//===- ScalarEvolutionsTest.cpp - ScalarEvolution unit tests --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ScalarEvolutionNormalization.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" namespace llvm { // We use this fixture to ensure that we clean up ScalarEvolution before // deleting the PassManager. class ScalarEvolutionsTest : public testing::Test { protected: LLVMContext Context; Module M; TargetLibraryInfoImpl TLII; TargetLibraryInfo TLI; std::unique_ptr AC; std::unique_ptr DT; std::unique_ptr LI; ScalarEvolutionsTest() : M("", Context), TLII(), TLI(TLII) {} ScalarEvolution buildSE(Function &F) { AC.reset(new AssumptionCache(F)); DT.reset(new DominatorTree(F)); LI.reset(new LoopInfo(*DT)); return ScalarEvolution(F, TLI, *AC, *DT, *LI); } void runWithSE( Module &M, StringRef FuncName, function_ref Test) { auto *F = M.getFunction(FuncName); ASSERT_NE(F, nullptr) << "Could not find " << FuncName; ScalarEvolution SE = buildSE(*F); Test(*F, *LI, SE); } static Optional computeConstantDifference(ScalarEvolution &SE, const SCEV *LHS, const SCEV *RHS) { return SE.computeConstantDifference(LHS, RHS); } static bool matchURem(ScalarEvolution &SE, const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS) { return SE.matchURem(Expr, LHS, RHS); } static bool isImpliedCond( ScalarEvolution &SE, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS) { return SE.isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); } }; TEST_F(ScalarEvolutionsTest, SCEVUnknownRAUW) { FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), std::vector(), false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); BasicBlock *BB = BasicBlock::Create(Context, "entry", F); ReturnInst::Create(Context, nullptr, BB); Type *Ty = Type::getInt1Ty(Context); Constant *Init = Constant::getNullValue(Ty); Value *V0 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V0"); Value *V1 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V1"); Value *V2 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V2"); ScalarEvolution SE = buildSE(*F); const SCEV *S0 = SE.getSCEV(V0); const SCEV *S1 = SE.getSCEV(V1); const SCEV *S2 = SE.getSCEV(V2); const SCEV *P0 = SE.getAddExpr(S0, SE.getConstant(S0->getType(), 2)); const SCEV *P1 = SE.getAddExpr(S1, SE.getConstant(S0->getType(), 2)); const SCEV *P2 = SE.getAddExpr(S2, SE.getConstant(S0->getType(), 2)); auto *M0 = cast(P0); auto *M1 = cast(P1); auto *M2 = cast(P2); EXPECT_EQ(cast(M0->getOperand(0))->getValue()->getZExtValue(), 2u); EXPECT_EQ(cast(M1->getOperand(0))->getValue()->getZExtValue(), 2u); EXPECT_EQ(cast(M2->getOperand(0))->getValue()->getZExtValue(), 2u); // Before the RAUWs, these are all pointing to separate values. EXPECT_EQ(cast(M0->getOperand(1))->getValue(), V0); EXPECT_EQ(cast(M1->getOperand(1))->getValue(), V1); EXPECT_EQ(cast(M2->getOperand(1))->getValue(), V2); // Do some RAUWs. V2->replaceAllUsesWith(V1); V1->replaceAllUsesWith(V0); // After the RAUWs, these should all be pointing to V0. EXPECT_EQ(cast(M0->getOperand(1))->getValue(), V0); EXPECT_EQ(cast(M1->getOperand(1))->getValue(), V0); EXPECT_EQ(cast(M2->getOperand(1))->getValue(), V0); } TEST_F(ScalarEvolutionsTest, SimplifiedPHI) { FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), std::vector(), false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); BranchInst::Create(LoopBB, EntryBB); BranchInst::Create(LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB); ReturnInst::Create(Context, nullptr, ExitBB); auto *Ty = Type::getInt32Ty(Context); auto *PN = PHINode::Create(Ty, 2, "", &*LoopBB->begin()); PN->addIncoming(Constant::getNullValue(Ty), EntryBB); PN->addIncoming(UndefValue::get(Ty), LoopBB); ScalarEvolution SE = buildSE(*F); auto *S1 = SE.getSCEV(PN); auto *S2 = SE.getSCEV(PN); auto *ZeroConst = SE.getConstant(Ty, 0); // At some point, only the first call to getSCEV returned the simplified // SCEVConstant and later calls just returned a SCEVUnknown referencing the // PHI node. EXPECT_EQ(S1, ZeroConst); EXPECT_EQ(S1, S2); } static Instruction *getInstructionByName(Function &F, StringRef Name) { for (auto &I : instructions(F)) if (I.getName() == Name) return &I; llvm_unreachable("Expected to find instruction!"); } static Value *getArgByName(Function &F, StringRef Name) { for (auto &Arg : F.args()) if (Arg.getName() == Name) return &Arg; llvm_unreachable("Expected to find instruction!"); } TEST_F(ScalarEvolutionsTest, CommutativeExprOperandOrder) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " " " "@var_0 = external global i32, align 4" "@var_1 = external global i32, align 4" "@var_2 = external global i32, align 4" " " "declare i32 @unknown(i32, i32, i32)" " " "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) " " local_unnamed_addr { " "entry: " " %entrycond = icmp sgt i32 %n, 0 " " br i1 %entrycond, label %loop.ph, label %for.end " " " "loop.ph: " " %a = load i32, i32* %A, align 4 " " %b = load i32, i32* %B, align 4 " " %mul = mul nsw i32 %b, %a " " %iv0.init = getelementptr inbounds i8, i8* %arr, i32 %mul " " br label %loop " " " "loop: " " %iv0 = phi i8* [ %iv0.inc, %loop ], [ %iv0.init, %loop.ph ] " " %iv1 = phi i32 [ %iv1.inc, %loop ], [ 0, %loop.ph ] " " %conv = trunc i32 %iv1 to i8 " " store i8 %conv, i8* %iv0, align 1 " " %iv0.inc = getelementptr inbounds i8, i8* %iv0, i32 %b " " %iv1.inc = add nuw nsw i32 %iv1, 1 " " %exitcond = icmp eq i32 %iv1.inc, %n " " br i1 %exitcond, label %for.end.loopexit, label %loop " " " "for.end.loopexit: " " br label %for.end " " " "for.end: " " ret void " "} " " " "define void @f_2(i32* %X, i32* %Y, i32* %Z) { " " %x = load i32, i32* %X " " %y = load i32, i32* %Y " " %z = load i32, i32* %Z " " ret void " "} " " " "define