//===-- llvm/SymbolTable.h - Implement a type plane'd symtab ------*- C++ -*-=// // // This file implements a symbol table that has planed broken up by type. // Identical types may have overlapping symbol names as long as they are // distinct. // // Note that this implements a chained symbol table. If a name being 'lookup'd // isn't found in the current symbol table, then the parent symbol table is // searched. // // This chaining behavior does NOT affect iterators though: only the lookup // method // //===----------------------------------------------------------------------===// #ifndef LLVM_SYMBOL_TABLE_H #define LLVM_SYMBOL_TABLE_H #include "llvm/Value.h" #include "llvm/Type.h" // FIXME: Remove #include "llvm/ConstantVals.h" // FIXME: Remove #include class SymbolTable : public AbstractTypeUser, public std::map > { public: typedef std::map VarMap; typedef std::map super; private: SymbolTable *ParentSymTab; friend class SymTabValue; inline void setParentSymTab(SymbolTable *P) { ParentSymTab = P; } public: typedef VarMap::iterator type_iterator; typedef VarMap::const_iterator type_const_iterator; inline SymbolTable(SymbolTable *P = 0) { ParentSymTab = P; InternallyInconsistent = false; } ~SymbolTable(); SymbolTable *getParentSymTab() { return ParentSymTab; } // lookup - Returns null on failure... Value *lookup(const Type *Ty, const std::string &name); // localLookup - Look in this symbol table without falling back on parent, // if non-existing. Returns null on failure... // Value *localLookup(const Type *Ty, const std::string &name); // insert - Add named definition to the symbol table... inline void insert(Value *N) { assert(N->hasName() && "Value must be named to go into symbol table!"); insertEntry(N->getName(), N->getType(), N); } // insert - Insert a constant or type into the symbol table with the specified // name... There can be a many to one mapping between names and // (constant/type)s. // inline void insert(const std::string &Name, Value *V) { assert((isa(V) || isa(V)) && "Can only insert types and constants here!"); insertEntry(Name, V->getType(), V); } void remove(Value *N); Value *type_remove(const type_iterator &It) { return removeEntry(find(It->second->getType()), It); } // getUniqueName - Given a base name, return a string that is either equal to // it (or derived from it) that does not already occur in the symbol table for // the specified type. // std::string getUniqueName(const Type *Ty, const std::string &BaseName); inline unsigned type_size(const Type *TypeID) const { return find(TypeID)->second.size(); } // Note that type_begin / type_end only work if you know that an element of // TypeID is already in the symbol table!!! // inline type_iterator type_begin(const Type *TypeID) { return find(TypeID)->second.begin(); } inline type_const_iterator type_begin(const Type *TypeID) const { return find(TypeID)->second.begin(); } inline type_iterator type_end(const Type *TypeID) { return find(TypeID)->second.end(); } inline type_const_iterator type_end(const Type *TypeID) const { return find(TypeID)->second.end(); } void dump() const; // Debug method, print out symbol table private: // InternallyInconsistent - There are times when the symbol table is // internally inconsistent with the rest of the program. In this one case, a // value exists with a Name, and it's not in the symbol table. When we call // V->setName(""), it tries to remove itself from the symbol table and dies. // We know this is happening, and so if the flag InternallyInconsistent is // set, removal from the symbol table is a noop. // bool InternallyInconsistent; inline super::value_type operator[](const Type *Ty) { assert(0 && "Should not use this operator to access symbol table!"); return super::value_type(); } // insertEntry - Insert a value into the symbol table with the specified // name... // void insertEntry(const std::string &Name, const Type *Ty, Value *V); // removeEntry - Remove a value from the symbol table... // Value *removeEntry(iterator Plane, type_iterator Entry); // This function is called when one of the types in the type plane are refined virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); }; #endif