//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements whole program optimization of virtual calls in cases // where we know (via !type metadata) that the list of callees is fixed. This // includes the following: // - Single implementation devirtualization: if a virtual call has a single // possible callee, replace all calls with a direct call to that callee. // - Virtual constant propagation: if the virtual function's return type is an // integer <=64 bits and all possible callees are readnone, for each class and // each list of constant arguments: evaluate the function, store the return // value alongside the virtual table, and rewrite each virtual call as a load // from the virtual table. // - Uniform return value optimization: if the conditions for virtual constant // propagation hold and each function returns the same constant value, replace // each virtual call with that constant. // - Unique return value optimization for i1 return values: if the conditions // for virtual constant propagation hold and a single vtable's function // returns 0, or a single vtable's function returns 1, replace each virtual // call with a comparison of the vptr against that vtable's address. // // This pass is intended to be used during the regular and thin LTO pipelines. // During regular LTO, the pass determines the best optimization for each // virtual call and applies the resolutions directly to virtual calls that are // eligible for virtual call optimization (i.e. calls that use either of the // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During // ThinLTO, the pass operates in two phases: // - Export phase: this is run during the thin link over a single merged module // that contains all vtables with !type metadata that participate in the link. // The pass computes a resolution for each virtual call and stores it in the // type identifier summary. // - Import phase: this is run during the thin backends over the individual // modules. The pass applies the resolutions previously computed during the // import phase to each eligible virtual call. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/WholeProgramDevirt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TypeMetadataUtils.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSummaryIndexYAML.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include "llvm/PassSupport.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MathExtras.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/FunctionAttrs.h" #include "llvm/Transforms/Utils/Evaluator.h" #include #include #include #include #include using namespace llvm; using namespace wholeprogramdevirt; #define DEBUG_TYPE "wholeprogramdevirt" static cl::opt ClSummaryAction( "wholeprogramdevirt-summary-action", cl::desc("What to do with the summary when running this pass"), cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), clEnumValN(PassSummaryAction::Import, "import", "Import typeid resolutions from summary and globals"), clEnumValN(PassSummaryAction::Export, "export", "Export typeid resolutions to summary and globals")), cl::Hidden); static cl::opt ClReadSummary( "wholeprogramdevirt-read-summary", cl::desc("Read summary from given YAML file before running pass"), cl::Hidden); static cl::opt ClWriteSummary( "wholeprogramdevirt-write-summary", cl::desc("Write summary to given YAML file after running pass"), cl::Hidden); // Find the minimum offset that we may store a value of size Size bits at. If // IsAfter is set, look for an offset before the object, otherwise look for an // offset after the object. uint64_t wholeprogramdevirt::findLowestOffset(ArrayRef Targets, bool IsAfter, uint64_t Size) { // Find a minimum offset taking into account only vtable sizes. uint64_t MinByte = 0; for (const VirtualCallTarget &Target : Targets) { if (IsAfter) MinByte = std::max(MinByte, Target.minAfterBytes()); else MinByte = std::max(MinByte, Target.minBeforeBytes()); } // Build a vector of arrays of bytes covering, for each target, a slice of the // used region (see AccumBitVector::BytesUsed in // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, // this aligns the used regions to start at MinByte. // // In this example, A, B and C are vtables, # is a byte already allocated for // a virtual function pointer, AAAA... (etc.) are the used regions for the // vtables and Offset(X) is the value computed for the Offset variable below // for X. // // Offset(A) // | | // |MinByte // A: ################AAAAAAAA|AAAAAAAA // B: ########BBBBBBBBBBBBBBBB|BBBB // C: ########################|CCCCCCCCCCCCCCCC // | Offset(B) | // // This code produces the slices of A, B and C that appear after the divider // at MinByte. std::vector> Used; for (const VirtualCallTarget &Target : Targets) { ArrayRef VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed : Target.TM->Bits->Before.BytesUsed; uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() : MinByte - Target.minBeforeBytes(); // Disregard used regions that are smaller than Offset. These are // effectively all-free regions that do not need to be checked. if (VTUsed.size() > Offset) Used.push_back(VTUsed.slice(Offset)); } if (Size == 1) { // Find a free bit in each member of Used. for (unsigned I = 0;; ++I) { uint8_t BitsUsed = 0; for (auto &&B : Used) if (I < B.size()) BitsUsed |= B[I]; if (BitsUsed != 0xff) return (MinByte + I) * 8 + countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); } } else { // Find a free (Size/8) byte region in each member of Used. // FIXME: see if alignment helps. for (unsigned I = 0;; ++I) { for (auto &&B : Used) { unsigned Byte = 0; while ((I + Byte) < B.size() && Byte < (Size / 8)) { if (B[I + Byte]) goto NextI; ++Byte; } } return (MinByte + I) * 8; NextI:; } } } void wholeprogramdevirt::setBeforeReturnValues( MutableArrayRef Targets, uint64_t AllocBefore, unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { if (BitWidth == 1) OffsetByte = -(AllocBefore / 8 + 1); else OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); OffsetBit = AllocBefore % 8; for (VirtualCallTarget &Target : Targets) { if (BitWidth == 1) Target.setBeforeBit(AllocBefore); else Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); } } void wholeprogramdevirt::setAfterReturnValues( MutableArrayRef Targets, uint64_t AllocAfter, unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { if (BitWidth == 1) OffsetByte = AllocAfter / 8; else OffsetByte = (AllocAfter + 7) / 8; OffsetBit = AllocAfter % 8; for (VirtualCallTarget &Target : Targets) { if (BitWidth == 1) Target.setAfterBit(AllocAfter); else Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); } } VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) : Fn(Fn), TM(TM), IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} namespace { // A slot in a set of virtual tables. The TypeID identifies the set of virtual // tables, and the ByteOffset is the offset in bytes from the address point to // the virtual function pointer. struct VTableSlot { Metadata *TypeID; uint64_t ByteOffset; }; } // end anonymous namespace namespace llvm { template <> struct DenseMapInfo { static VTableSlot getEmptyKey() { return {DenseMapInfo::getEmptyKey(), DenseMapInfo::getEmptyKey()}; } static VTableSlot getTombstoneKey() { return {DenseMapInfo::getTombstoneKey(), DenseMapInfo::getTombstoneKey()}; } static unsigned getHashValue(const VTableSlot &I) { return DenseMapInfo::getHashValue(I.TypeID) ^ DenseMapInfo::getHashValue(I.ByteOffset); } static bool isEqual(const VTableSlot &LHS, const VTableSlot &RHS) { return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; } }; } // end namespace llvm namespace { // A virtual call site. VTable is the loaded virtual table pointer, and CS is // the indirect virtual call. struct VirtualCallSite { Value *VTable; CallSite CS; // If non-null, this field points to the associated unsafe use count stored in // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description // of that field for details. unsigned *NumUnsafeUses; void emitRemark(const StringRef OptName, const StringRef TargetName, function_ref OREGetter) { Function *F = CS.getCaller(); DebugLoc DLoc = CS->getDebugLoc(); BasicBlock *Block = CS.getParent(); // In the new pass manager, we can request the optimization // remark emitter pass on a per-function-basis, which the // OREGetter will do for us. // In the old pass manager, this is harder, so we just build // a optimization remark emitter on the fly, when we need it. std::unique_ptr OwnedORE; OptimizationRemarkEmitter *ORE; if (OREGetter) ORE = &OREGetter(F); else { OwnedORE = make_unique(F); ORE = OwnedORE.get(); } using namespace ore; ORE->emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) << NV("Optimization", OptName) << ": devirtualized a call to " << NV("FunctionName", TargetName)); } void replaceAndErase( const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, function_ref OREGetter, Value *New) { if (RemarksEnabled) emitRemark(OptName, TargetName, OREGetter); CS->replaceAllUsesWith(New); if (auto II = dyn_cast(CS.getInstruction())) { BranchInst::Create(II->getNormalDest(), CS.getInstruction()); II->getUnwindDest()->removePredecessor(II->getParent()); } CS->eraseFromParent(); // This use is no longer unsafe. if (NumUnsafeUses) --*NumUnsafeUses; } }; // Call site information collected for a specific VTableSlot and possibly a list // of constant integer arguments. The grouping by arguments is handled by the // VTableSlotInfo class. struct CallSiteInfo { /// The set of call sites for this slot. Used during regular LTO and the /// import phase of ThinLTO (as well as the export phase of ThinLTO for any /// call sites that appear in the merged module itself); in each of these /// cases we are directly operating on the call sites at the IR level. std::vector CallSites; // These fields are used during the export phase of ThinLTO and reflect // information collected from function summaries. /// Whether any function summary contains an llvm.assume(llvm.type.test) for /// this slot. bool SummaryHasTypeTestAssumeUsers; /// CFI-specific: a vector containing the list of function summaries that use /// the llvm.type.checked.load intrinsic and therefore will require /// resolutions for llvm.type.test in order to implement CFI checks if /// devirtualization was unsuccessful. If devirtualization was successful, the /// pass will clear this vector by calling markDevirt(). If at the end of the /// pass the vector is non-empty, we will need to add a use of llvm.type.test /// to each of the function summaries in the vector. std::vector SummaryTypeCheckedLoadUsers; bool isExported() const { return SummaryHasTypeTestAssumeUsers || !SummaryTypeCheckedLoadUsers.empty(); } /// As explained in the comment for SummaryTypeCheckedLoadUsers. void markDevirt() { SummaryTypeCheckedLoadUsers.clear(); } }; // Call site information collected for a specific VTableSlot. struct VTableSlotInfo { // The set of call sites which do not have all constant integer arguments // (excluding "this"). CallSiteInfo CSInfo; // The set of call sites with all constant integer arguments (excluding // "this"), grouped by argument