//===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Subclass of MipsDAGToDAGISel specialized for mips32/64. // //===----------------------------------------------------------------------===// #include "MipsSEISelDAGToDAG.h" #include "MCTargetDesc/MipsBaseInfo.h" #include "Mips.h" #include "MipsAnalyzeImmediate.h" #include "MipsMachineFunction.h" #include "MipsRegisterInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #define DEBUG_TYPE "mips-isel" bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { Subtarget = &static_cast(MF.getSubtarget()); if (Subtarget->inMips16Mode()) return false; return MipsDAGToDAGISel::runOnMachineFunction(MF); } void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); SelectionDAGISel::getAnalysisUsage(AU); } void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI, MachineFunction &MF) { MachineInstrBuilder MIB(MF, &MI); unsigned Mask = MI.getOperand(1).getImm(); unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef; if (Mask & 1) MIB.addReg(Mips::DSPPos, Flag); if (Mask & 2) MIB.addReg(Mips::DSPSCount, Flag); if (Mask & 4) MIB.addReg(Mips::DSPCarry, Flag); if (Mask & 8) MIB.addReg(Mips::DSPOutFlag, Flag); if (Mask & 16) MIB.addReg(Mips::DSPCCond, Flag); if (Mask & 32) MIB.addReg(Mips::DSPEFI, Flag); } unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const { switch (cast(RegIdx)->getZExtValue()) { default: llvm_unreachable("Could not map int to register"); case 0: return Mips::MSAIR; case 1: return Mips::MSACSR; case 2: return Mips::MSAAccess; case 3: return Mips::MSASave; case 4: return Mips::MSAModify; case 5: return Mips::MSARequest; case 6: return Mips::MSAMap; case 7: return Mips::MSAUnmap; } } bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI, const MachineInstr& MI) { unsigned DstReg = 0, ZeroReg = 0; // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". if ((MI.getOpcode() == Mips::ADDiu) && (MI.getOperand(1).getReg() == Mips::ZERO) && (MI.getOperand(2).isImm()) && (MI.getOperand(2).getImm() == 0)) { DstReg = MI.getOperand(0).getReg(); ZeroReg = Mips::ZERO; } else if ((MI.getOpcode() == Mips::DADDiu) && (MI.getOperand(1).getReg() == Mips::ZERO_64) && (MI.getOperand(2).isImm()) && (MI.getOperand(2).getImm() == 0)) { DstReg = MI.getOperand(0).getReg(); ZeroReg = Mips::ZERO_64; } if (!DstReg) return false; // Replace uses with ZeroReg. for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg), E = MRI->use_end(); U != E;) { MachineOperand &MO = *U; unsigned OpNo = U.getOperandNo(); MachineInstr *MI = MO.getParent(); ++U; // Do not replace if it is a phi's operand or is tied to def operand. if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo()) continue; // Also, we have to check that the register class of the operand // contains the zero register. if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg)) continue; MO.setReg(ZeroReg); } return true; } void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) { MipsFunctionInfo *MipsFI = MF.getInfo(); if (!MipsFI->globalBaseRegSet()) return; MachineBasicBlock &MBB = MF.front(); MachineBasicBlock::iterator I = MBB.begin(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL; unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg(); const TargetRegisterClass *RC; const MipsABIInfo &ABI = static_cast(TM).getABI(); RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; V0 = RegInfo.createVirtualRegister(RC); V1 = RegInfo.createVirtualRegister(RC); if (ABI.IsN64()) { MF.getRegInfo().addLiveIn(Mips::T9_64); MBB.addLiveIn(Mips::T9_64); // lui $v0, %hi(%neg(%gp_rel(fname))) // daddu $v1, $v0, $t9 // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) const GlobalValue *FName = &MF.getFunction(); BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0) .addReg(Mips::T9_64); BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); return; } if (!MF.getTarget().isPositionIndependent()) { // Set global register to __gnu_local_gp. // // lui $v0, %hi(__gnu_local_gp) // addiu $globalbasereg, $v0, %lo(__gnu_local_gp) BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI); BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0) .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO); return; } MF.getRegInfo().addLiveIn(Mips::T9); MBB.addLiveIn(Mips::T9); if (ABI.IsN32()) { // lui $v0, %hi(%neg(%gp_rel(fname))) // addu $v1, $v0, $t9 // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) const GlobalValue *FName = &MF.getFunction(); BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9); BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1) .