void @f_3() { " " %x = load i32, i32* @var_0" " %y = load i32, i32* @var_1" " %z = load i32, i32* @var_2" " ret void" "} " " " "define void @f_4(i32 %a, i32 %b, i32 %c) { " " %x = call i32 @unknown(i32 %a, i32 %b, i32 %c)" " %y = call i32 @unknown(i32 %b, i32 %c, i32 %a)" " %z = call i32 @unknown(i32 %c, i32 %a, i32 %b)" " ret void" "} " , Err, C); assert(M && "Could not parse module?"); assert(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *IV0 = getInstructionByName(F, "iv0"); auto *IV0Inc = getInstructionByName(F, "iv0.inc"); auto *FirstExprForIV0 = SE.getSCEV(IV0); auto *FirstExprForIV0Inc = SE.getSCEV(IV0Inc); auto *SecondExprForIV0 = SE.getSCEV(IV0); EXPECT_TRUE(isa(FirstExprForIV0)); EXPECT_TRUE(isa(FirstExprForIV0Inc)); EXPECT_TRUE(isa(SecondExprForIV0)); }); auto CheckCommutativeMulExprs = [&](ScalarEvolution &SE, const SCEV *A, const SCEV *B, const SCEV *C) { EXPECT_EQ(SE.getMulExpr(A, B), SE.getMulExpr(B, A)); EXPECT_EQ(SE.getMulExpr(B, C), SE.getMulExpr(C, B)); EXPECT_EQ(SE.getMulExpr(A, C), SE.getMulExpr(C, A)); SmallVector Ops0 = {A, B, C}; SmallVector Ops1 = {A, C, B}; SmallVector Ops2 = {B, A, C}; SmallVector Ops3 = {B, C, A}; SmallVector Ops4 = {C, B, A}; SmallVector Ops5 = {C, A, B}; auto *Mul0 = SE.getMulExpr(Ops0); auto *Mul1 = SE.getMulExpr(Ops1); auto *Mul2 = SE.getMulExpr(Ops2); auto *Mul3 = SE.getMulExpr(Ops3); auto *Mul4 = SE.getMulExpr(Ops4); auto *Mul5 = SE.getMulExpr(Ops5); EXPECT_EQ(Mul0, Mul1) << "Expected " << *Mul0 << " == " << *Mul1; EXPECT_EQ(Mul1, Mul2) << "Expected " << *Mul1 << " == " << *Mul2; EXPECT_EQ(Mul2, Mul3) << "Expected " << *Mul2 << " == " << *Mul3; EXPECT_EQ(Mul3, Mul4) << "Expected " << *Mul3 << " == " << *Mul4; EXPECT_EQ(Mul4, Mul5) << "Expected " << *Mul4 << " == " << *Mul5; }; for (StringRef FuncName : {"f_2", "f_3", "f_4"}) runWithSE( *M, FuncName, [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { CheckCommutativeMulExprs(SE, SE.getSCEV(getInstructionByName(F, "x")), SE.getSCEV(getInstructionByName(F, "y")), SE.getSCEV(getInstructionByName(F, "z"))); }); } TEST_F(ScalarEvolutionsTest, CompareSCEVComplexity) { FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), std::vector(), false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); BasicBlock *LoopBB = BasicBlock::Create(Context, "bb1", F); BranchInst::Create(LoopBB, EntryBB); auto *Ty = Type::getInt32Ty(Context); SmallVector Muls(8), Acc(8), NextAcc(8); Acc[0] = PHINode::Create(Ty, 2, "", LoopBB); Acc[1] = PHINode::Create(Ty, 2, "", LoopBB); Acc[2] = PHINode::Create(Ty, 2, "", LoopBB); Acc[3] = PHINode::Create(Ty, 2, "", LoopBB); Acc[4] = PHINode::Create(Ty, 2, "", LoopBB); Acc[5] = PHINode::Create(Ty, 2, "", LoopBB); Acc[6] = PHINode::Create(Ty, 2, "", LoopBB); Acc[7] = PHINode::Create(Ty, 2, "", LoopBB); for (int i = 0; i < 20; i++) { Muls[0] = BinaryOperator::CreateMul(Acc[0], Acc[0], "", LoopBB); NextAcc[0] = BinaryOperator::CreateAdd(Muls[0], Acc[4], "", LoopBB); Muls[1] = BinaryOperator::CreateMul(Acc[1], Acc[1], "", LoopBB); NextAcc[1] = BinaryOperator::CreateAdd(Muls[1], Acc[5], "", LoopBB); Muls[2] = BinaryOperator::CreateMul(Acc[2], Acc[2], "", LoopBB); NextAcc[2] = BinaryOperator::CreateAdd(Muls[2], Acc[6], "", LoopBB); Muls[3] = BinaryOperator::CreateMul(Acc[3], Acc[3], "", LoopBB); NextAcc[3] = BinaryOperator::CreateAdd(Muls[3], Acc[7], "", LoopBB); Muls[4] = BinaryOperator::CreateMul(Acc[4], Acc[4], "", LoopBB); NextAcc[4] = BinaryOperator::CreateAdd(Muls[4], Acc[0], "", LoopBB); Muls[5] = BinaryOperator::CreateMul(Acc[5], Acc[5], "", LoopBB); NextAcc[5] = BinaryOperator::CreateAdd(Muls[5], Acc[1], "", LoopBB); Muls[6] = BinaryOperator::CreateMul(Acc[6], Acc[6], "", LoopBB); NextAcc[6] = BinaryOperator::CreateAdd(Muls[6], Acc[2], "", LoopBB); Muls[7] = BinaryOperator::CreateMul(Acc[7], Acc[7], "", LoopBB); NextAcc[7] = BinaryOperator::CreateAdd(Muls[7], Acc[3], "", LoopBB); Acc = NextAcc; } auto II = LoopBB->begin(); for (int i = 0; i < 8; i++) { PHINode *Phi = cast(&*II++); Phi->addIncoming(Acc[i], LoopBB); Phi->addIncoming(UndefValue::get(Ty), EntryBB); } BasicBlock *ExitBB = BasicBlock::Create(Context, "bb2", F); BranchInst::Create(LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB); Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB); Acc[2] = BinaryOperator::CreateAdd(Acc[4], Acc[5], "", ExitBB); Acc[3] = BinaryOperator::CreateAdd(Acc[6], Acc[7], "", ExitBB); Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB); Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); ReturnInst::Create(Context, nullptr, ExitBB); ScalarEvolution SE = buildSE(*F); EXPECT_NE(nullptr, SE.getSCEV(Acc[0])); } TEST_F(ScalarEvolutionsTest, CompareValueComplexity) { IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(Context); PointerType *IntPtrPtrTy = IntPtrTy->getPointerTo(); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {IntPtrTy, IntPtrTy}, false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); Value *X = &*F->arg_begin(); Value *Y = &*std::next(F->arg_begin()); const int ValueDepth = 10; for (int i = 0; i < ValueDepth; i++) { X = new LoadInst(IntPtrTy, new IntToPtrInst(X, IntPtrPtrTy, "", EntryBB), "", /*isVolatile*/ false, EntryBB); Y = new LoadInst(IntPtrTy, new IntToPtrInst(Y, IntPtrPtrTy, "", EntryBB), "", /*isVolatile*/ false, EntryBB); } auto *MulA = BinaryOperator::CreateMul(X, Y, "", EntryBB); auto *MulB = BinaryOperator::CreateMul(Y, X, "", EntryBB); ReturnInst::Create(Context, nullptr, EntryBB); // This test isn't checking for correctness. Today making A and B resolve to // the same SCEV would require deeper searching in CompareValueComplexity, // which will slow down compilation. However, this test can fail (with LLVM's // behavior still being correct) if we ever have a smarter // CompareValueComplexity that is both fast and more accurate. ScalarEvolution SE = buildSE(*F); auto *A = SE.getSCEV(MulA); auto *B = SE.getSCEV(MulB); EXPECT_NE(A, B); } TEST_F(ScalarEvolutionsTest, SCEVAddExpr) { Type *Ty32 = Type::getInt32Ty(Context); Type *ArgTys[] = {Type::getInt64Ty(Context), Ty32, Ty32, Ty32, Ty32, Ty32}; FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), ArgTys, false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); Argument *A1 = &*F->arg_begin(); Argument *A2 = &*(std::next(F->arg_begin())); BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); Instruction *Trunc = CastInst::CreateTruncOrBitCast(A1, Ty32, "", EntryBB); Instruction *Mul1 = BinaryOperator::CreateMul(Trunc, A2, "", EntryBB); Instruction *Add1 = BinaryOperator::CreateAdd(Mul1, Trunc, "", EntryBB); Mul1 = BinaryOperator::CreateMul(Add1, Trunc, "", EntryBB); Instruction *Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB); // FIXME: The size of this is arbitrary and doesn't seem to change the // result, but SCEV will do quadratic work for these so a large number here // will be extremely slow. We should revisit what and how this is testing // SCEV. for (int i = 0; i < 10; i++) { Mul1 = BinaryOperator::CreateMul(Add2, Add1, "", EntryBB); Add1 = Add2; Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB); } ReturnInst::Create(Context, nullptr, EntryBB); ScalarEvolution SE = buildSE(*F); EXPECT_NE(nullptr, SE.getSCEV(Mul1)); Argument *A3 = &*(std::next(F->arg_begin(), 2)); Argument *A4 = &*(std::next(F->arg_begin(), 3)); Argument *A5 = &*(std::next(F->arg_begin(), 4)); Argument *A6 = &*(std::next(F->arg_begin(), 5)); auto *AddWithNUW = cast(SE.getAddExpr( SE.getAddExpr(SE.getSCEV(A2), SE.getSCEV(A3), SCEV::FlagNUW), SE.getConstant(APInt(/*numBits=*/32, 5)), SCEV::FlagNUW)); EXPECT_EQ(AddWithNUW->getNumOperands(), 3u); EXPECT_EQ(AddWithNUW->getNoWrapFlags(), SCEV::FlagNUW); auto *AddWithAnyWrap = SE.getAddExpr(SE.getSCEV(A3), SE.getSCEV(A4), SCEV::FlagAnyWrap); auto *AddWithAnyWrapNUW = cast( SE.getAddExpr(AddWithAnyWrap, SE.getSCEV(A5), SCEV::FlagNUW)); EXPECT_EQ(AddWithAnyWrapNUW->getNumOperands(), 3u); EXPECT_EQ(AddWithAnyWrapNUW->getNoWrapFlags(), SCEV::FlagAnyWrap); auto *AddWithNSW = SE.getAddExpr( SE.getSCEV(A2), SE.getConstant(APInt(32, 99)), SCEV::FlagNSW); auto *AddWithNSW_NUW = cast( SE.getAddExpr(AddWithNSW, SE.getSCEV(A5), SCEV::FlagNUW)); EXPECT_EQ(AddWithNSW_NUW->getNumOperands(), 3u); EXPECT_EQ(AddWithNSW_NUW->getNoWrapFlags(), SCEV::FlagAnyWrap); auto *AddWithNSWNUW = SE.getAddExpr(SE.getSCEV(A2), SE.getSCEV(A4), ScalarEvolution::setFlags(SCEV::FlagNUW, SCEV::FlagNSW)); auto *AddWithNSWNUW_NUW = cast( SE.getAddExpr(AddWithNSWNUW, SE.getSCEV(A5), SCEV::FlagNUW)); EXPECT_EQ(AddWithNSWNUW_NUW->getNumOperands(), 3u); EXPECT_EQ(AddWithNSWNUW_NUW->getNoWrapFlags(), SCEV::FlagNUW); auto *AddWithNSW_NSWNUW = cast( SE.getAddExpr(AddWithNSW, SE.getSCEV(A6), ScalarEvolution::setFlags(SCEV::FlagNUW, SCEV::FlagNSW))); EXPECT_EQ(AddWithNSW_NSWNUW->getNumOperands(), 3u); EXPECT_EQ(AddWithNSW_NSWNUW->getNoWrapFlags(), SCEV::FlagAnyWrap); } static Instruction &GetInstByName(Function &F, StringRef Name) { for (auto &I : instructions(F)) if (I.getName() == Name) return I; llvm_unreachable("Could not find instructions!"); } TEST_F(ScalarEvolutionsTest, SCEVNormalization) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " " " "@var_0 = external global i32, align 4" "@var_1 = external global i32, align 4" "@var_2 = external global i32, align 4" " " "declare i32 @unknown(i32, i32, i32)" " " "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) " " local_unnamed_addr { " "entry: " " br label %loop.ph " " " "loop.ph: " " br label %loop " " " "loop: " " %iv0 = phi i32 [ %iv0.inc, %loop ], [ 0, %loop.ph ] " " %iv1 = phi i32 [ %iv1.inc, %loop ], [ -2147483648, %loop.ph ] " " %iv0.inc = add i32 %iv0, 1 " " %iv1.inc = add i32 %iv1, 3 " " br i1 undef, label %for.end.loopexit, label %loop " " " "for.end.loopexit: " " ret void " "} " " " "define void @f_2(i32 %a, i32 %b, i32 %c, i32 %d) " " local_unnamed_addr { " "entry: " " br label %loop_0 " " " "loop_0: " " br i1 undef, label %loop_0, label %loop_1 " " " "loop_1: " " br i1 undef, label %loop_2, label %loop_1 " " " " " "loop_2: " " br i1 undef, label %end, label %loop_2 " " " "end: " " ret void " "} " , Err, C); assert(M && "Could not parse module?"); assert(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto &I0 = GetInstByName(F, "iv0"); auto &I1 = *I0.getNextNode(); auto *S0 = cast(SE.getSCEV(&I0)); PostIncLoopSet Loops; Loops.insert(S0->getLoop()); auto *N0 = normalizeForPostIncUse(S0, Loops, SE); auto *D0 = denormalizeForPostIncUse(N0, Loops, SE); EXPECT_EQ(S0, D0) << *S0 << " " << *D0; auto *S1 = cast(SE.getSCEV(&I1)); Loops.clear(); Loops.insert(S1->getLoop()); auto *N1 = normalizeForPostIncUse(S1, Loops, SE); auto *D1 = denormalizeForPostIncUse(N1, Loops, SE); EXPECT_EQ(S1, D1) << *S1 << " " << *D1; }); runWithSE(*M, "f_2", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *L2 = *LI.begin(); auto *L1 = *std::next(LI.begin()); auto *L0 = *std::next(LI.begin(), 2); auto GetAddRec = [&SE](const Loop *L, std::initializer_list Ops) { SmallVector OpsCopy(Ops); return SE.getAddRecExpr(OpsCopy, L, SCEV::FlagAnyWrap); }; auto GetAdd = [&SE](std::initializer_list Ops) { SmallVector OpsCopy(Ops); return SE.getAddExpr(OpsCopy, SCEV::FlagAnyWrap); }; // We first populate the AddRecs vector with a few "interesting" SCEV // expressions, and then we go through the list and assert that each // expression in it has an invertible normalization. std::vector Exprs; { const SCEV *V0 = SE.getSCEV(&*F.arg_begin()); const SCEV *V1 = SE.getSCEV(&*std::next(F.arg_begin(), 1)); const SCEV *V2 = SE.getSCEV(&*std::next(F.arg_begin(), 2)); const SCEV *V3 = SE.getSCEV(&*std::next(F.arg_begin(), 3)); Exprs.push_back(GetAddRec(L0, {V0})); // 0 Exprs.push_back(GetAddRec(L0, {V0, V1})); // 1 Exprs.push_back(GetAddRec(L0, {V0, V1, V2})); // 2 Exprs.push_back(GetAddRec(L0, {V0, V1, V2, V3})); // 3 Exprs.push_back( GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[3], Exprs[0]})); // 4 Exprs.push_back( GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[0], Exprs[3]})); // 5 Exprs.push_back( GetAddRec(L1, {Exprs[1], Exprs[3], Exprs[3], Exprs[1]})); // 6 Exprs.push_back(GetAdd({Exprs[6], Exprs[3], V2})); // 7 Exprs.push_back( GetAddRec(L2, {Exprs[4], Exprs[3], Exprs[3], Exprs[5]})); // 8 Exprs.push_back( GetAddRec(L2, {Exprs[4], Exprs[6], Exprs[7], Exprs[3], V0})); // 9 } std::vector LoopSets; for (int i = 0; i < 8; i++) { LoopSets.emplace_back(); if (i & 1) LoopSets.back().insert(L0); if (i & 2) LoopSets.back().insert(L1); if (i & 4) LoopSets.back().insert(L2); } for (const auto &LoopSet : LoopSets) for (auto *S : Exprs) { { auto *N = llvm::normalizeForPostIncUse(S, LoopSet, SE); auto *D = llvm::denormalizeForPostIncUse(N, LoopSet, SE); // Normalization and then denormalizing better give us back the same // value. EXPECT_EQ(S, D) << "S = " << *S << " D = " << *D << " N = " << *N; } { auto *D = llvm::denormalizeForPostIncUse(S, LoopSet, SE); auto *N = llvm::normalizeForPostIncUse(D, LoopSet, SE); // Denormalization and then normalizing better give us back the same // value. EXPECT_EQ(S, N) << "S = " << *S << " N = " << *N; } } }); } // Expect the call of getZeroExtendExpr will not cost exponential time. TEST_F(ScalarEvolutionsTest, SCEVZeroExtendExpr) { LLVMContext C; SMDiagnostic Err; // Generate a function like below: // define void @foo() { // entry: // br label %for.cond // // for.cond: // %0 = phi i64 [ 100, %entry ], [ %dec, %for.inc ] // %cmp = icmp sgt i64 %0, 90 // br i1 %cmp, label %for.inc, label %for.cond1 // // for.inc: // %dec = add nsw i64 %0, -1 // br label %for.cond // // for.cond1: // %1 = phi i64 [ 100, %for.cond ], [ %dec5, %for.inc2 ] // %cmp3 = icmp sgt i64 %1, 90 // br i1 %cmp3, label %for.inc2, label %for.cond4 // // for.inc2: // %dec5 = add nsw i64 %1, -1 // br label %for.cond1 // // ...... // // for.cond89: // %19 = phi i64 [ 100, %for.cond84 ], [ %dec94, %for.inc92 ] // %cmp93 = icmp sgt i64 %19, 90 // br i1 %cmp93, label %for.inc92, label %for.end // // for.inc92: // %dec94 = add nsw i64 %19, -1 // br label %for.cond89 // // for.end: // %gep = getelementptr i8, i8* null, i64 %dec // %gep6 = getelementptr i8, i8* %gep, i64 %dec5 // ...... // %gep95 = getelementptr i8, i8* %gep91, i64 %dec94 // ret void // } FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {}, false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", M); BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); BasicBlock *CondBB = BasicBlock::Create(Context, "for.cond", F); BasicBlock *EndBB = BasicBlock::Create(Context, "for.end", F); BranchInst::Create(CondBB, EntryBB); BasicBlock *PrevBB = EntryBB; Type *I64Ty = Type::getInt64Ty(Context); Type *I8Ty = Type::getInt8Ty(Context); Type *I8PtrTy = Type::getInt8PtrTy(Context); Value *Accum = Constant::getNullValue(I8PtrTy); int Iters = 20; for (int i = 0; i < Iters; i++) { BasicBlock *IncBB = BasicBlock::Create(Context, "for.inc", F, EndBB); auto *PN = PHINode::Create(I64Ty, 2, "", CondBB); PN->addIncoming(ConstantInt::get(Context, APInt(64, 100)), PrevBB); auto *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_SGT, PN, ConstantInt::get(Context, APInt(64, 90)), "cmp", CondBB); BasicBlock *NextBB; if (i != Iters - 1) NextBB = BasicBlock::Create(Context, "for.cond", F, EndBB); else NextBB = EndBB; BranchInst::Create(IncBB, NextBB, Cmp, CondBB); auto *Dec = BinaryOperator::CreateNSWAdd( PN, ConstantInt::get(Context, APInt(64, -1)), "dec", IncBB); PN->addIncoming(Dec, IncBB); BranchInst::Create(CondBB, IncBB); Accum = GetElementPtrInst::Create(I8Ty, Accum, PN, "gep", EndBB); PrevBB = CondBB; CondBB = NextBB; } ReturnInst::Create(Context, nullptr, EndBB); ScalarEvolution SE = buildSE(*F); const SCEV *S = SE.getSCEV(Accum); S = SE.getLosslessPtrToIntExpr(S); Type *I128Ty = Type::getInt128Ty(Context); SE.getZeroExtendExpr(S, I128Ty); } // Make sure that SCEV invalidates exit limits after invalidating the values it // depends on when we forget a loop. TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetLoop) { /* * Create the following code: * func(i64 addrspace(10)* %arg) * top: * br label %L.ph * L.ph: * br label %L * L: * %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ] * %add = add i64 %phi2, 1 * %cond = icmp slt i64 %add, 1000; then becomes 2000. * br i1 %cond, label %post, label %L2 * post: * ret void * */ // Create a module with non-integral pointers in it's datalayout Module NIM("nonintegral", Context); std::string DataLayout = M.getDataLayoutStr(); if (!DataLayout.empty()) DataLayout += "-"; DataLayout += "ni:10"; NIM.setDataLayout(DataLayout); Type *T_int64 = Type::getInt64Ty(Context); Type *T_pint64 = T_int64->getPointerTo(10); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM); BasicBlock *Top = BasicBlock::Create(Context, "top", F); BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F); BasicBlock *L = BasicBlock::Create(Context, "L", F); BasicBlock *Post = BasicBlock::Create(Context, "post", F); IRBuilder<> Builder(Top); Builder.CreateBr(LPh); Builder.SetInsertPoint(LPh); Builder.CreateBr(L); Builder.SetInsertPoint(L); PHINode *Phi = Builder.CreatePHI(T_int64, 2); auto *Add = cast( Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add")); auto *Limit = ConstantInt::get(T_int64, 1000); auto *Cond = cast( Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Limit, "cond")); auto *Br = cast(Builder.CreateCondBr(Cond, L, Post)); Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh); Phi->addIncoming(Add, L); Builder.SetInsertPoint(Post); Builder.CreateRetVoid(); ScalarEvolution SE = buildSE(*F); auto *Loop = LI->getLoopFor(L); const SCEV *EC = SE.getBackedgeTakenCount(Loop); EXPECT_FALSE(isa(EC)); EXPECT_TRUE(isa(EC)); EXPECT_EQ(cast(EC)->getAPInt().getLimitedValue(), 999u); // The add recurrence {5,+,1} does not correspond to any PHI in the IR, and // that is relevant to this test. auto *Five = SE.getConstant(APInt(/*numBits=*/64, 5)); auto *AR = SE.getAddRecExpr(Five, SE.getOne(T_int64), Loop, SCEV::FlagAnyWrap); const SCEV *ARAtLoopExit = SE.getSCEVAtScope(AR, nullptr); EXPECT_FALSE(isa(ARAtLoopExit)); EXPECT_TRUE(isa(ARAtLoopExit)); EXPECT_EQ(cast(ARAtLoopExit)->getAPInt().getLimitedValue(), 1004u); SE.forgetLoop(Loop); Br->eraseFromParent(); Cond->eraseFromParent(); Builder.SetInsertPoint(L); auto *NewCond = Builder.CreateICmp( ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond"); Builder.CreateCondBr(NewCond, L, Post); const SCEV *NewEC = SE.getBackedgeTakenCount(Loop); EXPECT_FALSE(isa(NewEC)); EXPECT_TRUE(isa(NewEC)); EXPECT_EQ(cast(NewEC)->getAPInt().getLimitedValue(), 1999u); const SCEV *NewARAtLoopExit = SE.getSCEVAtScope(AR, nullptr); EXPECT_FALSE(isa(NewARAtLoopExit)); EXPECT_TRUE(isa(NewARAtLoopExit)); EXPECT_EQ(cast(NewARAtLoopExit)->getAPInt().getLimitedValue(), 2004u); } // Make sure that SCEV invalidates exit limits after invalidating the values it // depends on when we forget a value. TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetValue) { /* * Create the following code: * func(i64 addrspace(10)* %arg) * top: * br label %L.ph * L.ph: * %load = load i64 addrspace(10)* %arg * br label %L * L: * %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ] * %add = add i64 %phi2, 1 * %cond = icmp slt i64 %add, %load ; then becomes 2000. * br i1 %cond, label %post, label %L2 * post: * ret void * */ // Create a module with non-integral pointers in it's datalayout Module NIM("nonintegral", Context); std::string DataLayout = M.getDataLayoutStr(); if (!DataLayout.empty()) DataLayout += "-"; DataLayout += "ni:10"; NIM.setDataLayout(DataLayout); Type *T_int64 = Type::getInt64Ty(Context); Type *T_pint64 = T_int64->getPointerTo(10); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM); Argument *Arg = &*F->arg_begin(); BasicBlock *Top = BasicBlock::Create(Context, "top", F); BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F); BasicBlock *L = BasicBlock::Create(Context, "L", F); BasicBlock *Post = BasicBlock::Create(Context, "post", F); IRBuilder<> Builder(Top); Builder.CreateBr(LPh); Builder.SetInsertPoint(LPh); auto *Load = cast(Builder.CreateLoad(T_int64, Arg, "load")); Builder.CreateBr(L); Builder.SetInsertPoint(L); PHINode *Phi = Builder.CreatePHI(T_int64, 2); auto *Add = cast( Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add")); auto *Cond = cast( Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Load, "cond")); auto *Br = cast(Builder.CreateCondBr(Cond, L, Post)); Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh); Phi->addIncoming(Add, L); Builder.SetInsertPoint(Post); Builder.CreateRetVoid(); ScalarEvolution SE = buildSE(*F); auto *Loop = LI->getLoopFor(L); const SCEV *EC = SE.getBackedgeTakenCount(Loop); EXPECT_FALSE(isa(EC)); EXPECT_FALSE(isa(EC)); SE.forgetValue(Load); Br->eraseFromParent(); Cond->eraseFromParent(); Load->eraseFromParent(); Builder.SetInsertPoint(L); auto *NewCond = Builder.CreateICmp( ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond"); Builder.CreateCondBr(NewCond, L, Post); const SCEV *NewEC = SE.getBackedgeTakenCount(Loop); EXPECT_FALSE(isa(NewEC)); EXPECT_TRUE(isa(NewEC)); EXPECT_EQ(cast(NewEC)->getAPInt().getLimitedValue(), 1999u); } TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstants) { // Reference: https://reviews.llvm.org/D37265 // Make sure that SCEV does not blow up when constructing an AddRec // with predicates for a phi with the update pattern: // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum // when either the initial value of the Phi or the InvariantAccum are // constants that are too large to fit in an ix but are zero when truncated to // ix. FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), std::vector(), false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "addrecphitest", M); /* Create IR: entry: br label %loop loop: %0 = phi i64 [-9223372036854775808, %entry], [%3, %loop] %1 = shl i64 %0, 32 %2 = ashr exact i64 %1, 32 %3 = add i64 %2, -9223372036854775808 br i1 undef, label %exit, label %loop exit: ret void */ BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); // entry: BranchInst::Create(LoopBB, EntryBB); // loop: auto *MinInt64 = ConstantInt::get(Context, APInt(64, 0x8000000000000000U, true)); auto *Int64_32 = ConstantInt::get(Context, APInt(64, 32)); auto *Br = BranchInst::Create( LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB); auto *Phi = PHINode::Create(Type::getInt64Ty(Context), 2, "", Br); auto *Shl = BinaryOperator::CreateShl(Phi, Int64_32, "", Br); auto *AShr = BinaryOperator::CreateExactAShr(Shl, Int64_32, "", Br); auto *Add = BinaryOperator::CreateAdd(AShr, MinInt64, "", Br); Phi->addIncoming(MinInt64, EntryBB); Phi->addIncoming(Add, LoopBB); // exit: ReturnInst::Create(Context, nullptr, ExitBB); // Make sure that SCEV doesn't blow up ScalarEvolution SE = buildSE(*F); SCEVUnionPredicate Preds; const SCEV *Expr = SE.getSCEV(Phi); EXPECT_NE(nullptr, Expr); EXPECT_TRUE(isa(Expr)); auto Result = SE.createAddRecFromPHIWithCasts(cast(Expr)); } TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstantAccum) { // Make sure that SCEV does not blow up when constructing an AddRec // with predicates for a phi with the update pattern: // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum // when the InvariantAccum is a constant that is too large to fit in an // ix but are zero when truncated to ix, and the initial value of the // phi is not a constant. Type *Int32Ty = Type::getInt32Ty(Context); SmallVector Types; Types.push_back(Int32Ty); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "addrecphitest", M); /* Create IR: define @addrecphitest(i32) entry: br label %loop loop: %1 = phi i32 [%0, %entry], [%4, %loop] %2 = shl i32 %1, 16 %3 = ashr exact i32 %2, 16 %4 = add i32 %3, -2147483648 br i1 undef, label %exit, label %loop exit: ret void */ BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); // entry: BranchInst::Create(LoopBB, EntryBB); // loop: auto *MinInt32 = ConstantInt::get(Context, APInt(32, 0x80000000U, true)); auto *Int32_16 = ConstantInt::get(Context, APInt(32, 16)); auto *Br = BranchInst::Create( LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB); auto *Phi = PHINode::Create(Int32Ty, 2, "", Br); auto *Shl = BinaryOperator::CreateShl(Phi, Int32_16, "", Br); auto *AShr = BinaryOperator::CreateExactAShr(Shl, Int32_16, "", Br); auto *Add = BinaryOperator::CreateAdd(AShr, MinInt32, "", Br); auto *Arg = &*(F->arg_begin()); Phi->addIncoming(Arg, EntryBB); Phi->addIncoming(Add, LoopBB); // exit: ReturnInst::Create(Context, nullptr, ExitBB); // Make sure that SCEV doesn't blow up ScalarEvolution SE = buildSE(*F); SCEVUnionPredicate Preds; const SCEV *Expr = SE.getSCEV(Phi); EXPECT_NE(nullptr, Expr); EXPECT_TRUE(isa(Expr)); auto Result = SE.createAddRecFromPHIWithCasts(cast(Expr)); } TEST_F(ScalarEvolutionsTest, SCEVFoldSumOfTruncs) { // Verify that the following SCEV gets folded to a zero: // (-1 * (trunc i64 (-1 * %0) to i32)) + (-1 * (trunc i64 %0 to i32) Type *ArgTy = Type::getInt64Ty(Context); Type *Int32Ty = Type::getInt32Ty(Context); SmallVector Types; Types.push_back(ArgTy); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); BasicBlock *BB = BasicBlock::Create(Context, "entry", F); ReturnInst::Create(Context, nullptr, BB); ScalarEvolution SE = buildSE(*F); auto *Arg = &*(F->arg_begin()); const auto *ArgSCEV = SE.getSCEV(Arg); // Build the SCEV const auto *A0 = SE.getNegativeSCEV(ArgSCEV); const auto *A1 = SE.getTruncateExpr(A0, Int32Ty); const auto *A = SE.getNegativeSCEV(A1); const auto *B0 = SE.getTruncateExpr(ArgSCEV, Int32Ty); const auto *B = SE.getNegativeSCEV(B0); const auto *Expr = SE.getAddExpr(A, B); // Verify that the SCEV was folded to 0 const auto *ZeroConst = SE.getConstant(Int32Ty, 0); EXPECT_EQ(Expr, ZeroConst); } // Check logic of SCEV expression size computation. TEST_F(ScalarEvolutionsTest, SCEVComputeExpressionSize) { /* * Create the following code: * void func(i64 %a, i64 %b) * entry: * %s1 = add i64 %a, 1 * %s2 = udiv i64 %s1, %b * br label %exit * exit: * ret */ // Create a module. Module M("SCEVComputeExpressionSize", Context); Type *T_int64 = Type::getInt64Ty(Context); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), { T_int64, T_int64 }, false); Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M); Argument *A = &*F->arg_begin(); Argument *B = &*std::next(F->arg_begin()); ConstantInt *C = ConstantInt::get(Context, APInt(64, 1)); BasicBlock *Entry = BasicBlock::Create(Context, "entry", F); BasicBlock *Exit = BasicBlock::Create(Context, "exit", F); IRBuilder<> Builder(Entry); auto *S1 = cast(Builder.CreateAdd(A, C, "s1")); auto *S2 = cast(Builder.CreateUDiv(S1, B, "s2")); Builder.CreateBr(Exit); Builder.SetInsertPoint(Exit); Builder.CreateRetVoid(); ScalarEvolution SE = buildSE(*F); // Get S2 first to move it to cache. const SCEV *AS = SE.getSCEV(A); const SCEV *BS = SE.getSCEV(B); const SCEV *CS = SE.getSCEV(C); const SCEV *S1S = SE.getSCEV(S1); const SCEV *S2S = SE.getSCEV(S2); EXPECT_EQ(AS->getExpressionSize(), 1u); EXPECT_EQ(BS->getExpressionSize(), 1u); EXPECT_EQ(CS->getExpressionSize(), 1u); EXPECT_EQ(S1S->getExpressionSize(), 3u); EXPECT_EQ(S2S->getExpressionSize(), 5u); } TEST_F(ScalarEvolutionsTest, SCEVLoopDecIntrinsic) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "define void @foo(i32 %N) { " "entry: " " %cmp3 = icmp sgt i32 %N, 0 " " br i1 %cmp3, label %for.body, label %for.cond.cleanup " "for.cond.cleanup: " " ret void " "for.body: " " %i.04 = phi i32 [ %inc, %for.body ], [ 100, %entry ] " " %inc = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 %i.04, i32 1) " " %exitcond = icmp ne i32 %inc, 0 " " br i1 %exitcond, label %for.cond.cleanup, label %for.body " "} " "declare i32 @llvm.loop.decrement.reg.i32.i32.i32(i32, i32) ", Err, C); ASSERT_TRUE(M && "Could not parse module?"); ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "foo", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *ScevInc = SE.getSCEV(getInstructionByName(F, "inc")); EXPECT_TRUE(isa(ScevInc)); }); } TEST_F(ScalarEvolutionsTest, SCEVComputeConstantDifference) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "define void @foo(i32 %sz, i32 %pp) { " "entry: " " %v0 = add i32 %pp, 0 " " %v3 = add i32 %pp, 3 " " br label %loop.body " "loop.body: " " %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] " " %xa = add nsw i32 %iv, %v0 " " %yy = add nsw i32 %iv, %v3 " " %xb = sub nsw i32 %yy, 3 " " %iv.next = add nsw i32 %iv, 1 " " %cmp = icmp sle i32 %iv.next, %sz " " br i1 %cmp, label %loop.body, label %exit " "exit: " " ret void " "} ", Err, C); ASSERT_TRUE(M && "Could not parse module?"); ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *ScevV0 = SE.getSCEV(getInstructionByName(F, "v0")); // %pp auto *ScevV3 = SE.getSCEV(getInstructionByName(F, "v3")); // (3 + %pp) auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} auto *ScevXA = SE.getSCEV(getInstructionByName(F, "xa")); // {%pp,+,1} auto *ScevYY = SE.getSCEV(getInstructionByName(F, "yy")); // {(3 + %pp),+,1} auto *ScevXB = SE.getSCEV(getInstructionByName(F, "xb")); // {%pp,+,1} auto *ScevIVNext = SE.getSCEV(getInstructionByName(F, "iv.next")); // {1,+,1} auto diff = [&SE](const SCEV *LHS, const SCEV *RHS) -> Optional { auto ConstantDiffOrNone = computeConstantDifference(SE, LHS, RHS); if (!ConstantDiffOrNone) return None; auto ExtDiff = ConstantDiffOrNone->getSExtValue(); int Diff = ExtDiff; assert(Diff == ExtDiff && "Integer overflow"); return Diff; }; EXPECT_EQ(diff(ScevV3, ScevV0), 3); EXPECT_EQ(diff(ScevV0, ScevV3), -3); EXPECT_EQ(diff(ScevV0, ScevV0), 0); EXPECT_EQ(diff(ScevV3, ScevV3), 0); EXPECT_EQ(diff(ScevIV, ScevIV), 0); EXPECT_EQ(diff(ScevXA, ScevXB), 0); EXPECT_EQ(diff(ScevXA, ScevYY), -3); EXPECT_EQ(diff(ScevYY, ScevXB), 3); EXPECT_EQ(diff(ScevIV, ScevIVNext), -1); EXPECT_EQ(diff(ScevIVNext, ScevIV), 1); EXPECT_EQ(diff(ScevIVNext, ScevIVNext), 0); EXPECT_EQ(diff(ScevV0, ScevIV), None); EXPECT_EQ(diff(ScevIVNext, ScevV3), None); EXPECT_EQ(diff(ScevYY, ScevV3), None); }); } TEST_F(ScalarEvolutionsTest, SCEVrewriteUnknowns) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "define void @foo(i32 %i) { " "entry: " " %cmp3 = icmp ult i32 %i, 16 " " br i1 %cmp3, label %loop.body, label %exit " "loop.body: " " %iv = phi i32 [ %iv.next, %loop.body ], [ %i, %entry ] " " %iv.next = add nsw i32 %iv, 1 " " %cmp = icmp eq i32 %iv.next, 16 " " br i1 %cmp, label %exit, label %loop.body " "exit: " " ret void " "} ", Err, C); ASSERT_TRUE(M && "Could not parse module?"); ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} auto *ScevI = SE.getSCEV(getArgByName(F, "i")); // {0,+,1} ValueToSCEVMapTy RewriteMap; RewriteMap[cast(ScevI)->getValue()] = SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17)); auto *WithUMin = SCEVParameterRewriter::rewrite(ScevIV, SE, RewriteMap); EXPECT_NE(WithUMin, ScevIV); auto *AR = dyn_cast(WithUMin); EXPECT_TRUE(AR); EXPECT_EQ(AR->getStart(), SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17))); EXPECT_EQ(AR->getStepRecurrence(SE), cast(ScevIV)->getStepRecurrence(SE)); }); } TEST_F(ScalarEvolutionsTest, SCEVAddNUW) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString("define void @foo(i32 %x) { " " ret void " "} ", Err, C); ASSERT_TRUE(M && "Could not parse module?"); ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *X = SE.getSCEV(getArgByName(F, "x")); auto *One = SE.getOne(X->getType()); auto *Sum = SE.getAddExpr(X, One, SCEV::FlagNUW); EXPECT_TRUE(SE.isKnownPredicate(ICmpInst::ICMP_UGE, Sum, X)); EXPECT_TRUE(SE.isKnownPredicate(ICmpInst::ICMP_UGT, Sum, X)); }); } TEST_F(ScalarEvolutionsTest, SCEVgetRanges) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "define void @foo(i32 %i) { " "entry: " " br label %loop.body " "loop.body: " " %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] " " %iv.next = add nsw i32 %iv, 1 " " %cmp = icmp eq i32 %iv.next, 16 " " br i1 %cmp, label %exit, label %loop.body " "exit: " " ret void " "} ", Err, C); runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} auto *ScevI = SE.getSCEV(getArgByName(F, "i")); EXPECT_EQ(SE.getUnsignedRange(ScevIV).getLower(), 0); EXPECT_EQ(SE.getUnsignedRange(ScevIV).getUpper(), 16); auto *Add = SE.getAddExpr(ScevI, ScevIV); ValueToSCEVMapTy RewriteMap; RewriteMap[cast(ScevI)->getValue()] = SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17)); auto *AddWithUMin = SCEVParameterRewriter::rewrite(Add, SE, RewriteMap); EXPECT_EQ(SE.getUnsignedRange(AddWithUMin).getLower(), 0); EXPECT_EQ(SE.getUnsignedRange(AddWithUMin).getUpper(), 33); }); } TEST_F(ScalarEvolutionsTest, SCEVgetExitLimitForGuardedLoop) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "define void @foo(i32 %i) { " "entry: " " %cmp3 = icmp ult i32 %i, 16 " " br i1 %cmp3, label %loop.body, label %exit " "loop.body: " " %iv = phi i32 [ %iv.next, %loop.body ], [ %i, %entry ] " " %iv.next = add nsw i32 %iv, 1 " " %cmp = icmp eq i32 %iv.next, 16 " " br i1 %cmp, label %exit, label %loop.body " "exit: " " ret void " "} ", Err, C); ASSERT_TRUE(M && "Could not parse module?"); ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} const Loop *L = cast(ScevIV)->getLoop(); const SCEV *BTC = SE.getBackedgeTakenCount(L); EXPECT_FALSE(isa(BTC)); const SCEV *MaxBTC = SE.getConstantMaxBackedgeTakenCount(L); EXPECT_EQ(cast(MaxBTC)->getAPInt(), 15); }); } TEST_F(ScalarEvolutionsTest, ImpliedViaAddRecStart) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "define void @foo(i32* %p) { " "entry: " " %x = load i32, i32* %p, !range !0 " " br label %loop " "loop: " " %iv = phi i32 [ %x, %entry], [%iv.next, %backedge] " " %ne.check = icmp ne i32 %iv, 0 " " br i1 %ne.check, label %backedge, label %exit " "backedge: " " %iv.next = add i32 %iv, -1 " " br label %loop " "exit:" " ret void " "} " "!0 = !{i32 0, i32 2147483647}", Err, C); ASSERT_TRUE(M && "Could not parse module?"); ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *X = SE.getSCEV(getInstructionByName(F, "x")); auto *Context = getInstructionByName(F, "iv.next"); EXPECT_TRUE(SE.isKnownPredicateAt(ICmpInst::ICMP_NE, X, SE.getZero(X->getType()), Context)); }); } TEST_F(ScalarEvolutionsTest, UnsignedIsImpliedViaOperations) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString("define void @foo(i32* %p1, i32* %p2) { " "entry: " " %x = load i32, i32* %p1, !range !0 " " %cond = icmp ne i32 %x, 0 " " br i1 %cond, label %guarded, label %exit " "guarded: " " %y = add i32 %x, -1 " " ret void " "exit: " " ret void " "} " "!0 = !