimizations["exp2l"] = &Exp2; Optimizations["exp2"] = &Exp2; Optimizations["exp2f"] = &Exp2; Optimizations["llvm.exp2.ppcf128"] = &Exp2; Optimizations["llvm.exp2.f128"] = &Exp2; Optimizations["llvm.exp2.f80"] = &Exp2; Optimizations["llvm.exp2.f64"] = &Exp2; Optimizations["llvm.exp2.f32"] = &Exp2; #ifdef HAVE_FLOORF Optimizations["floor"] = &UnaryDoubleFP; #endif #ifdef HAVE_CEILF Optimizations["ceil"] = &UnaryDoubleFP; #endif #ifdef HAVE_ROUNDF Optimizations["round"] = &UnaryDoubleFP; #endif #ifdef HAVE_RINTF Optimizations["rint"] = &UnaryDoubleFP; #endif #ifdef HAVE_NEARBYINTF Optimizations["nearbyint"] = &UnaryDoubleFP; #endif // Integer Optimizations Optimizations["ffs"] = &FFS; Optimizations["ffsl"] = &FFS; Optimizations["ffsll"] = &FFS; Optimizations["abs"] = &Abs; Optimizations["labs"] = &Abs; Optimizations["llabs"] = &Abs; Optimizations["isdigit"] = &IsDigit; Optimizations["isascii"] = &IsAscii; Optimizations["toascii"] = &ToAscii; // Formatting and IO Optimizations Optimizations["sprintf"] = &SPrintF; Optimizations["printf"] = &PrintF; Optimizations["fwrite"] = &FWrite; Optimizations["fputs"] = &FPuts; Optimizations["fprintf"] = &FPrintF; // Object Size Checking Optimizations["llvm.objectsize.i32"] = &ObjectSize; Optimizations["llvm.objectsize.i64"] = &ObjectSize; Optimizations["__memcpy_chk"] = &MemCpyChk; Optimizations["__memset_chk"] = &MemSetChk; Optimizations["__memmove_chk"] = &MemMoveChk; } /// runOnFunction - Top level algorithm. /// bool SimplifyLibCalls::runOnFunction(Function &F) { if (Optimizations.empty()) InitOptimizations(); const TargetData *TD = getAnalysisIfAvailable(); IRBuilder<> Builder(F.getContext()); bool Changed = false; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { // Ignore non-calls. CallInst *CI = dyn_cast(I++); if (!CI) continue; // Ignore indirect calls and calls to non-external functions. Function *Callee = CI->getCalledFunction(); if (Callee == 0 || !Callee->isDeclaration() || !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage())) continue; // Ignore unknown calls. LibCallOptimization *LCO = Optimizations.lookup(Callee->getName()); if (!LCO) continue; // Set the builder to the instruction after the call. Builder.SetInsertPoint(BB, I); // Try to optimize this call. Value *Result = LCO->OptimizeCall(CI, TD, Builder); if (Result == 0) continue; DEBUG(errs() << "SimplifyLibCalls simplified: " << *CI; errs() << " into: " << *Result << "\n"); // Something changed! Changed = true; ++NumSimplified; // Inspect the instruction after the call (which was potentially just // added) next. I = CI; ++I; if (CI != Result && !CI->use_empty()) { CI->replaceAllUsesWith(Result); if (!Result->hasName()) Result->takeName(CI); } CI->eraseFromParent(); } } return Changed; } // Utility methods for doInitialization. void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) { if (!F.doesNotAccessMemory()) { F.setDoesNotAccessMemory(); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setOnlyReadsMemory(Function &F) { if (!F.onlyReadsMemory()) { F.setOnlyReadsMemory(); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setDoesNotThrow(Function &F) { if (!F.doesNotThrow()) { F.setDoesNotThrow(); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) { if (!F.doesNotCapture(n)) { F.setDoesNotCapture(n); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) { if (!F.doesNotAlias(n)) { F.setDoesNotAlias(n); ++NumAnnotated; Modified = true; } } /// doInitialization - Add attributes to well-known functions. /// bool SimplifyLibCalls::doInitialization(Module &M) { Modified = false; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { Function &F = *I; if (!F.isDeclaration()) continue; if (!F.hasName()) continue; const FunctionType *FTy = F.getFunctionType(); StringRef Name = F.getName(); switch (Name[0]) { case 's': if (Name == "strlen") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "strcpy" || Name == "stpcpy" || Name == "strcat" || Name == "strtol" || Name == "strtod" || Name == "strtof" || Name == "strtoul" || Name == "strtoll" || Name == "strtold" || Name == "strncat" || Name == "strncpy" || Name == "strtoull") { if (FTy->getNumParams() < 2 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "strxfrm") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "strcmp" || Name == "strspn" || Name == "strncmp" || Name ==" strcspn" || Name == "strcoll" || Name == "strcasecmp" || Name == "strncasecmp") { if (FTy->getNumParams() < 2 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "strstr" || Name == "strpbrk") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(1))) continue; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "strtok" || Name == "strtok_r") { if (FTy->getNumParams() < 2 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "scanf" || Name == "setbuf" || Name == "setvbuf") { if (FTy->getNumParams() < 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "strdup" || Name == "strndup") { if (FTy->getNumParams() < 1 || !isa(FTy->getReturnType()) || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } else if (Name == "stat" || Name == "sscanf" || Name == "sprintf" || Name == "statvfs") { if (FTy->getNumParams() < 2 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "snprintf") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(2))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 