//===-- RegAllocSimple.cpp - A simple generic register allocator ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a simple register allocator. *Very* simple: It immediate // spills every value right after it is computed, and it reloads all used // operands from the spill area to temporary registers before each instruction. // It does not keep values in registers across instructions. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; namespace { static Statistic<> NumStores("ra-simple", "Number of stores added"); static Statistic<> NumLoads ("ra-simple", "Number of loads added"); static RegisterRegAlloc simpleRegAlloc("simple", " simple register allocator", createSimpleRegisterAllocator); class VISIBILITY_HIDDEN RegAllocSimple : public MachineFunctionPass { MachineFunction *MF; const TargetMachine *TM; const MRegisterInfo *RegInfo; bool *PhysRegsEverUsed; // StackSlotForVirtReg - Maps SSA Regs => frame index on the stack where // these values are spilled std::map StackSlotForVirtReg; // RegsUsed - Keep track of what registers are currently in use. This is a // bitset. std::vector RegsUsed; // RegClassIdx - Maps RegClass => which index we can take a register // from. Since this is a simple register allocator, when we need a register // of a certain class, we just take the next available one. std::map RegClassIdx; public: virtual const char *getPassName() const { return "Simple Register Allocator"; } /// runOnMachineFunction - Register allocate the whole function bool runOnMachineFunction(MachineFunction &Fn); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(PHIEliminationID); // Eliminate PHI nodes MachineFunctionPass::getAnalysisUsage(AU); } private: /// AllocateBasicBlock - Register allocate the specified basic block. void AllocateBasicBlock(MachineBasicBlock &MBB); /// getStackSpaceFor - This returns the offset of the specified virtual /// register on the stack, allocating space if necessary. int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); /// Given a virtual register, return a compatible physical register that is /// currently unused. /// /// Side effect: marks that register as being used until manually cleared /// unsigned getFreeReg(unsigned virtualReg); /// Moves value from memory into that register unsigned reloadVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg); /// Saves reg value on the stack (maps virtual register to stack value) void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned PhysReg); }; } /// getStackSpaceFor - This allocates space for the specified virtual /// register to be held on the stack. int RegAllocSimple::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { // Find the location VirtReg would belong... std::map::iterator I = StackSlotForVirtReg.lower_bound(VirtReg); if (I != StackSlotForVirtReg.end() && I->first == VirtReg) return I->second; // Already has space allocated? // Allocate a new stack object for this spill location... int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(), RC->getAlignment()); // Assign the slot... StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx)); return FrameIdx; } unsigned RegAllocSimple::getFreeReg(unsigned virtualReg) { const TargetRegisterClass* RC = MF->getSSARegMap()->getRegClass(virtualReg); TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); while (1) { unsigned regIdx = RegClassIdx[RC]++; assert(RI+regIdx != RE && "Not enough registers!"); unsigned PhysReg = *(RI+regIdx); if (!RegsUsed[PhysReg]) { PhysRegsEverUsed[PhysReg] = true; return PhysReg; } } } unsigned RegAllocSimple::reloadVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg) { const TargetRegisterClass* RC = MF->getSSARegMap()->getRegClass(VirtReg); int FrameIdx = getStackSpaceFor(VirtReg, RC); unsigned PhysReg = getFreeReg(VirtReg); // Add move instruction(s) ++NumLoads; RegInfo->loadRegFromStackSlot(MBB, I, PhysReg, FrameIdx, RC); return PhysReg; } void RegAllocSimple::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned VirtReg, unsigned PhysReg) { const TargetRegisterClass* RC = MF->getSSARegMap()->getRegClass(VirtReg); int FrameIdx = getStackSpaceFor(VirtReg, RC); // Add move instruction(s) ++NumStores; RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIdx, RC); } void RegAllocSimple::AllocateBasicBlock(MachineBasicBlock &MBB) { // loop over each instruction for (MachineBasicBlock::iterator MI = MBB.begin(); MI != MBB.end(); ++MI) { // Made to combat the incorrect allocation of r2 = add r1, r1 std::map Virt2PhysRegMap; RegsUsed.resize(RegInfo->getNumRegs()); // This is a preliminary pass that will invalidate any registers that are // used by the instruction (including implicit uses). unsigned Opcode = MI->getOpcode(); const TargetInstrDescriptor &Desc = TM->getInstrInfo()->get(Opcode); const unsigned *Regs; if (Desc.ImplicitUses) { for (Regs = Desc.ImplicitUses; *Regs; ++Regs) RegsUsed[*Regs] = true; } if (Desc.ImplicitDefs) { for (Regs = Desc.ImplicitDefs; *Regs; ++Regs) { RegsUsed[*Regs] = true; PhysRegsEverUsed[*Regs] = true; } } // Loop over uses, move from memory into registers. for (int i = MI->getNumOperands() - 1; i >= 0; --i) { MachineOperand &op = MI->getOperand(i); if (op.isRegister() && op.getReg() && MRegisterInfo::isVirtualRegister(op.getReg())) { unsigned virtualReg = (unsigned) op.getReg(); DEBUG(std::cerr << "op: " << op << "\n"); DEBUG(std::cerr << "\t inst[" << i << "]: "; MI->print(std::cerr, TM)); // make sure the same virtual register maps to the same physical // register in any given instruction unsigned physReg = Virt2PhysRegMap[virtualReg]; if (physReg == 0) { if (op.isDef()) { int TiedOp = TM->getInstrInfo() ->findTiedToSrcOperand(MI->getOpcode(), i); if (TiedOp == -1) { physReg = getFreeReg(virtualReg); } else { // must be same register number as the source operand that is // tied to. This maps a = b + c into b = b + c, and saves b into // a's spot. assert(MI->getOperand(TiedOp).isRegister() && MI->getOperand(TiedOp).getReg() && MI->getOperand(TiedOp).isUse() && "Two address instruction invalid!"); physReg = MI->getOperand(TiedOp).getReg(); } spillVirtReg(MBB, next(MI), virtualReg, physReg); } else { physReg = reloadVirtReg(MBB, MI, virtualReg); Virt2PhysRegMap[virtualReg] = physReg; } } MI->getOperand(i).setReg(physReg); DEBUG(std::cerr << "virt: " << virtualReg << ", phys: " << op.getReg() << "\n"); } } RegClassIdx.clear(); RegsUsed.clear(); } } /// runOnMachineFunction - Register allocate the whole function /// bool RegAllocSimple::runOnMachineFunction(MachineFunction &Fn) { DEBUG(std::cerr << "Machine Function " << "\n"); MF = &Fn; TM = &MF->getTarget(); RegInfo = TM->getRegisterInfo(); PhysRegsEverUsed = new bool[RegInfo->getNumRegs()]; std::fill(PhysRegsEverUsed, PhysRegsEverUsed+RegInfo->getNumRegs(), false); Fn.setUsedPhysRegs(PhysRegsEverUsed); // Loop over all of the basic blocks, eliminating virtual register references for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) AllocateBasicBlock(*MBB); StackSlotForVirtReg.clear(); return true; } FunctionPass *llvm::createSimpleRegisterAllocator() { return new RegAllocSimple(); }