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); return; } assert(ABI.IsO32()); // For O32 ABI, the following instruction sequence is emitted to initialize // the global base register: // // 0. lui $2, %hi(_gp_disp) // 1. addiu $2, $2, %lo(_gp_disp) // 2. addu $globalbasereg, $2, $t9 // // We emit only the last instruction here. // // GNU linker requires that the first two instructions appear at the beginning // of a function and no instructions be inserted before or between them. // The two instructions are emitted during lowering to MC layer in order to // avoid any reordering. // // Register $2 (Mips::V0) is added to the list of live-in registers to ensure // the value instruction 1 (addiu) defines is valid when instruction 2 (addu) // reads it. MF.getRegInfo().addLiveIn(Mips::V0); MBB.addLiveIn(Mips::V0); BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg) .addReg(Mips::V0).addReg(Mips::T9); } void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) { initGlobalBaseReg(MF); MachineRegisterInfo *MRI = &MF.getRegInfo(); for (auto &MBB: MF) { for (auto &MI: MBB) { switch (MI.getOpcode()) { case Mips::RDDSP: addDSPCtrlRegOperands(false, MI, MF); break; case Mips::WRDSP: addDSPCtrlRegOperands(true, MI, MF); break; default: replaceUsesWithZeroReg(MRI, MI); } } } } void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const { SDValue InFlag = Node->getOperand(2); unsigned Opc = InFlag.getOpcode(); SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1); EVT VT = LHS.getValueType(); // In the base case, we can rely on the carry bit from the addsc // instruction. if (Opc == ISD::ADDC) { SDValue Ops[3] = {LHS, RHS, InFlag}; CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops); return; } assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!"); // The more complex case is when there is a chain of ISD::ADDE nodes like: // (adde (adde (adde (addc a b) c) d) e). // // The addwc instruction does not write to the carry bit, instead it writes // to bit 20 of the dsp control register. To match this series of nodes, each // intermediate adde node must be expanded to write the carry bit before the // addition. // Start by reading the overflow field for addsc and moving the value to the // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP // corresponds to reading/writing the entire control register to/from a GPR. SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32); SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32); SDNode *DSPCtrlField = CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag); SDNode *Carry = CurDAG->getMachineNode( Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne); SDValue Ops[4] = {SDValue(DSPCtrlField, 0), CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne, SDValue(Carry, 0)}; SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops); // My reading of the MIPS DSP 3.01 specification isn't as clear as I // would like about whether bit 20 always gets overwritten by addwc. // Hence take an extremely conservative view and presume it's sticky. We // therefore need to clear it. SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32); SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)}; SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps); SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue, SDValue(DSPCtrlFinal, 0), CstOne); SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)}; CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands); } /// Match frameindex bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { EVT ValTy = Addr.getValueType(); Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy); return true; } return false; } /// Match frameindex+offset and frameindex|offset bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset( SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits, unsigned ShiftAmount = 0) const { if (CurDAG->isBaseWithConstantOffset(Addr)) { ConstantSDNode *CN = dyn_cast(Addr.getOperand(1)); if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) { EVT ValTy = Addr.getValueType(); // If the first operand is a FI, get the TargetFI Node if (FrameIndexSDNode *FIN = dyn_cast(Addr.getOperand(0))) Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); else { Base = Addr.getOperand(0); // If base is a FI, additional offset calculation is done in // eliminateFrameIndex, otherwise we need to check the alignment if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0) return false; } Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr), ValTy); return true; } } return false; } /// ComplexPattern used on MipsInstrInfo /// Used on Mips Load/Store instructions bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base, SDValue &Offset) const { // if Address is FI, get the TargetFrameIndex. if (selectAddrFrameIndex(Addr, Base, Offset)) return true; // on PIC code Load GA if (Addr.getOpcode() == MipsISD::Wrapper) { Base = Addr.getOperand(0); Offset = Addr.getOperand(1); return true; } if (!TM.isPositionIndependent()) { if ((Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress)) return false; } // Addresses of the form FI+const or FI|const if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) return true; // Operand is a result from an ADD. if (Addr.getOpcode() == ISD::ADD) { // When loading from constant pools, load the lower address part in // the instruction itself. Example, instead of: // lui $2, %hi($CPI1_0) // addiu $2, $2, %lo($CPI1_0) // lwc1 $f0, 0($2) // Generate: // lui $2, %hi($CPI1_0) // lwc1 $f0, %lo($CPI1_0)($2) if (Addr.getOperand(1).getOpcode() == MipsISD::Lo || Addr.getOperand(1).getOpcode() == MipsISD::GPRel) { SDValue Opnd0 = Addr.getOperand(1).getOperand(0); if (isa(Opnd0) || isa(Opnd0) || isa(Opnd0)) { Base = Addr.getOperand(0); Offset = Opnd0; return true; } } } return false; } /// ComplexPattern used on MipsInstrInfo /// Used on Mips Load/Store instructions bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base, SDValue &Offset) const { Base = Addr; Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType()); return true; } bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base, SDValue &Offset) const { return selectAddrRegImm(Addr, Base, Offset) || selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9)) return true; return false; } /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset) bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11)) return true; return false; } /// Used on microMIPS Load/Store unaligned instructions (12-bit offset) bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12)) return true; return false; } bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) return true; return false; } bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base, SDValue &Offset) const { return selectAddrRegImm11(Addr, Base, Offset) || selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base, SDValue &Offset) const { return selectAddrRegImm12(Addr, Base, Offset) || selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base, SDValue &Offset) const { return selectAddrRegImm16(Addr, Base, Offset) || selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) { if (isa(Base)) return false; if (ConstantSDNode *CN = dyn_cast(Offset)) { unsigned CnstOff = CN->getZExtValue(); return (CnstOff == (CnstOff & 0x3c)); } return false; } // For all other cases where "lw" would be selected, don't select "lw16" // because it would result in additional instructions to prepare operands. if (selectAddrRegImm(Addr, Base, Offset)) return false; return selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10)) return true; return selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1)) return true; return selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2)) return true; return selectAddrDefault(Addr, Base, Offset); } bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base, SDValue &Offset) const { if (selectAddrFrameIndex(Addr, Base, Offset)) return true; if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3)) return true; return selectAddrDefault(Addr, Base, Offset); } // Select constant vector splats. // // Returns true and sets Imm if: // * MSA is enabled // * N is a ISD::BUILD_VECTOR representing a constant splat bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm, unsigned MinSizeInBits) const { if (!Subtarget->hasMSA()) return false; BuildVectorSDNode *Node = dyn_cast(N); if (!Node) return false; APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, MinSizeInBits, !Subtarget->isLittle())) return false; Imm = SplatValue; return true; } // Select constant vector splats. // // In addition to the requirements of selectVSplat(), this function returns // true and sets Imm if: // * The splat value is the same width as the elements of the vector // * The splat value fits in an integer with the specified signed-ness and // width. // // This function looks through ISD::BITCAST nodes. // TODO: This might not be appropriate for big-endian MSA since BITCAST is // sometimes a shuffle in big-endian mode. // // It's worth noting that this function is not used as part of the selection // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd] // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in // MipsSEDAGToDAGISel::selectNode. bool MipsSEDAGToDAGISel:: selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed, unsigned ImmBitSize) const { APInt ImmValue; EVT EltTy = N->getValueType(0).getVectorElementType(); if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && ImmValue.getBitWidth() == EltTy.getSizeInBits()) { if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) || (!Signed && ImmValue.isIntN(ImmBitSize))) { Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy); return true; } } return false; } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatUimm1(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 1); } bool MipsSEDAGToDAGISel:: selectVSplatUimm2(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 2); } bool MipsSEDAGToDAGISel:: selectVSplatUimm3(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 3); } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatUimm4(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 4); } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatUimm5(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 5); } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatUimm6(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 6); } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatUimm8(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, false, 