list. std::map, CallSiteInfo> ConstCSInfo; void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); private: CallSiteInfo &findCallSiteInfo(CallSite CS); }; CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { std::vector Args; auto *CI = dyn_cast(CS.getType()); if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) return CSInfo; for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { auto *CI = dyn_cast(Arg); if (!CI || CI->getBitWidth() > 64) return CSInfo; Args.push_back(CI->getZExtValue()); } return ConstCSInfo[Args]; } void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses) { findCallSiteInfo(CS).CallSites.push_back({VTable, CS, NumUnsafeUses}); } struct DevirtModule { Module &M; function_ref AARGetter; ModuleSummaryIndex *ExportSummary; const ModuleSummaryIndex *ImportSummary; IntegerType *Int8Ty; PointerType *Int8PtrTy; IntegerType *Int32Ty; IntegerType *Int64Ty; IntegerType *IntPtrTy; bool RemarksEnabled; function_ref OREGetter; MapVector CallSlots; // This map keeps track of the number of "unsafe" uses of a loaded function // pointer. The key is the associated llvm.type.test intrinsic call generated // by this pass. An unsafe use is one that calls the loaded function pointer // directly. Every time we eliminate an unsafe use (for example, by // devirtualizing it or by applying virtual constant propagation), we // decrement the value stored in this map. If a value reaches zero, we can // eliminate the type check by RAUWing the associated llvm.type.test call with // true. std::map NumUnsafeUsesForTypeTest; DevirtModule(Module &M, function_ref AARGetter, function_ref OREGetter, ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary) : M(M), AARGetter(AARGetter), ExportSummary(ExportSummary), ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())), Int8PtrTy(Type::getInt8PtrTy(M.getContext())), Int32Ty(Type::getInt32Ty(M.getContext())), Int64Ty(Type::getInt64Ty(M.getContext())), IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { assert(!(ExportSummary && ImportSummary)); } bool areRemarksEnabled(); void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); void buildTypeIdentifierMap( std::vector &Bits, DenseMap> &TypeIdMap); Constant *getPointerAtOffset(Constant *I, uint64_t Offset); bool tryFindVirtualCallTargets(std::vector &TargetsForSlot, const std::set &TypeMemberInfos, uint64_t ByteOffset); void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, bool &IsExported); bool trySingleImplDevirt(MutableArrayRef TargetsForSlot, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res); bool tryEvaluateFunctionsWithArgs( MutableArrayRef TargetsForSlot, ArrayRef Args); void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, uint64_t TheRetVal); bool tryUniformRetValOpt(MutableArrayRef TargetsForSlot, CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res); // Returns the global symbol name that is used to export information about the // given vtable slot and list of arguments. std::string getGlobalName(VTableSlot Slot, ArrayRef Args, StringRef Name); bool shouldExportConstantsAsAbsoluteSymbols(); // This function is called during the export phase to create a symbol // definition containing information about the given vtable slot and list of // arguments. void exportGlobal(VTableSlot Slot, ArrayRef Args, StringRef Name, Constant *C); void exportConstant(VTableSlot Slot, ArrayRef Args, StringRef Name, uint32_t Const, uint32_t &Storage); // This function is called during the import phase to create a reference to // the symbol definition created during the export phase. Constant *importGlobal(VTableSlot Slot, ArrayRef Args, StringRef Name); Constant *importConstant(VTableSlot Slot, ArrayRef Args, StringRef Name, IntegerType *IntTy, uint32_t Storage); void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, Constant *UniqueMemberAddr); bool tryUniqueRetValOpt(unsigned BitWidth, MutableArrayRef TargetsForSlot, CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, VTableSlot Slot, ArrayRef Args); void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, Constant *Byte, Constant *Bit); bool tryVirtualConstProp(MutableArrayRef TargetsForSlot, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res, VTableSlot Slot); void rebuildGlobal(VTableBits &B); // Apply the summary resolution for Slot to all virtual calls in SlotInfo. void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); // If we were able to eliminate all unsafe uses for a type checked load, // eliminate the associated type tests by replacing them with true. void removeRedundantTypeTests(); bool run(); // Lower the module using the action and summary passed as command line // arguments. For testing purposes only. static bool runForTesting( Module &M, function_ref AARGetter, function_ref OREGetter); }; struct WholeProgramDevirt : public ModulePass { static char ID; bool UseCommandLine = false; ModuleSummaryIndex *ExportSummary; const ModuleSummaryIndex *ImportSummary; WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); } WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary) : ModulePass(ID), ExportSummary(ExportSummary), ImportSummary(ImportSummary) { initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { if (skipModule(M)) return false; auto OREGetter = function_ref(); if (UseCommandLine) return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter); return DevirtModule(M, LegacyAARGetter(*this), OREGetter, ExportSummary, ImportSummary) .run(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); } }; } // end anonymous namespace INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", "Whole