3); } else if (Name == "setitimer") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(1)) || !isa(FTy->getParamType(2))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); setDoesNotCapture(F, 3); } else if (Name == "system") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; // May throw; "system" is a valid pthread cancellation point. setDoesNotCapture(F, 1); } break; case 'm': if (Name == "malloc") { if (FTy->getNumParams() != 1 || !isa(FTy->getReturnType())) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "memcmp") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "memchr" || Name == "memrchr") { if (FTy->getNumParams() != 3) continue; setOnlyReadsMemory(F); setDoesNotThrow(F); } else if (Name == "modf" || Name == "modff" || Name == "modfl" || Name == "memcpy" || Name == "memccpy" || Name == "memmove") { if (FTy->getNumParams() < 2 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "memalign") { if (!isa(FTy->getReturnType())) continue; setDoesNotAlias(F, 0); } else if (Name == "mkdir" || Name == "mktime") { if (FTy->getNumParams() == 0 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'r': if (Name == "realloc") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(0)) || !isa(FTy->getReturnType())) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } else if (Name == "read") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(1))) continue; // May throw; "read" is a valid pthread cancellation point. setDoesNotCapture(F, 2); } else if (Name == "rmdir" || Name == "rewind" || Name == "remove" || Name == "realpath") { if (FTy->getNumParams() < 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "rename" || Name == "readlink") { if (FTy->getNumParams() < 2 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } break; case 'w': if (Name == "write") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(1))) continue; // May throw; "write" is a valid pthread cancellation point. setDoesNotCapture(F, 2); } break; case 'b': if (Name == "bcopy") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "bcmp") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setOnlyReadsMemory(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "bzero") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'c': if (Name == "calloc") { if (FTy->getNumParams() != 2 || !isa(FTy->getReturnType())) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "chmod" || Name == "chown" || Name == "ctermid" || Name == "clearerr" || Name == "closedir") { if (FTy->getNumParams() == 0 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'a': if (Name == "atoi" || Name == "atol" || Name == "atof" || Name == "atoll") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setOnlyReadsMemory(F); setDoesNotCapture(F, 1); } else if (Name == "access") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'f': if (Name == "fopen") { if (FTy->getNumParams() != 2 || !isa(FTy->getReturnType()) || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "fdopen") { if (FTy->getNumParams() != 2 || !isa(FTy->getReturnType()) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 2); } else if (Name == "feof" || Name == "free" || Name == "fseek" || Name == "ftell" || Name == "fgetc" || Name == "fseeko" || Name == "ftello" || Name == "fileno" || Name == "fflush" || Name == "fclose" || Name == "fsetpos" || Name == "flockfile" || Name == "funlockfile" || Name == "ftrylockfile") { if (FTy->getNumParams() == 0 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "ferror") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setOnlyReadsMemory(F); } else if (Name == "fputc" || Name == "fstat" || Name == "frexp" || Name == "frexpf" || Name == "frexpl" || Name == "fstatvfs") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "fgets") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(2))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 3); } else if (Name == "fread" || Name == "fwrite") { if (FTy->getNumParams() != 4 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(3))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 4); } else if (Name == "fputs" || Name == "fscanf" || Name == "fprintf" || Name == "fgetpos") { if (FTy->getNumParams() < 2 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } break; case 'g': if (Name == "getc" || Name == "getlogin_r" || Name == "getc_unlocked") { if (FTy->getNumParams() == 0 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "getenv") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setOnlyReadsMemory(F); setDoesNotCapture(F, 1); } else if (Name == "gets" || Name == "getchar") { setDoesNotThrow(F); } else if (Name == "getitimer") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "getpwnam") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'u': if (Name == "ungetc") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "uname" || Name == "unlink" || Name == "unsetenv") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "utime" || Name == "utimes") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } break; case 'p': if (Name == "putc") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "puts" || Name == "printf" || Name == "perror") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "pread" || Name == "pwrite") { if (FTy->getNumParams() != 4 || !isa(FTy->getParamType(1))) continue; // May throw; these are valid pthread cancellation