8); } // Select constant vector splats. bool MipsSEDAGToDAGISel:: selectVSplatSimm5(SDValue N, SDValue &Imm) const { return selectVSplatCommon(N, Imm, true, 5); } // Select constant vector splats whose value is a power of 2. // // In addition to the requirements of selectVSplat(), this function returns // true and sets Imm if: // * The splat value is the same width as the elements of the vector // * The splat value is a power of two. // // This function looks through ISD::BITCAST nodes. // TODO: This might not be appropriate for big-endian MSA since BITCAST is // sometimes a shuffle in big-endian mode. bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const { APInt ImmValue; EVT EltTy = N->getValueType(0).getVectorElementType(); if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && ImmValue.getBitWidth() == EltTy.getSizeInBits()) { int32_t Log2 = ImmValue.exactLogBase2(); if (Log2 != -1) { Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); return true; } } return false; } // Select constant vector splats whose value only has a consecutive sequence // of left-most bits set (e.g. 0b11...1100...00). // // In addition to the requirements of selectVSplat(), this function returns // true and sets Imm if: // * The splat value is the same width as the elements of the vector // * The splat value is a consecutive sequence of left-most bits. // // This function looks through ISD::BITCAST nodes. // TODO: This might not be appropriate for big-endian MSA since BITCAST is // sometimes a shuffle in big-endian mode. bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const { APInt ImmValue; EVT EltTy = N->getValueType(0).getVectorElementType(); if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && ImmValue.getBitWidth() == EltTy.getSizeInBits()) { // Extract the run of set bits starting with bit zero from the bitwise // inverse of ImmValue, and test that the inverse of this is the same // as the original value. if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) { Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N), EltTy); return true; } } return false; } // Select constant vector splats whose value only has a consecutive sequence // of right-most bits set (e.g. 0b00...0011...11). // // In addition to the requirements of selectVSplat(), this function returns // true and sets Imm if: // * The splat value is the same width as the elements of the vector // * The splat value is a consecutive sequence of right-most bits. // // This function looks through ISD::BITCAST nodes. // TODO: This might not be appropriate for big-endian MSA since BITCAST is // sometimes a shuffle in big-endian mode. bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const { APInt ImmValue; EVT EltTy = N->getValueType(0).getVectorElementType(); if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && ImmValue.getBitWidth() == EltTy.getSizeInBits()) { // Extract the run of set bits starting with bit zero, and test that the // result is the same as the original value if (ImmValue == (ImmValue & ~(ImmValue + 1))) { Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N), EltTy); return true; } } return false; } bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, SDValue &Imm) const { APInt ImmValue; EVT EltTy = N->getValueType(0).getVectorElementType(); if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && ImmValue.getBitWidth() == EltTy.getSizeInBits()) { int32_t Log2 = (~ImmValue).exactLogBase2(); if (Log2 != -1) { Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); return true; } } return false; } bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) { unsigned Opcode = Node->getOpcode(); SDLoc DL(Node); /// // Instruction Selection not handled by the auto-generated // tablegen selection should be handled here. /// switch(Opcode) { default: break; case ISD::ADDE: { selectAddE(Node, DL); return true; } case ISD::ConstantFP: { ConstantFPSDNode *CN = dyn_cast(Node); if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) { if (Subtarget->isGP64bit()) { SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, Mips::ZERO_64, MVT::i64); ReplaceNode(Node, CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero)); } else if (Subtarget->isFP64bit()) { SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, Mips::ZERO, MVT::i32); ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64, Zero, Zero)); } else { SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, Mips::ZERO, MVT::i32); ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero, Zero)); } return true; } break; } case ISD::Constant: { const ConstantSDNode *CN = dyn_cast(Node); int64_t Imm = CN->getSExtValue(); unsigned Size = CN->getValueSizeInBits(0); if (isInt<32>(Imm)) break; MipsAnalyzeImmediate AnalyzeImm; const MipsAnalyzeImmediate::InstSeq &Seq = AnalyzeImm.Analyze(Imm, Size, false); MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); SDLoc DL(CN); SDNode *RegOpnd; SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL, MVT::i64); // The