program devirtualization", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", "Whole program devirtualization", false, false) char WholeProgramDevirt::ID = 0; ModulePass * llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary) { return new WholeProgramDevirt(ExportSummary, ImportSummary); } PreservedAnalyses WholeProgramDevirtPass::run(Module &M, ModuleAnalysisManager &AM) { auto &FAM = AM.getResult(M).getManager(); auto AARGetter = [&](Function &F) -> AAResults & { return FAM.getResult(F); }; auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { return FAM.getResult(*F); }; if (!DevirtModule(M, AARGetter, OREGetter, nullptr, nullptr).run()) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } bool DevirtModule::runForTesting( Module &M, function_ref AARGetter, function_ref OREGetter) { ModuleSummaryIndex Summary; // Handle the command-line summary arguments. This code is for testing // purposes only, so we handle errors directly. if (!ClReadSummary.empty()) { ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + ": "); auto ReadSummaryFile = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); yaml::Input In(ReadSummaryFile->getBuffer()); In >> Summary; ExitOnErr(errorCodeToError(In.error())); } bool Changed = DevirtModule( M, AARGetter, OREGetter, ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr, ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr) .run(); if (!ClWriteSummary.empty()) { ExitOnError ExitOnErr( "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); std::error_code EC; raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text); ExitOnErr(errorCodeToError(EC)); yaml::Output Out(OS); Out << Summary; } return Changed; } void DevirtModule::buildTypeIdentifierMap( std::vector &Bits, DenseMap> &TypeIdMap) { DenseMap GVToBits; Bits.reserve(M.getGlobalList().size()); SmallVector Types; for (GlobalVariable &GV : M.globals()) { Types.clear(); GV.getMetadata(LLVMContext::MD_type, Types); if (Types.empty()) continue; VTableBits *&BitsPtr = GVToBits[&GV]; if (!BitsPtr) { Bits.emplace_back(); Bits.back().GV = &GV; Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); BitsPtr = &Bits.back(); } for (MDNode *Type : Types) { auto TypeID = Type->getOperand(1).get(); uint64_t Offset = cast( cast(Type->getOperand(0))->getValue()) ->getZExtValue(); TypeIdMap[TypeID].insert({BitsPtr, Offset}); } } } Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) { if (I->getType()->isPointerTy()) { if (Offset == 0) return I; return nullptr; } const DataLayout &DL = M.getDataLayout(); if (auto *C = dyn_cast(I)) { const StructLayout *SL = DL.getStructLayout(C->getType()); if (Offset >= SL->getSizeInBytes()) return nullptr; unsigned Op = SL->getElementContainingOffset(Offset); return getPointerAtOffset(cast(I->getOperand(Op)), Offset - SL->getElementOffset(Op)); } if (auto *C = dyn_cast(I)) { ArrayType *VTableTy = C->getType(); uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType()); unsigned Op = Offset / ElemSize; if (Op >= C->getNumOperands()) return nullptr; return getPointerAtOffset(cast(I->getOperand(Op)), Offset % ElemSize); } return nullptr; } bool DevirtModule::tryFindVirtualCallTargets( std::vector &TargetsForSlot, const std::set &TypeMemberInfos, uint64_t ByteOffset) { for (const TypeMemberInfo &TM : TypeMemberInfos) { if (!TM.Bits->GV->isConstant()) return false; Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), TM.Offset + ByteOffset); if (!Ptr) return false; auto Fn = dyn_cast(Ptr->stripPointerCasts()); if (!Fn) return false; // We can disregard __cxa_pure_virtual as a possible call target, as // calls to pure virtuals are UB. if (Fn->getName() == "__cxa_pure_virtual") continue; TargetsForSlot.push_back({Fn, &TM}); } // Give up if we couldn't find any targets. return !TargetsForSlot.empty(); } void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, bool &IsExported) { auto Apply = [&](CallSiteInfo &CSInfo) { for (auto &&VCallSite : CSInfo.CallSites) { if (RemarksEnabled) VCallSite.emitRemark("single-impl", TheFn->getName(), OREGetter); VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( TheFn, VCallSite.CS.getCalledValue()->getType())); // This use is no longer unsafe. if (VCallSite.NumUnsafeUses) --*VCallSite.NumUnsafeUses; } if (CSInfo.isExported()) { IsExported = true; CSInfo.markDevirt(); } }; Apply(SlotInfo.CSInfo); for (auto &P : SlotInfo.ConstCSInfo) Apply(P.second); } bool DevirtModule::trySingleImplDevirt( MutableArrayRef TargetsForSlot, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) { // See if the program contains a single implementation of this virtual // function. Function *TheFn = TargetsForSlot[0].Fn; for (auto &&Target : TargetsForSlot) if (TheFn != Target.Fn) return false; // If so, update each call site to call that implementation directly. if (RemarksEnabled) TargetsForSlot[0].WasDevirt = true; bool IsExported = false; applySingleImplDevirt(SlotInfo, TheFn, IsExported); if (!IsExported) return false; // If the only implementation has local linkage, we must promote to external // to make it visible to thin LTO objects. We can only get here during the // ThinLTO export phase. if (TheFn->hasLocalLinkage()) { std::string NewName = (TheFn->getName() + "$merged").str(); // Since we are renaming the function, any comdats with the same name must // also be renamed. This is required when targeting COFF, as the comdat name // must match one of the names of the symbols in the comdat. if (Comdat *C = TheFn->getComdat()) { if (C->getName() == TheFn->getName()) { Comdat *NewC = M.getOrInsertComdat(NewName); NewC->setSelectionKind(C->getSelectionKind()); for (GlobalObject &GO : M.global_objects()) if (GO.getComdat() == C) GO.setComdat(NewC); } } TheFn->setLinkage(GlobalValue::ExternalLinkage); TheFn->setVisibility(GlobalValue::HiddenVisibility); TheFn->setName(NewName); } Res->TheKind = WholeProgramDevirtResolution::SingleImpl; Res->SingleImplName = TheFn->getName(); return true; } bool DevirtModule::tryEvaluateFunctionsWithArgs( MutableArrayRef TargetsForSlot, ArrayRef Args) { // Evaluate each function and store the result in each target's RetVal // field. for (VirtualCallTarget &Target : TargetsForSlot) { if (Target.Fn->arg_size() != Args.size() + 1) return false; Evaluator Eval(M.getDataLayout(), nullptr); SmallVector EvalArgs; EvalArgs.push_back( Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); for (unsigned I = 0; I != Args.size(); ++I) { auto *ArgTy = dyn_cast( Target.Fn->getFunctionType()->getParamType(I + 1)); if (!ArgTy) return false; EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); } Constant *RetVal; if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || !isa(RetVal)) return false; Target.RetVal = cast(RetVal)->getZExtValue(); } return true; } void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, uint64_t TheRetVal) { for (auto Call : CSInfo.CallSites) Call.replaceAndErase( "uniform-ret-val", FnName, RemarksEnabled, OREGetter, ConstantInt::get(cast(Call.CS.getType()), TheRetVal)); CSInfo.markDevirt(); } bool DevirtModule::tryUniformRetValOpt( MutableArrayRef TargetsForSlot, CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res) { // Uniform return value optimization. If all functions return the same // constant, replace all calls with that constant. uint64_t TheRetVal = TargetsForSlot[0].RetVal; for (const VirtualCallTarget &Target : TargetsForSlot) if (Target.RetVal != TheRetVal) return false; if (CSInfo.isExported()) { Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; Res->Info = TheRetVal; } applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); if (RemarksEnabled) for (auto &&Target : TargetsForSlot) Target.WasDevirt = true; return true; } std::string DevirtModule::getGlobalName(VTableSlot Slot, ArrayRef Args, StringRef Name) { std::string FullName = "__typeid_"; raw_string_ostream OS(FullName); OS << cast(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; for (uint64_t Arg : Args) OS << '_' << Arg; OS << '_' << Name; return OS.str(); } bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { Triple T(M.getTargetTriple()); return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) && T.getObjectFormat() == Triple::ELF; } void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef Args, StringRef Name, Constant *C) { GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, getGlobalName(Slot, Args, Name), C, &M); GA->setVisibility(GlobalValue::HiddenVisibility); } void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef Args, StringRef Name, uint32_t Const, uint32_t &Storage) { if (shouldExportConstantsAsAbsoluteSymbols()) { exportGlobal( Slot, Args, Name, ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); return; } Storage = Const; } Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef Args, StringRef Name) { Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); auto *GV = dyn_cast(C); if (GV) GV->setVisibility(GlobalValue::HiddenVisibility); return C; } Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef Args, StringRef Name, IntegerType *IntTy, uint32_t Storage) { if (!shouldExportConstantsAsAbsoluteSymbols()) return ConstantInt::get(IntTy, Storage); Constant *C = importGlobal(Slot, Args, Name); auto *GV = cast(C->stripPointerCasts()); C = ConstantExpr::getPtrToInt(C, IntTy); // We only need to set metadata if the global is newly created, in which // case it would not have hidden visibility. if (GV->getMetadata(LLVMContext::MD_absolute_symbol)) return C; auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); GV->setMetadata(LLVMContext::MD_absolute_symbol, MDNode::get(M.getContext(), {MinC, MaxC})); }; unsigned AbsWidth = IntTy->getBitWidth(); if (AbsWidth == IntPtrTy->getBitWidth()) SetAbsRange(~0ull, ~0ull); // Full set. else SetAbsRange(0, 1ull << AbsWidth); return C; } void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, Constant *UniqueMemberAddr) { for (auto &&Call : CSInfo.CallSites) { IRBuilder<> B(Call.CS.getInstruction()); Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr); Cmp = B.CreateZExt(Cmp, Call.CS->getType()); Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, Cmp); } CSInfo.markDevirt(); } bool DevirtModule::tryUniqueRetValOpt( unsigned BitWidth, MutableArrayRef TargetsForSlot, CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, VTableSlot Slot, ArrayRef Args) { // IsOne controls whether we look for a 0 or a 1. auto tryUniqueRetValOptFor = [&](bool IsOne) { const TypeMemberInfo *UniqueMember = nullptr; for (const VirtualCallTarget &Target : TargetsForSlot) { if (Target.RetVal == (IsOne ? 