//===- ArchiveWriter.cpp - ar File Format implementation --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the writeArchive function. // //===----------------------------------------------------------------------===// #include "llvm/Object/ArchiveWriter.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/Magic.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Object/Archive.h" #include "llvm/Object/Error.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/SymbolicFile.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/Errc.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/Path.h" #include "llvm/Support/SmallVectorMemoryBuffer.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/raw_ostream.h" #include #if !defined(_MSC_VER) && !defined(__MINGW32__) #include #else #include #endif using namespace llvm; NewArchiveMember::NewArchiveMember(MemoryBufferRef BufRef) : Buf(MemoryBuffer::getMemBuffer(BufRef, false)), MemberName(BufRef.getBufferIdentifier()) {} Expected NewArchiveMember::getOldMember(const object::Archive::Child &OldMember, bool Deterministic) { Expected BufOrErr = OldMember.getMemoryBufferRef(); if (!BufOrErr) return BufOrErr.takeError(); NewArchiveMember M; M.Buf = MemoryBuffer::getMemBuffer(*BufOrErr, false); M.MemberName = M.Buf->getBufferIdentifier(); if (!Deterministic) { auto ModTimeOrErr = OldMember.getLastModified(); if (!ModTimeOrErr) return ModTimeOrErr.takeError(); M.ModTime = ModTimeOrErr.get(); Expected UIDOrErr = OldMember.getUID(); if (!UIDOrErr) return UIDOrErr.takeError(); M.UID = UIDOrErr.get(); Expected GIDOrErr = OldMember.getGID(); if (!GIDOrErr) return GIDOrErr.takeError(); M.GID = GIDOrErr.get(); Expected AccessModeOrErr = OldMember.getAccessMode(); if (!AccessModeOrErr) return AccessModeOrErr.takeError(); M.Perms = AccessModeOrErr.get(); } return std::move(M); } Expected NewArchiveMember::getFile(StringRef FileName, bool Deterministic) { sys::fs::file_status Status; auto FDOrErr = sys::fs::openNativeFileForRead(FileName); if (!FDOrErr) return FDOrErr.takeError(); sys::fs::file_t FD = *FDOrErr; assert(FD != sys::fs::kInvalidFile); if (auto EC = sys::fs::status(FD, Status)) return errorCodeToError(EC); // Opening a directory doesn't make sense. Let it fail. // Linux cannot open directories with open(2), although // cygwin and *bsd can. if (Status.type() == sys::fs::file_type::directory_file) return errorCodeToError(make_error_code(errc::is_a_directory)); ErrorOr> MemberBufferOrErr = MemoryBuffer::getOpenFile(FD, FileName, Status.getSize(), false); if (!MemberBufferOrErr) return errorCodeToError(MemberBufferOrErr.getError()); if (auto EC = sys::fs::closeFile(FD)) return errorCodeToError(EC); NewArchiveMember M; M.Buf = std::move(*MemberBufferOrErr); M.MemberName = M.Buf->getBufferIdentifier(); if (!Deterministic) { M.ModTime = std::chrono::time_point_cast( Status.getLastModificationTime()); M.UID = Status.getUser(); M.GID = Status.getGroup(); M.Perms = Status.permissions(); } return std::move(M); } template static void printWithSpacePadding(raw_ostream &OS, T Data, unsigned Size) { uint64_t OldPos = OS.tell(); OS << Data; unsigned SizeSoFar = OS.tell() - OldPos; assert(SizeSoFar <= Size && "Data doesn't fit in Size"); OS.indent(Size - SizeSoFar); } static bool isDarwin(object::Archive::Kind Kind) { return Kind == object::Archive::K_DARWIN || Kind == object::Archive::K_DARWIN64; } static bool isBSDLike(object::Archive::Kind Kind) { switch (Kind) { case object::Archive::K_GNU: case object::Archive::K_GNU64: return false; case object::Archive::K_BSD: case object::Archive::K_DARWIN: case object::Archive::K_DARWIN64: return true; case object::Archive::K_COFF: break; } llvm_unreachable("not supported for writting"); } template static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val) { support::endian::write(Out, Val, isBSDLike(Kind) ? support::little : support::big); } static void printRestOfMemberHeader( raw_ostream &Out, const sys::TimePoint &ModTime, unsigned UID, unsigned GID, unsigned Perms, uint64_t Size) { printWithSpacePadding(Out, sys::toTimeT(ModTime), 12); // The format has only 6 chars for uid and gid. Truncate if the provided // values don't fit. printWithSpacePadding(Out, UID % 1000000, 6); printWithSpacePadding(Out, GID % 1000000, 6); printWithSpacePadding(Out, format("%o", Perms), 8); printWithSpacePadding(Out, Size, 10); Out << "`\n"; } static void printGNUSmallMemberHeader(raw_ostream &Out, StringRef Name, const sys::TimePoint &ModTime, unsigned UID, unsigned GID, unsigned Perms, uint64_t Size) { printWithSpacePadding(Out, Twine(Name) + "/", 16); printRestOfMemberHeader(Out, ModTime, UID, GID, Perms, Size); } static void printBSDMemberHeader(raw_ostream &Out, uint64_t Pos, StringRef Name, const sys::TimePoint &ModTime, unsigned UID, unsigned GID, unsigned Perms, uint64_t Size) { uint64_t PosAfterHeader = Pos + 60 + Name.size(); // Pad so that even 64 bit object files are aligned. unsigned Pad = offsetToAlignment(PosAfterHeader, Align(8)); unsigned NameWithPadding = Name.size() + Pad; printWithSpacePadding(Out, Twine("#1/") + Twine(NameWithPadding), 16); printRestOfMemberHeader(Out, ModTime, UID, GID, Perms, NameWithPadding + Size); Out << Name; while (Pad--) Out.write(uint8_t(0)); } static bool useStringTable(bool Thin, StringRef Name) { return Thin || Name.size() >= 16 || Name.contains('/'); } static bool is64BitKind(object::Archive::Kind Kind) { switch (Kind) { case object::Archive::K_GNU: case object::Archive::K_BSD: case object::Archive::K_DARWIN: case object::Archive::K_COFF: return false; case object::Archive::K_DARWIN64: case object::Archive::K_GNU64: return true; } llvm_unreachable("not supported for writting"); } static void printMemberHeader(raw_ostream &Out, uint64_t Pos, raw_ostream &StringTable, StringMap &MemberNames, object::Archive::Kind Kind, bool Thin, const NewArchiveMember &M, sys::TimePoint ModTime, uint64_t Size) { if (isBSDLike(Kind)) return printBSDMemberHeader(Out, Pos, M.MemberName, ModTime, M.UID, M.GID, M.Perms, Size); if (!useStringTable(Thin, M.MemberName)) return printGNUSmallMemberHeader(Out, M.MemberName, ModTime, M.UID, M.GID, M.Perms, Size); Out << '/'; uint64_t NamePos; if (Thin) { NamePos = StringTable.tell(); StringTable << M.MemberName << "/\n"; } else { auto Insertion = MemberNames.insert({M.MemberName, uint64_t(0)}); if (Insertion.second) { Insertion.first->second = StringTable.tell(); StringTable << M.MemberName << "/\n"; } NamePos = Insertion.first->second; } printWithSpacePadding(Out, NamePos, 15); printRestOfMemberHeader(Out, ModTime, M.UID, M.GID, M.Perms, Size); } namespace { struct MemberData { std::vector Symbols; std::string Header; StringRef Data; StringRef Padding; }; } // namespace static MemberData computeStringTable(StringRef Names) { unsigned Size = Names.size(); unsigned Pad = offsetToAlignment(Size, Align(2)); std::string Header; raw_string_ostream Out(Header); printWithSpacePadding(Out, "//", 48); printWithSpacePadding(Out, Size + Pad, 10); Out << "`\n"; Out.flush(); return {{}, std::move(Header), Names, Pad ? "\n" : ""}; } static sys::TimePoint now(bool Deterministic) { using namespace std::chrono; if (!Deterministic) return time_point_cast(system_clock::now()); return sys::TimePoint(); } static bool isArchiveSymbol(const object::BasicSymbolRef &S) { Expected SymFlagsOrErr = S.getFlags(); if (!SymFlagsOrErr) // TODO: Actually report errors helpfully. report_fatal_error(SymFlagsOrErr.takeError()); if (*SymFlagsOrErr & object::SymbolRef::SF_FormatSpecific) return false; if (!