first instruction can be a LUi which is different from other // instructions (ADDiu, ORI and SLL) in that it does not have a register // operand. if (Inst->Opc == Mips::LUi64) RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd); else RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, CurDAG->getRegister(Mips::ZERO_64, MVT::i64), ImmOpnd); // The remaining instructions in the sequence are handled here. for (++Inst; Inst != Seq.end(); ++Inst) { ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL, MVT::i64); RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, SDValue(RegOpnd, 0), ImmOpnd); } ReplaceNode(Node, RegOpnd); return true; } case ISD::INTRINSIC_W_CHAIN: { switch (cast(Node->getOperand(1))->getZExtValue()) { default: break; case Intrinsic::mips_cfcmsa: { SDValue ChainIn = Node->getOperand(0); SDValue RegIdx = Node->getOperand(2); SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL, getMSACtrlReg(RegIdx), MVT::i32); ReplaceNode(Node, Reg.getNode()); return true; } } break; } case ISD::INTRINSIC_WO_CHAIN: { switch (cast(Node->getOperand(0))->getZExtValue()) { default: break; case Intrinsic::mips_move_v: // Like an assignment but will always produce a move.v even if // unnecessary. ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL, Node->getValueType(0), Node->getOperand(1))); return true; } break; } case ISD::INTRINSIC_VOID: { switch (cast(Node->getOperand(1))->getZExtValue()) { default: break; case Intrinsic::mips_ctcmsa: { SDValue ChainIn = Node->getOperand(0); SDValue RegIdx = Node->getOperand(2); SDValue Value = Node->getOperand(3); SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL, getMSACtrlReg(RegIdx), Value); ReplaceNode(Node, ChainOut.getNode()); return true; } } break; } // Manually match MipsISD::Ins nodes to get the correct instruction. It has // to be done in this fashion so that we respect the differences between // dins and dinsm, as the difference is that the size operand has the range // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which // means SelectionDAGISel would have to test all the operands at once to // match the instruction. case MipsISD::Ins: { // Sanity checking for the node operands. if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64) return false; if (Node->getNumOperands() != 4) return false; if (Node->getOperand(1)->getOpcode() != ISD::Constant || Node->getOperand(2)->getOpcode() != ISD::Constant) return false; MVT ResTy = Node->getSimpleValueType(0); uint64_t Pos = Node->getConstantOperandVal(1); uint64_t Size = Node->getConstantOperandVal(2); // Size has to be >0 for 'ins', 'dins' and 'dinsu'. if (!Size) return false; if (Pos + Size > 64) return false; if (ResTy != MVT::i32 && ResTy != MVT::i64) return false; unsigned Opcode = 0; if (ResTy == MVT::i32) { if (Pos + Size <= 32) Opcode = Mips::INS; } else { if (Pos + Size <= 32) Opcode = Mips::DINS; else if (Pos < 32 && 1 < Size) Opcode = Mips::DINSM; else Opcode = Mips::DINSU; } if (Opcode) { SDValue Ops[4] = { Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32), CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)}; ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops)); return true; } return false; } case MipsISD::ThreadPointer: { EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout()); unsigned RdhwrOpc, DestReg; if (PtrVT == MVT::i32) { RdhwrOpc = Mips::RDHWR; DestReg = Mips::V1; } else { RdhwrOpc = Mips::RDHWR64; DestReg = Mips::V1_64; } SDNode *Rdhwr = CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0), CurDAG->getRegister(Mips::HWR29, MVT::i32)); SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg, SDValue(Rdhwr, 0)); SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT); ReplaceNode(Node, ResNode.getNode()); return true; } case ISD::BUILD_VECTOR: { // Select appropriate ldi.[bhwd] instructions for constant splats of // 128-bit when MSA is enabled. Fixup any register class mismatches that // occur as a result. // // This allows the compiler to use a wider range of immediates than would // otherwise be allowed. If, for example, v4i32 could only use ldi.h then // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101, // 0x01010101 } without using a constant pool. This would be sub-optimal // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the // same set/ of registers. Similarly, ldi.h isn't capable of producing { // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can. const MipsABIInfo &ABI = static_cast(TM).getABI(); BuildVectorSDNode *BVN = cast(Node); APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; unsigned LdiOp; EVT ResVecTy = BVN->getValueType(0); EVT ViaVecTy; if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector()) return false; if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, 8, !Subtarget->isLittle())) return false; switch (SplatBitSize) { default: return false; case 8: LdiOp = Mips::LDI_B; ViaVecTy = MVT::v16i8; break; case 16: LdiOp = Mips::LDI_H; ViaVecTy = MVT::v8i16; break; case 32: LdiOp = Mips::LDI_W; ViaVecTy = MVT::v4i32; break; case 64: LdiOp = Mips::LDI_D; ViaVecTy = MVT::v2i64; break; } SDNode *Res; // If we have a signed 10 bit integer, we can splat it directly. // // If we have something bigger we can synthesize the value into a GPR and // splat from there. if (SplatValue.isSignedIntN(10)) { SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL, ViaVecTy.getVectorElementType()); Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm); } else if (SplatValue.isSignedIntN(16) && ((ABI.IsO32() && SplatBitSize < 64) || (ABI.IsN32() || ABI.IsN64()))) { // Only handle signed 16 bit values when the element size is GPR width. // MIPS64 can handle all the cases but MIPS32 would need to handle // negative cases specifically here. Instead, handle those cases as // 64bit values. bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64; const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu; const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64; SDValue ZeroVal = CurDAG->getRegister( Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT); const unsigned FILLOp = SplatBitSize == 16 ? Mips::FILL_H : (SplatBitSize == 32 ? Mips::FILL_W : (SplatBitSize == 64 ? Mips::FILL_D : 0)); assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!"); assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) && "Attempting to use fill.d on MIPS32!"); const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT); Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal); Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0)); } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) { // Only handle the cases where the splat size agrees with the size // of the SplatValue here. const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); if (Hi) Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); if (Lo) Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, Hi ? SDValue(Res, 0) : ZeroVal, LoVal); assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!"); Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0)); } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 && (ABI.IsN32() || ABI.IsN64())) { // N32 and N64 can perform some tricks that O32 can't for signed 32 bit // integers due to having 64bit registers. lui will cause the necessary // zero/sign extension. const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); if (Hi) Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); if (Lo) Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, Hi ? SDValue(Res, 0) : ZeroVal, LoVal); Res = CurDAG->getMachineNode( Mips::SUBREG_TO_REG, DL, MVT::i64, CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64), SDValue(Res, 0), CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0)); } else if (SplatValue.isSignedIntN(64)) { // If we have a 64 bit Splat value, we perform a similar sequence to the // above: // // MIPS32: MIPS64: // lui $res, %highest(val) lui $res, %highest(val) // ori $res, $res, %higher(val) ori $res, $res, %higher(val) // lui $res2, %hi(val) lui $res2, %hi(val) // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val) // $res3 = fill $res2 dinsu $res, $res2, 0, 32 // $res4 = insert.w $res3[1], $res fill.d $res // splat.d $res4, 0 // // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves // having to materialize the value by shifts and ors. // // FIXME: Implement the preferred sequence for MIPS64R6: // // MIPS64R6: // ori $res, $zero, %lo(val) // daui $res, $res, %hi(val) // dahi $res, $res, %higher(val) // dati $res, $res, %highest(cal) // fill.d $res // const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue(); const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue(); SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32); SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32); SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); // Independent of whether we're targeting MIPS64 or not, the basic // operations are the same. Also, directly use the $zero register if // the 16 bit chunk is zero. // // For optimization purposes we always synthesize the splat value as // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG // just before combining the values with dinsu to produce an i64. This // enables SelectionDAG to aggressively share components of splat values // where possible. // // FIXME: This is the general constant synthesis problem. This code // should be factored out into a class shared between all the // classes that need it. Specifically, for a splat size of 64 // bits that's a negative number we can do better than LUi/ORi // for the upper 32bits. if (Hi) Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); if (Lo) Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, Hi ? SDValue(Res, 0) : ZeroVal, LoVal); SDNode *HiRes; if (Highest) HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal); if (Higher) HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, Highest ? SDValue(HiRes, 0) : ZeroVal, HigherVal); if (ABI.IsO32()) { Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, (Hi || Lo) ? SDValue(Res, 0) : ZeroVal); Res = CurDAG->getMachineNode( Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0), (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal, CurDAG->getTargetConstant(1, DL, MVT::i32)); const TargetLowering *TLI = getTargetLowering(); const TargetRegisterClass *RC = TLI->getRegClassFor(ViaVecTy.getSimpleVT()); Res = CurDAG->getMachineNode( Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0), CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32)); Res = CurDAG->getMachineNode( Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0), CurDAG->getTargetConstant(0, DL, MVT::i32)); } else if (ABI.IsN64() || ABI.IsN32()) { SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64); const bool HiResNonZero = Highest || Higher; const bool ResNonZero = Hi || Lo; if (HiResNonZero) HiRes = CurDAG->getMachineNode( Mips::SUBREG_TO_REG, DL, MVT::i64, CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64), SDValue(HiRes, 0), CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); if (ResNonZero) Res = CurDAG->getMachineNode( Mips::SUBREG_TO_REG, DL, MVT::i64, CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64), SDValue(Res, 0), CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); // We have 3 cases: // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32 // Both are non zero => dinsu Res, HiRes, 32, 32 // // The obvious "missing" case is when both are zero, but that case is // handled by the ldi case. if (ResNonZero) { IntegerType *Int32Ty = IntegerType::get(MF->getFunction().getContext(), 32); const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32); SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val, CurDAG->getConstant(*Const32, DL, MVT::i32), CurDAG->getConstant(*Const32, DL, MVT::i32), SDValue(Res, 0)}; Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops); } else if (HiResNonZero) { Res = CurDAG->getMachineNode( Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0), CurDAG->getTargetConstant(0, DL, MVT::i32)); } else llvm_unreachable( "Zero splat value handled by non-zero 64bit splat synthesis!"); Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0)); } else llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!"); } else return false; if (ResVecTy != ViaVecTy) { // If LdiOp is writing to a different register class to ResVecTy, then // fix it up here. This COPY_TO_REGCLASS should never cause a move.v // since the source and destination register sets contain the same // registers. const TargetLowering *TLI = getTargetLowering(); MVT ResVecTySimple = ResVecTy.getSimpleVT(); const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple); Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL, ResVecTy, SDValue(Res, 0), CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32)); } ReplaceNode(Node, Res); return true; } } return false; } bool MipsSEDAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, std::vector &OutOps) { SDValue Base, Offset; switch(ConstraintID) { default: llvm_unreachable("Unexpected asm memory constraint"); // All memory constraints can at least accept raw pointers. case InlineAsm::Constraint_i: OutOps.push_back(Op); OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); return false; case InlineAsm::Constraint_m: if (selectAddrRegImm16(Op, Base, Offset)) { OutOps.push_back(Base); OutOps.push_back(Offset); return false; } OutOps.push_back(Op); OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); return false; case InlineAsm::Constraint_R: // The 'R' constraint is supposed to be much more complicated than this. // However, it's becoming less useful due to architectural changes and // ought to be replaced by other constraints such as 'ZC'. // For now, support 9-bit signed offsets which is supportable by all // subtargets for all instructions. if (selectAddrRegImm9(Op, Base, Offset)) { OutOps.push_back(Base); OutOps.push_back(Offset); return false; } OutOps.push_back(Op); OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); return false; case InlineAsm::Constraint_ZC: // ZC matches whatever the pref, ll, and sc instructions can handle for the // given subtarget. if (Subtarget->inMicroMipsMode()) { // On microMIPS, they can handle 12-bit offsets. if (selectAddrRegImm12(Op, Base, Offset)) { OutOps.push_back(Base); OutOps.push_back(Offset); return false; } } else if (Subtarget->hasMips32r6()) { // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets. if (selectAddrRegImm9(Op, Base, Offset)) { OutOps.push_back(Base); OutOps.push_back(Offset); return false; } } else if (selectAddrRegImm16(Op, Base, Offset)) { // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets. OutOps.push_back(Base); OutOps.push_back(Offset); return false; } // In all cases, 0-bit offsets are acceptable. OutOps.push_back(Op); OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); return false; } return true; } FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM, CodeGenOpt::Level OptLevel) { return new MipsSEDAGToDAGISel(TM, OptLevel); }