1 : 0)) { if (UniqueMember) return false; UniqueMember = Target.TM; } } // We should have found a unique member or bailed out by now. We already // checked for a uniform return value in tryUniformRetValOpt. assert(UniqueMember); Constant *UniqueMemberAddr = ConstantExpr::getBitCast(UniqueMember->Bits->GV, Int8PtrTy); UniqueMemberAddr = ConstantExpr::getGetElementPtr( Int8Ty, UniqueMemberAddr, ConstantInt::get(Int64Ty, UniqueMember->Offset)); if (CSInfo.isExported()) { Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; Res->Info = IsOne; exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); } // Replace each call with the comparison. applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, UniqueMemberAddr); // Update devirtualization statistics for targets. if (RemarksEnabled) for (auto &&Target : TargetsForSlot) Target.WasDevirt = true; return true; }; if (BitWidth == 1) { if (tryUniqueRetValOptFor(true)) return true; if (tryUniqueRetValOptFor(false)) return true; } return false; } void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, Constant *Byte, Constant *Bit) { for (auto Call : CSInfo.CallSites) { auto *RetType = cast(Call.CS.getType()); IRBuilder<> B(Call.CS.getInstruction()); Value *Addr = B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); if (RetType->getBitWidth() == 1) { Value *Bits = B.CreateLoad(Addr); Value *BitsAndBit = B.CreateAnd(Bits, Bit); auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, OREGetter, IsBitSet); } else { Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); Value *Val = B.CreateLoad(RetType, ValAddr); Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, OREGetter, Val); } } CSInfo.markDevirt(); } bool DevirtModule::tryVirtualConstProp( MutableArrayRef TargetsForSlot, VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res, VTableSlot Slot) { // This only works if the function returns an integer. auto RetType = dyn_cast(TargetsForSlot[0].Fn->getReturnType()); if (!RetType) return false; unsigned BitWidth = RetType->getBitWidth(); if (BitWidth > 64) return false; // Make sure that each function is defined, does not access memory, takes at // least one argument, does not use its first argument (which we assume is // 'this'), and has the same return type. // // Note that we test whether this copy of the function is readnone, rather // than testing function attributes, which must hold for any copy of the // function, even a less optimized version substituted at link time. This is // sound because the virtual constant propagation optimizations effectively // inline all implementations of the virtual function into each call site, // rather than using function attributes to perform local optimization. for (VirtualCallTarget &Target : TargetsForSlot) { if (Target.Fn->isDeclaration() || computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != MAK_ReadNone || Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || Target.Fn->getReturnType() != RetType) return false; } for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) continue; WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; if (Res) ResByArg = &Res->ResByArg[CSByConstantArg.first]; if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) continue; if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, ResByArg, Slot, CSByConstantArg.first)) continue; // Find an allocation offset in bits in all vtables associated with the // type. uint64_t AllocBefore = findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); uint64_t AllocAfter = findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); // Calculate the total amount of padding needed to store a value at both // ends of the object. uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; for (auto &&Target : TargetsForSlot) { TotalPaddingBefore += std::max( (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); TotalPaddingAfter += std::max( (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); } // If the amount of padding is too large, give up. // FIXME: do something smarter here. if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) continue; // Calculate the offset to the value as a (possibly negative) byte offset // and (if applicable) a bit offset, and store the values in the targets. int64_t OffsetByte; uint64_t OffsetBit; if (TotalPaddingBefore <= TotalPaddingAfter) setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, OffsetBit); else setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, OffsetBit); if (RemarksEnabled) for (auto &&Target : TargetsForSlot) Target.WasDevirt = true; if (CSByConstantArg.second.isExported()) { ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, ResByArg->Byte); exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, ResByArg->Bit); } // Rewrite each call to a load from OffsetByte/OffsetBit. Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); applyVirtualConstProp(CSByConstantArg.second, TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); } return true; } void DevirtModule::rebuildGlobal(VTableBits &B) { if (B.Before.Bytes.empty() && B.After.Bytes.empty()) return; // Align each byte array to pointer width. unsigned PointerSize = M.getDataLayout().getPointerSize(); B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); // Before was stored in reverse order; flip it now. for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); // Build an anonymous global containing the before bytes, followed by the // original initializer, followed by the after bytes. auto NewInit = ConstantStruct::getAnon( {ConstantDataArray::get(M.getContext(), B.Before.Bytes), B.GV->getInitializer(), ConstantDataArray::get(M.getContext(), B.After.Bytes)}); auto NewGV = new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), GlobalVariable::PrivateLinkage, NewInit, "", B.GV); NewGV->setSection(B.GV->getSection()); NewGV->setComdat(B.GV->getComdat()); // Copy the original vtable's metadata to the anonymous global, adjusting // offsets as required. NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); // Build an alias named after the original global, pointing at the second // element (the original initializer). auto Alias = GlobalAlias::create( B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", ConstantExpr::getGetElementPtr( NewInit->getType(), NewGV, ArrayRef{ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1)}), &M); Alias->setVisibility(B.GV->getVisibility()); Alias->takeName(B.GV); B.GV->replaceAllUsesWith(Alias); B.GV->eraseFromParent(); } bool DevirtModule::areRemarksEnabled() { const auto &FL = M.getFunctionList(); if (FL.empty()) return false; const Function &Fn = FL.front(); const auto &BBL = Fn.getBasicBlockList(); if (BBL.empty()) return false; auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); return DI.isEnabled(); } void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc) { // Find all virtual calls via a virtual table pointer %p under an assumption // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p // points to a member of the type identifier %md. Group calls by (type ID, // offset) pair (effectively the identity of the virtual function) and store // to CallSlots. DenseSet SeenPtrs; for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); I != E;) { auto CI = dyn_cast(I->getUser()); ++I; if (!CI) continue; // Search for virtual calls based on %p and add them to DevirtCalls. SmallVector DevirtCalls; SmallVector Assumes; findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); // If we found any, add them to CallSlots. Only do this if we haven't seen // the vtable pointer before, as it may have been CSE'd with pointers from // other call sites, and we don't want to process call sites multiple times. if (!Assumes.empty()) { Metadata *TypeId = cast(CI->getArgOperand(1))->getMetadata(); Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); if (SeenPtrs.insert(Ptr).second) { for (DevirtCallSite Call : DevirtCalls) { CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr); } } } // We no longer need the assumes or the type test. for (auto Assume : Assumes) Assume->eraseFromParent(); // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we // may use the vtable argument later. if (CI->use_empty()) CI->eraseFromParent(); } } void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); for (auto I = TypeCheckedLoadFunc->use_begin(), E = TypeCheckedLoadFunc->use_end(); I != E;) { auto CI = dyn_cast(I->getUser()); ++I; if (!CI) continue; Value *Ptr = CI->getArgOperand(0); Value *Offset = CI->getArgOperand(1); Value *TypeIdValue = CI->getArgOperand(2); Metadata *TypeId = cast(TypeIdValue)->getMetadata(); SmallVector DevirtCalls; SmallVector LoadedPtrs; SmallVector Preds; bool HasNonCallUses = false; findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, HasNonCallUses, CI); // Start by generating "pessimistic" code that explicitly loads the function // pointer from the vtable and performs the type check. If possible, we will // eliminate the load and the type check later. // If possible, only generate the load at the point where it is used. // This helps avoid unnecessary spills. IRBuilder<> LoadB( (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); for (Instruction *LoadedPtr : LoadedPtrs) { LoadedPtr->replaceAllUsesWith(LoadedValue); LoadedPtr->eraseFromParent(); } // Likewise for the type test. IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); for (Instruction *Pred : Preds) { Pred->replaceAllUsesWith(TypeTestCall); Pred->eraseFromParent(); } // We have already erased any extractvalue instructions that refer to the // intrinsic call, but the intrinsic may have other non-extractvalue uses // (although this is unlikely). In that case, explicitly build a pair and // RAUW it. if (!CI->use_empty()) { Value *Pair = UndefValue::get(CI->getType()); IRBuilder<> B(CI); Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); CI->replaceAllUsesWith(Pair); } // The number of unsafe uses is initially the number of uses. auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; NumUnsafeUses = DevirtCalls.size(); // If the function pointer has a non-call user, we cannot eliminate the type // check, as one of those users may eventually call the pointer. Increment // the unsafe use count to make sure it cannot reach zero. if (HasNonCallUses) ++NumUnsafeUses; for (DevirtCallSite Call : DevirtCalls) { CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, &NumUnsafeUses); } CI->eraseFromParent(); } } void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(cast(Slot.TypeID)->getString()); if (!TidSummary) return; auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); if (ResI == TidSummary->WPDRes.end()) return; const WholeProgramDevirtResolution &Res = ResI->second; if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { // The type of the function in the declaration is irrelevant because every // call site will cast it to the correct type. auto *SingleImpl = M.getOrInsertFunction( Res.SingleImplName, Type::getVoidTy(M.getContext())); // This is the import phase so we should not be exporting anything. bool IsExported = false; applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); assert(!IsExported); } for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { auto I = Res.ResByArg.find(CSByConstantArg.first); if (I == Res.ResByArg.end()) continue; auto &ResByArg = I->second; // FIXME: We should figure out what to do about the "function name" argument // to the apply* functions, as the function names are unavailable during the // importing phase. For now we just pass the empty string. This does not // impact correctness because the function names are just used for remarks. switch (ResByArg.TheKind) { case WholeProgramDevirtResolution::ByArg::UniformRetVal: applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); break; case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { Constant *UniqueMemberAddr = importGlobal(Slot, CSByConstantArg.first, "unique_member"); applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, UniqueMemberAddr); break; } case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", Int32Ty, ResByArg.Byte); Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, ResByArg.Bit); applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); } default: break; } } } void DevirtModule::removeRedundantTypeTests() { auto True = ConstantInt::getTrue(M.getContext()); for (auto &&U : NumUnsafeUsesForTypeTest) { if (U.second == 0) { U.first->replaceAllUsesWith(True); U.first->eraseFromParent(); } } } bool DevirtModule::run() { Function *TypeTestFunc = M.getFunction(Intrinsic::getName(Intrinsic::type_test)); Function *TypeCheckedLoadFunc = M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); // Normally if there are no users of the devirtualization intrinsics in the // module, this pass has nothing to do. But if we are exporting, we also need // to handle any users that appear only in the function summaries. if (!ExportSummary && (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || AssumeFunc->use_empty()) && (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) return false; if (TypeTestFunc && AssumeFunc) scanTypeTestUsers(TypeTestFunc, AssumeFunc); if (TypeCheckedLoadFunc) scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); if (ImportSummary) { for (auto &S : CallSlots) importResolution(S.first, S.second); removeRedundantTypeTests(); // The rest of the code is only necessary when exporting or during regular // LTO, so we are done. return true; } // Rebuild type metadata into a map for easy lookup. std::vector Bits; DenseMap> TypeIdMap; buildTypeIdentifierMap(Bits, TypeIdMap); if (TypeIdMap.empty()) return true; // Collect information from summary about which calls to try to devirtualize. if (ExportSummary) { DenseMap> MetadataByGUID; for (auto &P : TypeIdMap) { if (auto *TypeId = dyn_cast(P.first)) MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( TypeId); } for (auto &P : *ExportSummary) { for (auto &S : P.second.SummaryList) { auto *FS = dyn_cast(S.get()); if (!FS) continue; // FIXME: Only add live functions. for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { for (Metadata *MD : MetadataByGUID[VF.GUID]) { CallSlots[{MD, VF.Offset}].CSInfo.SummaryHasTypeTestAssumeUsers = true; } } for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { for (Metadata *MD : MetadataByGUID[VF.GUID]) { CallSlots[{MD, VF.Offset}] .CSInfo.SummaryTypeCheckedLoadUsers.push_back(FS); } } for (const FunctionSummary::ConstVCall &VC : FS->type_test_assume_const_vcalls()) { for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { CallSlots[{MD, VC.VFunc.Offset}] .ConstCSInfo[VC.Args] .SummaryHasTypeTestAssumeUsers = true; } } for (const FunctionSummary::ConstVCall &VC : FS->type_checked_load_const_vcalls()) { for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { CallSlots[{MD, VC.VFunc.Offset}] .ConstCSInfo[VC.Args] .SummaryTypeCheckedLoadUsers.push_back(FS); } } } } } // For each (type, offset) pair: bool DidVirtualConstProp = false; std::map DevirtTargets; for (auto &S : CallSlots) { // Search each of the members of the type identifier for the virtual // function implementation at offset S.first.ByteOffset, and add to // TargetsForSlot. std::vector TargetsForSlot; if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], S.first.ByteOffset)) { WholeProgramDevirtResolution *Res = nullptr; if (ExportSummary && isa(S.first.TypeID)) Res = &ExportSummary ->getOrInsertTypeIdSummary( cast(S.first.TypeID)->getString()) .WPDRes[S.first.ByteOffset]; if (!trySingleImplDevirt(TargetsForSlot, S.second, Res) && tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first)) DidVirtualConstProp = true; // Collect functions devirtualized at least for one call site for stats. if (RemarksEnabled) for (const auto &T : TargetsForSlot) if (T.WasDevirt) DevirtTargets[T.Fn->getName()] = T.Fn; } // CFI-specific: if we are exporting and any llvm.type.checked.load // intrinsics were *not* devirtualized, we need to add the resulting // llvm.type.test intrinsics to the function summaries so that the // LowerTypeTests pass will export them. if (ExportSummary && isa(S.first.TypeID)) { auto GUID = GlobalValue::getGUID(cast(S.first.TypeID)->getString()); for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) FS->addTypeTest(GUID); for (auto &CCS : S.second.ConstCSInfo) for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) FS->addTypeTest(GUID); } } if (RemarksEnabled) { // Generate remarks for each devirtualized function. for (const auto &DT : DevirtTargets) { Function *F = DT.second; // In the new pass manager, we can request the optimization // remark emitter pass on a per-function-basis, which the // OREGetter will do for us. // In the old pass manager, this is harder, so we just build // a optimization remark emitter on the fly, when we need it. std::unique_ptr OwnedORE; OptimizationRemarkEmitter *ORE; if (OREGetter) ORE = &OREGetter(F); else { OwnedORE = make_unique(F); ORE = OwnedORE.get(); } using namespace ore; ORE->emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) << "devirtualized " << NV("FunctionName", F->getName())); } } removeRedundantTypeTests(); // Rebuild each global we touched as part of virtual constant propagation to // include the before and after bytes. if (DidVirtualConstProp) for (VTableBits &B : Bits) rebuildGlobal(B); return true; }