(*SymFlagsOrErr & object::SymbolRef::SF_Global)) return false; if (*SymFlagsOrErr & object::SymbolRef::SF_Undefined) return false; return true; } static void printNBits(raw_ostream &Out, object::Archive::Kind Kind, uint64_t Val) { if (is64BitKind(Kind)) print(Out, Kind, Val); else print(Out, Kind, Val); } static uint64_t computeSymbolTableSize(object::Archive::Kind Kind, uint64_t NumSyms, uint64_t OffsetSize, StringRef StringTable, uint32_t *Padding = nullptr) { assert((OffsetSize == 4 || OffsetSize == 8) && "Unsupported OffsetSize"); uint64_t Size = OffsetSize; // Number of entries if (isBSDLike(Kind)) Size += NumSyms * OffsetSize * 2; // Table else Size += NumSyms * OffsetSize; // Table if (isBSDLike(Kind)) Size += OffsetSize; // byte count Size += StringTable.size(); // ld64 expects the members to be 8-byte aligned for 64-bit content and at // least 4-byte aligned for 32-bit content. Opt for the larger encoding // uniformly. // We do this for all bsd formats because it simplifies aligning members. uint32_t Pad = offsetToAlignment(Size, Align(isBSDLike(Kind) ? 8 : 2)); Size += Pad; if (Padding) *Padding = Pad; return Size; } static void writeSymbolTableHeader(raw_ostream &Out, object::Archive::Kind Kind, bool Deterministic, uint64_t Size) { if (isBSDLike(Kind)) { const char *Name = is64BitKind(Kind) ? "__.SYMDEF_64" : "__.SYMDEF"; printBSDMemberHeader(Out, Out.tell(), Name, now(Deterministic), 0, 0, 0, Size); } else { const char *Name = is64BitKind(Kind) ? "/SYM64" : ""; printGNUSmallMemberHeader(Out, Name, now(Deterministic), 0, 0, 0, Size); } } static void writeSymbolTable(raw_ostream &Out, object::Archive::Kind Kind, bool Deterministic, ArrayRef Members, StringRef StringTable) { // We don't write a symbol table on an archive with no members -- except on // Darwin, where the linker will abort unless the archive has a symbol table. if (StringTable.empty() && !isDarwin(Kind)) return; unsigned NumSyms = 0; for (const MemberData &M : Members) NumSyms += M.Symbols.size(); uint64_t OffsetSize = is64BitKind(Kind) ? 8 : 4; uint32_t Pad; uint64_t Size = computeSymbolTableSize(Kind, NumSyms, OffsetSize, StringTable, &Pad); writeSymbolTableHeader(Out, Kind, Deterministic, Size); uint64_t Pos = Out.tell() + Size; if (isBSDLike(Kind)) printNBits(Out, Kind, NumSyms * 2 * OffsetSize); else printNBits(Out, Kind, NumSyms); for (const MemberData &M : Members) { for (unsigned StringOffset : M.Symbols) { if (isBSDLike(Kind)) printNBits(Out, Kind, StringOffset); printNBits(Out, Kind, Pos); // member offset } Pos += M.Header.size() + M.Data.size() + M.Padding.size(); } if (isBSDLike(Kind)) // byte count of the string table printNBits(Out, Kind, StringTable.size()); Out << StringTable; while (Pad--) Out.write(uint8_t(0)); } static Expected> getSymbols(MemoryBufferRef Buf, raw_ostream &SymNames, bool &HasObject) { std::vector Ret; // In the scenario when LLVMContext is populated SymbolicFile will contain a // reference to it, thus SymbolicFile should be destroyed first. LLVMContext Context; std::unique_ptr Obj; const file_magic Type = identify_magic(Buf.getBuffer()); // Treat unsupported file types as having no symbols. if (!object::SymbolicFile::isSymbolicFile(Type, &Context)) return Ret; if (Type == file_magic::bitcode) { auto ObjOrErr = object::SymbolicFile::createSymbolicFile( Buf, file_magic::bitcode, &Context); if (!ObjOrErr) return ObjOrErr.takeError(); Obj = std::move(*ObjOrErr); } else { auto ObjOrErr = object::SymbolicFile::createSymbolicFile(Buf); if (!ObjOrErr) return ObjOrErr.takeError(); Obj = std::move(*ObjOrErr); } HasObject = true; for (const object::BasicSymbolRef &S : Obj->symbols()) { if (!isArchiveSymbol(S)) continue; Ret.push_back(SymNames.tell()); if (Error E = S.printName(SymNames)) return std::move(E); SymNames << '\0'; } return Ret; } static Expected> computeMemberData(raw_ostream &StringTable, raw_ostream &SymNames, object::Archive::Kind Kind, bool Thin, bool Deterministic, bool NeedSymbols, ArrayRef NewMembers) { static char PaddingData[8] = {'\n', '\n', '\n', '\n', '\n', '\n', '\n', '\n'}; // This ignores the symbol table, but we only need the value mod 8 and the // symbol table is aligned to be a multiple of 8 bytes uint64_t Pos = 0; std::vector Ret; bool HasObject = false; // Deduplicate long member names in the string table and reuse earlier name // offsets. This especially saves space for COFF Import libraries where all // members have the same name. StringMap MemberNames; // UniqueTimestamps is a special case to improve debugging on Darwin: // // The Darwin linker does not link debug info into the final // binary. Instead, it emits entries of type N_OSO in in the output // binary's symbol table, containing references to the linked-in // object files. Using that reference, the debugger can read the // debug data directly from the object files. Alternatively, an // invocation of 'dsymutil' will link the debug data from the object // files into a dSYM bundle, which can be loaded by the debugger, // instead of the object files. // // For an object file, the N_OSO entries contain the absolute path // path to the file, and the file's timestamp. For an object // included in an archive, the path is formatted like // "/absolute/path/to/archive.a(member.o)", and the timestamp is the // archive member's timestamp, rather than the archive's timestamp. // // However, this doesn't always uniquely identify an object within // an archive -- an archive file can have multiple entries with the // same filename. (This will happen commonly if the original object // files started in different directories.) The only way they get // distinguished, then, is via the timestamp. But this process is // unable to find the correct object file in the archive when there // are two files of the same name and timestamp. // // Additionally, timestamp==0 is treated specially, and causes the // timestamp to be ignored as a match criteria. // // That will "usually" work out okay when creating an archive not in // deterministic timestamp mode, because the objects will probably // have been created at different timestamps. // // To ameliorate this problem, in deterministic archive mode (which // is the default), on Darwin we will emit a unique non-zero // timestamp for each entry with a duplicated name. This is still // deterministic: the only thing affecting that timestamp is the // order of the files in the resultant archive. // // See also the functions that handle the lookup: // in lldb: ObjectContainerBSDArchive::Archive::FindObject() // in llvm/tools/dsymutil: BinaryHolder::GetArchiveMemberBuffers(). bool UniqueTimestamps = Deterministic && isDarwin(Kind); std::map FilenameCount; if (UniqueTimestamps) { for (const NewArchiveMember &M : NewMembers) FilenameCount[M.MemberName]++; for (auto &Entry : FilenameCount) Entry.second = Entry.second > 1 ? 