//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===// // // This pass is used to promote memory references to be register references. A // simple example of the transformation performed by this pass is: // // FROM CODE TO CODE // %X = alloca int, uint 1 ret int 42 // store int 42, int *%X // %Y = load int* %X // ret int %Y // // To do this transformation, a simple analysis is done to ensure it is safe. // Currently this just loops over all alloca instructions, looking for // instructions that are only used in simple load and stores. // // After this, the code is transformed by...something magical :) // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/PromoteMemoryToRegister.h" #include "llvm/Analysis/Dominators.h" #include "llvm/iMemory.h" #include "llvm/iPHINode.h" #include "llvm/iTerminators.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "llvm/ConstantVals.h" using namespace std; namespace { // instance of the promoter -- to keep all the local function data. // gets re-created for each function processed class PromoteInstance { protected: vector Allocas; // the alloca instruction.. map AllocaLookup; // reverse mapping of above vector > WriteSets; // index corresponds to Allocas vector > PhiNodes; // index corresponds to Allocas vector > CurrentValue; // the current value stack //list of instructions to remove at end of pass :) vector KillList; set visited; // the basic blocks we've already visited map > NewPhiNodes; // the phinodes we're adding void traverse(BasicBlock *f, BasicBlock * predecessor); bool PromoteFunction(Function *F, DominanceFrontier &DF); bool QueuePhiNode(BasicBlock *bb, unsigned alloca_index); void findSafeAllocas(Function *M); bool didchange; public: // I do this so that I can force the deconstruction of the local variables PromoteInstance(Function *F, DominanceFrontier &DF) { didchange = PromoteFunction(F, DF); } //This returns whether the pass changes anything operator bool () { return didchange; } }; } // end of anonymous namespace // findSafeAllocas - Find allocas that are safe to promote // void PromoteInstance::findSafeAllocas(Function *F) { BasicBlock *BB = F->getEntryNode(); // Get the entry node for the function // Look at all instructions in the entry node for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(*I)) // Is it an alloca? if (!AI->isArrayAllocation()) { bool isSafe = true; for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE; ++UI) { // Loop over all of the uses of the alloca // Only allow nonindexed memory access instructions... if (MemAccessInst *MAI = dyn_cast(*UI)) { if (MAI->hasIndices()) { // indexed? // Allow the access if there is only one index and the index is // zero. if (*MAI->idx_begin() != ConstantUInt::get(Type::UIntTy, 0) || MAI->idx_begin()+1 != MAI->idx_end()) { isSafe = false; break; } } } else { isSafe = false; break; // Not a load or store? } } if (isSafe) { // If all checks pass, add alloca to safe list AllocaLookup[AI] = Allocas.size(); Allocas.push_back(AI); } } } bool PromoteInstance::PromoteFunction(Function *F, DominanceFrontier &DF) { // Calculate the set of safe allocas findSafeAllocas(F); // Add each alloca to the KillList. Note: KillList is destroyed MOST recently // added to least recently. KillList.assign(Allocas.begin(), Allocas.end()); // Calculate the set of write-locations for each alloca. This is analogous to // counting the number of 'redefinitions' of each variable. WriteSets.resize(Allocas.size()); for (unsigned i = 0; i != Allocas.size(); ++i) { AllocaInst *AI = Allocas[i]; for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U) if (StoreInst *SI = dyn_cast(*U)) // jot down the basic-block it came from WriteSets[i].push_back(SI->getParent()); } // Compute the locations where PhiNodes need to be inserted. Look at the // dominance frontier of EACH basic-block we have a write in // PhiNodes.resize(Allocas.size()); for (unsigned i = 0; i != Allocas.size(); ++i) { for (unsigned j = 0; j != WriteSets[i].size(); j++) { // Look up the DF for this write, add it to PhiNodes DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]); DominanceFrontier::DomSetType