points. setDoesNotCapture(F, 2); } else if (Name == "putchar") { setDoesNotThrow(F); } else if (Name == "popen") { if (FTy->getNumParams() != 2 || !isa(FTy->getReturnType()) || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "pclose") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'v': if (Name == "vscanf") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "vsscanf" || Name == "vfscanf") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(1)) || !isa(FTy->getParamType(2))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "valloc") { if (!isa(FTy->getReturnType())) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "vprintf") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "vfprintf" || Name == "vsprintf") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "vsnprintf") { if (FTy->getNumParams() != 4 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(2))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 3); } break; case 'o': if (Name == "open") { if (FTy->getNumParams() < 2 || !isa(FTy->getParamType(0))) continue; // May throw; "open" is a valid pthread cancellation point. setDoesNotCapture(F, 1); } else if (Name == "opendir") { if (FTy->getNumParams() != 1 || !isa(FTy->getReturnType()) || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } break; case 't': if (Name == "tmpfile") { if (!isa(FTy->getReturnType())) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "times") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'h': if (Name == "htonl" || Name == "htons") { setDoesNotThrow(F); setDoesNotAccessMemory(F); } break; case 'n': if (Name == "ntohl" || Name == "ntohs") { setDoesNotThrow(F); setDoesNotAccessMemory(F); } break; case 'l': if (Name == "lstat") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "lchown") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'q': if (Name == "qsort") { if (FTy->getNumParams() != 4 || !isa(FTy->getParamType(3))) continue; // May throw; places call through function pointer. setDoesNotCapture(F, 4); } break; case '_': if (Name == "__strdup" || Name == "__strndup") { if (FTy->getNumParams() < 1 || !isa(FTy->getReturnType()) || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } else if (Name == "__strtok_r") { if (FTy->getNumParams() != 3 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "_IO_getc") { if (FTy->getNumParams() != 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "_IO_putc") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); } break; case 1: if (Name == "\1__isoc99_scanf") { if (FTy->getNumParams() < 1 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "\1stat64" || Name == "\1lstat64" || Name == "\1statvfs64" || Name == "\1__isoc99_sscanf") { if (FTy->getNumParams() < 1 || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "\1fopen64") { if (FTy->getNumParams() != 2 || !isa(FTy->getReturnType()) || !isa(FTy->getParamType(0)) || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "\1fseeko64" || Name == "\1ftello64") { if (FTy->getNumParams() == 0 || !isa(FTy->getParamType(0))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "\1tmpfile64") { if (!isa(FTy->getReturnType())) continue; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "\1fstat64" || Name == "\1fstatvfs64") { if (FTy->getNumParams() != 2 || !isa(FTy->getParamType(1))) continue; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "\1open64") { if (FTy->getNumParams() < 2 || !isa(FTy->getParamType(0))) continue; // May throw; "open" is a valid pthread cancellation point. setDoesNotCapture(F, 1); } break; } } return Modified; } // TODO: // Additional cases that we need to add to this file: // // cbrt: // * cbrt(expN(X)) -> expN(x/3) // * cbrt(sqrt(x)) -> pow(x,1/6) // * cbrt(sqrt(x)) -> pow(x,1/9) // // cos, cosf, cosl: // * cos(-x) -> cos(x) // // exp, expf, expl: // * exp(log(x)) -> x // // log, logf, logl: // * log(exp(x)) -> x // * log(x**y) -> y*log(x) // * log(exp(y)) -> y*log(e) // * log(exp2(y)) -> y*log(2) // * log(exp10(y)) -> y*log(10) // * log(sqrt(x)) -> 0.5*log(x) // * log(pow(x,y)) -> y*log(x) // // lround, lroundf, lroundl: // * lround(cnst) -> cnst' // // pow, powf, powl: // * pow(exp(x),y) -> exp(x*y) // * pow(sqrt(x),y) -> pow(x,y*0.5) // * pow(pow(x,y),z)-> pow(x,y*z) // // puts: // * puts("") -> putchar("\n") // // round, roundf, roundl: // * round(cnst) -> cnst' // // signbit: // * signbit(cnst) -> cnst' // * signbit(nncst) -> 0 (if pstv is a non-negative constant) // // sqrt, sqrtf, sqrtl: // * sqrt(expN(x)) -> expN(x*0.5) // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) // // stpcpy: // * stpcpy(str, "literal") -> // llvm.memcpy(str,"literal",strlen("literal")+1,1) // strrchr: // * strrchr(s,c) -> reverse_offset_of_in(c,s) // (if c is a constant integer and s is a constant string) // * strrchr(s1,0) -> strchr(s1,0) // // strpbrk: // * strpbrk(s,a) -> offset_in_for(s,a) // (if s and a are both constant strings) // * strpbrk(s,"") -> 0 // * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1) // // strspn, strcspn: // * strspn(s,a) -> const_int (if both args are constant) // * strspn("",a) -> 0 // * strspn(s,"") -> 0 // * strcspn(s,a) -> const_int (if both args are constant) // * strcspn("",a) -> 0 // * strcspn(s,"") -> strlen(a) // // tan, tanf, tanl: // * tan(atan(x)) -> x // // trunc, truncf, truncl: // * trunc(cnst) -> cnst' // //