1 : 0; } for (const NewArchiveMember &M : NewMembers) { std::string Header; raw_string_ostream Out(Header); MemoryBufferRef Buf = M.Buf->getMemBufferRef(); StringRef Data = Thin ? "" : Buf.getBuffer(); // ld64 expects the members to be 8-byte aligned for 64-bit content and at // least 4-byte aligned for 32-bit content. Opt for the larger encoding // uniformly. This matches the behaviour with cctools and ensures that ld64 // is happy with archives that we generate. unsigned MemberPadding = isDarwin(Kind) ? offsetToAlignment(Data.size(), Align(8)) : 0; unsigned TailPadding = offsetToAlignment(Data.size() + MemberPadding, Align(2)); StringRef Padding = StringRef(PaddingData, MemberPadding + TailPadding); sys::TimePoint ModTime; if (UniqueTimestamps) // Increment timestamp for each file of a given name. ModTime = sys::toTimePoint(FilenameCount[M.MemberName]++); else ModTime = M.ModTime; uint64_t Size = Buf.getBufferSize() + MemberPadding; if (Size > object::Archive::MaxMemberSize) { std::string StringMsg = "File " + M.MemberName.str() + " exceeds size limit"; return make_error( std::move(StringMsg), object::object_error::parse_failed); } printMemberHeader(Out, Pos, StringTable, MemberNames, Kind, Thin, M, ModTime, Size); Out.flush(); std::vector Symbols; if (NeedSymbols) { Expected> SymbolsOrErr = getSymbols(Buf, SymNames, HasObject); if (auto E = SymbolsOrErr.takeError()) return std::move(E); Symbols = std::move(*SymbolsOrErr); } Pos += Header.size() + Data.size() + Padding.size(); Ret.push_back({std::move(Symbols), std::move(Header), Data, Padding}); } // If there are no symbols, emit an empty symbol table, to satisfy Solaris // tools, older versions of which expect a symbol table in a non-empty // archive, regardless of whether there are any symbols in it. if (HasObject && SymNames.tell() == 0) SymNames << '\0' << '\0' << '\0'; return Ret; } namespace llvm { static ErrorOr> canonicalizePath(StringRef P) { SmallString<128> Ret = P; std::error_code Err = sys::fs::make_absolute(Ret); if (Err) return Err; sys::path::remove_dots(Ret, /*removedotdot*/ true); return Ret; } // Compute the relative path from From to To. Expected computeArchiveRelativePath(StringRef From, StringRef To) { ErrorOr> PathToOrErr = canonicalizePath(To); ErrorOr> DirFromOrErr = canonicalizePath(From); if (!PathToOrErr || !DirFromOrErr) return errorCodeToError(std::error_code(errno, std::generic_category())); const SmallString<128> &PathTo = *PathToOrErr; const SmallString<128> &DirFrom = sys::path::parent_path(*DirFromOrErr); // Can't construct a relative path between different roots if (sys::path::root_name(PathTo) != sys::path::root_name(DirFrom)) return sys::path::convert_to_slash(PathTo); // Skip common prefixes auto FromTo = std::mismatch(sys::path::begin(DirFrom), sys::path::end(DirFrom), sys::path::begin(PathTo)); auto FromI = FromTo.first; auto ToI = FromTo.second; // Construct relative path SmallString<128> Relative; for (auto FromE = sys::path::end(DirFrom); FromI != FromE; ++FromI) sys::path::append(Relative, sys::path::Style::posix, ".."); for (auto ToE = sys::path::end(PathTo); ToI != ToE; ++ToI) sys::path::append(Relative, sys::path::Style::posix, *ToI); return std::string(Relative.str()); } static Error writeArchiveToStream(raw_ostream &Out, ArrayRef NewMembers, bool WriteSymtab, object::Archive::Kind Kind, bool Deterministic, bool Thin) { assert((!Thin || !isBSDLike(Kind)) && "Only the gnu format has a thin mode"); SmallString<0> SymNamesBuf; raw_svector_ostream SymNames(SymNamesBuf); SmallString<0> StringTableBuf; raw_svector_ostream StringTable(StringTableBuf); Expected> DataOrErr = computeMemberData(StringTable, SymNames, Kind, Thin, Deterministic, WriteSymtab, NewMembers); if (Error E = DataOrErr.takeError()) return E; std::vector &Data = *DataOrErr; if (!StringTableBuf.empty()) Data.insert(Data.begin(), computeStringTable(StringTableBuf)); // We