S = it->second; for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end(); P != PE; ++P) QueuePhiNode(*P, i); } // Perform iterative step for (unsigned k = 0; k != PhiNodes[i].size(); k++) { DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]); DominanceFrontier::DomSetType S = it->second; for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end(); P != PE; ++P) QueuePhiNode(*P, i); } } // Walks all basic blocks in the function performing the SSA rename algorithm // and inserting the phi nodes we marked as necessary // CurrentValue.push_back(vector(Allocas.size())); traverse(F->front(), 0); // there is no predecessor of the root node // Remove all instructions marked by being placed in the KillList... // while (!KillList.empty()) { Instruction *I = KillList.back(); KillList.pop_back(); //now go find.. I->getParent()->getInstList().remove(I); delete I; } return !Allocas.empty(); } // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific // Alloca returns true if there wasn't already a phi-node for that variable // bool PromoteInstance::QueuePhiNode(BasicBlock *BB, unsigned i /*the alloca*/) { // Look up the basic-block in question vector &BBPNs = NewPhiNodes[BB]; if (BBPNs.empty()) BBPNs.resize(Allocas.size()); // If the BB already has a phi node added for the i'th alloca then we're done! if (BBPNs[i]) return false; // Create a phi-node using the dereferenced type... PHINode *PN = new PHINode(Allocas[i]->getType()->getElementType(), Allocas[i]->getName()+".mem2reg"); BBPNs[i] = PN; // Add the phi-node to the basic-block BB->getInstList().push_front(PN); PhiNodes[i].push_back(BB); return true; } void PromoteInstance::traverse(BasicBlock *BB, BasicBlock *Pred) { vector &TOS = CurrentValue.back(); // look at top // If this is a BB needing a phi node, lookup/create the phinode for each // variable we need phinodes for. vector &BBPNs = NewPhiNodes[BB]; for (unsigned k = 0; k != BBPNs.size(); ++k) if (BBPNs[k]) { // at this point we can assume that the array has phi nodes.. let's add // the incoming data BBPNs[k]->addIncoming(TOS[k], Pred); // also note that the active variable IS designated by the phi node TOS[k] = BBPNs[k]; } // don't revisit nodes if (visited.count(BB)) return; // mark as visited visited.insert(BB); // keep track of the value of each variable we're watching.. how? for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) { Instruction *I = *II; //get the instruction if (LoadInst *LI = dyn_cast(I)) { Value *Ptr = LI->getPointerOperand(); if (AllocaInst *Src = dyn_cast(Ptr)) { map::iterator ai = AllocaLookup.find(Src); if (ai != AllocaLookup.end()) { Value *V = TOS[ai->second]; // walk the use list of this load and replace all uses with r LI->replaceAllUsesWith(V); KillList.push_back(LI); // Mark the load to be deleted } } } else if (StoreInst *SI = dyn_cast(I)) { // delete this instruction and mark the name as the current holder of the // value Value *Ptr = SI->getPointerOperand(); if (AllocaInst *Dest = dyn_cast(Ptr)) { map::iterator ai = AllocaLookup.find(Dest); if (ai != AllocaLookup.end()) { // what value were we writing? TOS[ai->second] = SI->getOperand(0); KillList.push_back(SI); // Mark the store to be deleted } } } else if (TerminatorInst *TI = dyn_cast(I)) { // Recurse across our successors for (unsigned i = 0; i != TI->getNumSuccessors(); i++) { CurrentValue.push_back(CurrentValue.back()); traverse(TI->getSuccessor(i), BB); // This node becomes the predecessor CurrentValue.pop_back(); } } } } namespace { struct PromotePass : public FunctionPass { // runOnFunction - To run this pass, first we calculate the alloca // instructions that are safe for promotion, then we promote each one. // virtual bool runOnFunction(Function *F) { return (bool)PromoteInstance(F, getAnalysis()); } // getAnalysisUsage - We need dominance frontiers // virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(DominanceFrontier::ID); } }; } // createPromoteMemoryToRegister - Provide an entry point to create this pass. // Pass *createPromoteMemoryToRegister() { return new PromotePass(); }