{i32 0, i32 2147483647}", Err, C); ASSERT_TRUE(M && "Could not parse module?"); ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *X = SE.getSCEV(getInstructionByName(F, "x")); auto *Y = SE.getSCEV(getInstructionByName(F, "y")); auto *Guarded = getInstructionByName(F, "y")->getParent(); ASSERT_TRUE(Guarded); EXPECT_TRUE( SE.isBasicBlockEntryGuardedByCond(Guarded, ICmpInst::ICMP_ULT, Y, X)); EXPECT_TRUE( SE.isBasicBlockEntryGuardedByCond(Guarded, ICmpInst::ICMP_UGT, X, Y)); }); } TEST_F(ScalarEvolutionsTest, ProveImplicationViaNarrowing) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "define i32 @foo(i32 %start, i32* %q) { " "entry: " " %wide.start = zext i32 %start to i64 " " br label %loop " "loop: " " %wide.iv = phi i64 [%wide.start, %entry], [%wide.iv.next, %backedge] " " %iv = phi i32 [%start, %entry], [%iv.next, %backedge] " " %cond = icmp eq i64 %wide.iv, 0 " " br i1 %cond, label %exit, label %backedge " "backedge: " " %iv.next = add i32 %iv, -1 " " %index = zext i32 %iv.next to i64 " " %load.addr = getelementptr i32, i32* %q, i64 %index " " %stop = load i32, i32* %load.addr " " %loop.cond = icmp eq i32 %stop, 0 " " %wide.iv.next = add nsw i64 %wide.iv, -1 " " br i1 %loop.cond, label %loop, label %failure " "exit: " " ret i32 0 " "failure: " " unreachable " "} ", Err, C); ASSERT_TRUE(M && "Could not parse module?"); ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { auto *IV = SE.getSCEV(getInstructionByName(F, "iv")); auto *Zero = SE.getZero(IV->getType()); auto *Backedge = getInstructionByName(F, "iv.next")->getParent(); ASSERT_TRUE(Backedge); (void)IV; (void)Zero; // FIXME: This can only be proved with turned on option // scalar-evolution-use-expensive-range-sharpening which is currently off. // Enable the check once it's switched true by default. // EXPECT_TRUE(SE.isBasicBlockEntryGuardedByCond(Backedge, // ICmpInst::ICMP_UGT, // IV, Zero)); }); } TEST_F(ScalarEvolutionsTest, ImpliedCond) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "define void @foo(i32 %len) { " "entry: " " br label %loop " "loop: " " %iv = phi i32 [ 0, %entry], [%iv.next, %loop] " " %iv.next = add nsw i32 %iv, 1 " " %cmp = icmp slt i32 %iv, %len " " br i1 %cmp, label %loop, label %exit " "exit:" " ret void " "}", Err, C); ASSERT_TRUE(M && "Could not parse module?"); ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { Instruction *IV = getInstructionByName(F, "iv"); Type *Ty = IV->getType(); const SCEV *Zero = SE.getZero(Ty); const SCEV *MinusOne = SE.getMinusOne(Ty); // {0,+,1} const SCEV *AddRec_0_1 = SE.getSCEV(IV); // {0,+,-1} const SCEV *AddRec_0_N1 = SE.getNegativeSCEV(AddRec_0_1); // {0,+,1} > 0 -> {0,+,-1} < 0 EXPECT_TRUE(isImpliedCond(SE, ICmpInst::ICMP_SLT, AddRec_0_N1, Zero, ICmpInst::ICMP_SGT, AddRec_0_1, Zero)); // {0,+,-1} < -1 -> {0,+,1} > 0 EXPECT_TRUE(isImpliedCond(SE, ICmpInst::ICMP_SGT, AddRec_0_1, Zero, ICmpInst::ICMP_SLT, AddRec_0_N1, MinusOne)); }); } TEST_F(ScalarEvolutionsTest, MatchURem) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString( "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " " " "define void @test(i32 %a, i32 %b, i16 %c, i64 %d) {" "entry: " " %rem1 = urem i32 %a, 2" " %rem2 = urem i32 %a, 5" " %rem3 = urem i32 %a, %b" " %c.ext = zext i16 %c to i32" " %rem4 = urem i32 %c.ext, 2" " %ext = zext i32 %rem4 to i64" " %rem5 = urem i64 %d, 17179869184" " ret void " "} ", Err, C); assert(M && "Could not parse module?"); assert(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { for (auto *N : {"rem1", "rem2", "rem3", "rem5"}) { auto *URemI = getInstructionByName(F, N); auto *S = SE.getSCEV(URemI); const SCEV *LHS, *RHS; EXPECT_TRUE(matchURem(SE, S, LHS, RHS)); EXPECT_EQ(LHS, SE.getSCEV(URemI->getOperand(0))); EXPECT_EQ(RHS, SE.getSCEV(URemI->getOperand(1))); EXPECT_EQ(LHS->getType(), S->getType()); EXPECT_EQ(RHS->getType(), S->getType()); } // Check the case where the urem operand is zero-extended. Make sure the // match results are extended to the size of the input expression. auto *Ext = getInstructionByName(F, "ext"); auto *URem1 = getInstructionByName(F, "rem4"); auto *S = SE.getSCEV(Ext); const SCEV *LHS, *RHS; EXPECT_TRUE(matchURem(SE, S, LHS, RHS)); EXPECT_NE(LHS, SE.getSCEV(URem1->getOperand(0))); // RHS and URem1->getOperand(1) have different widths, so compare the // integer values. EXPECT_EQ(cast(RHS)->getValue()->getZExtValue(), cast(SE.getSCEV(URem1->getOperand(1))) ->getValue() ->getZExtValue()); EXPECT_EQ(LHS->getType(), S->getType()); EXPECT_EQ(RHS->getType(), S->getType()); }); } TEST_F(ScalarEvolutionsTest, SCEVUDivFloorCeiling) { LLVMContext C; SMDiagnostic Err; std::unique_ptr M = parseAssemblyString("define void @foo() { " " ret void " "} ", Err, C); ASSERT_TRUE(M && "Could not parse module?"); ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { // Check that SCEV's udiv and uceil handling produce the correct results // for all 8 bit options. Div-by-zero is deliberately excluded. for (unsigned N = 0; N < 256; N++) for (unsigned D = 1; D < 256; D++) { APInt NInt(8, N); APInt DInt(8, D); using namespace llvm::APIntOps; APInt FloorInt = RoundingUDiv(NInt, DInt, APInt::Rounding::DOWN); APInt CeilingInt = RoundingUDiv(NInt, DInt, APInt::Rounding::UP); auto *NS = SE.getConstant(NInt); auto *DS = SE.getConstant(DInt); auto *FloorS = cast(SE.getUDivExpr(NS, DS)); auto *CeilingS = cast(SE.getUDivCeilSCEV(NS, DS)); ASSERT_TRUE(FloorS->getAPInt() == FloorInt); ASSERT_TRUE(CeilingS->getAPInt() == CeilingInt); } }); } } // end namespace llvm