would like to detect if we need to switch to a 64-bit symbol table. if (WriteSymtab) { uint64_t MaxOffset = 8; // For the file signature. uint64_t LastOffset = MaxOffset; uint64_t NumSyms = 0; for (const auto &M : Data) { // Record the start of the member's offset LastOffset = MaxOffset; // Account for the size of each part associated with the member. MaxOffset += M.Header.size() + M.Data.size() + M.Padding.size(); NumSyms += M.Symbols.size(); } // We assume 32-bit offsets to see if 32-bit symbols are possible or not. uint64_t SymtabSize = computeSymbolTableSize(Kind, NumSyms, 4, SymNamesBuf); auto computeSymbolTableHeaderSize = [=] { SmallString<0> TmpBuf; raw_svector_ostream Tmp(TmpBuf); writeSymbolTableHeader(Tmp, Kind, Deterministic, SymtabSize); return TmpBuf.size(); }; LastOffset += computeSymbolTableHeaderSize() + SymtabSize; // The SYM64 format is used when an archive's member offsets are larger than // 32-bits can hold. The need for this shift in format is detected by // writeArchive. To test this we need to generate a file with a member that // has an offset larger than 32-bits but this demands a very slow test. To // speed the test up we use this environment variable to pretend like the // cutoff happens before 32-bits and instead happens at some much smaller // value. uint64_t Sym64Threshold = 1ULL << 32; const char *Sym64Env = std::getenv("SYM64_THRESHOLD"); if (Sym64Env) StringRef(Sym64Env).getAsInteger(10, Sym64Threshold); // If LastOffset isn't going to fit in a 32-bit varible we need to switch // to 64-bit. Note that the file can be larger than 4GB as long as the last // member starts before the 4GB offset. if (LastOffset >= Sym64Threshold) { if (Kind == object::Archive::K_DARWIN) Kind = object::Archive::K_DARWIN64; else Kind = object::Archive::K_GNU64; } } if (Thin) Out << "!\n"; else Out << "!\n"; if (WriteSymtab) writeSymbolTable(Out, Kind, Deterministic, Data, SymNamesBuf); for (const MemberData &M : Data) Out << M.Header << M.Data << M.Padding; Out.flush(); return Error::success(); } Error writeArchive(StringRef ArcName, ArrayRef NewMembers, bool WriteSymtab, object::Archive::Kind Kind, bool Deterministic, bool Thin, std::unique_ptr OldArchiveBuf) { Expected Temp = sys::fs::TempFile::create(ArcName + ".temp-archive-%%%%%%%.a"); if (!Temp) return Temp.takeError(); raw_fd_ostream Out(Temp->FD, false); if (Error E = writeArchiveToStream(Out, NewMembers, WriteSymtab, Kind, Deterministic, Thin)) { if (Error DiscardError = Temp->discard()) return joinErrors(std::move(E), std::move(DiscardError)); return E; } // At this point, we no longer need whatever backing memory // was used to generate the NewMembers. On Windows, this buffer // could be a mapped view of the file we want to replace (if // we're updating an existing archive, say). In that case, the // rename would still succeed, but it would leave behind a // temporary file (actually the original file renamed) because // a file cannot be deleted while there's a handle open on it, // only renamed. So by freeing this buffer, this ensures that // the last open handle on the destination file, if any, is // closed before we attempt to rename. OldArchiveBuf.reset(); return Temp->keep(ArcName); } Expected> writeArchiveToBuffer(ArrayRef NewMembers, bool WriteSymtab, object::Archive::Kind Kind, bool Deterministic, bool Thin) { SmallVector ArchiveBufferVector; raw_svector_ostream ArchiveStream(ArchiveBufferVector); if (Error E = writeArchiveToStream(ArchiveStream, NewMembers, WriteSymtab, Kind, Deterministic, Thin)) return std::move(E); return std::make_unique( std::move(ArchiveBufferVector)); } } // namespace llvm