//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation analyzes and transforms the induction variables (and // computations derived from them) into simpler forms suitable for subsequent // analysis and transformation. // // This transformation makes the following changes to each loop with an // identifiable induction variable: // 1. All loops are transformed to have a SINGLE canonical induction variable // which starts at zero and steps by one. // 2. The canonical induction variable is guaranteed to be the first PHI node // in the loop header block. // 3. The canonical induction variable is guaranteed to be in a wide enough // type so that IV expressions need not be (directly) zero-extended or // sign-extended. // 4. Any pointer arithmetic recurrences are raised to use array subscripts. // // If the trip count of a loop is computable, this pass also makes the following // changes: // 1. The exit condition for the loop is canonicalized to compare the // induction value against the exit value. This turns loops like: // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' // 2. Any use outside of the loop of an expression derived from the indvar // is changed to compute the derived value outside of the loop, eliminating // the dependence on the exit value of the induction variable. If the only // purpose of the loop is to compute the exit value of some derived // expression, this transformation will make the loop dead. // // This transformation should be followed by strength reduction after all of the // desired loop transformations have been performed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "indvars" #include "llvm/Transforms/Scalar.h" #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Type.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/IVUsers.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Support/CommandLine.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" using namespace llvm; STATISTIC(NumRemoved , "Number of aux indvars removed"); STATISTIC(NumInserted, "Number of canonical indvars added"); STATISTIC(NumReplaced, "Number of exit values replaced"); STATISTIC(NumLFTR , "Number of loop exit tests replaced"); namespace { class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass { IVUsers *IU; LoopInfo *LI; ScalarEvolution *SE; DominatorTree *DT; bool Changed; public: static char ID; // Pass identification, replacement for typeid IndVarSimplify() : LoopPass(&ID) {} virtual bool runOnLoop(Loop *L, LPPassManager &LPM); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(LoopSimplifyID); AU.addPreservedID(LCSSAID); AU.addPreserved(); AU.setPreservesCFG(); } private: void RewriteNonIntegerIVs(Loop *L); ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, Value *IndVar, BasicBlock *ExitingBlock, BranchInst *BI, SCEVExpander &Rewriter); void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount, SCEVExpander &Rewriter); void RewriteIVExpressions(Loop *L, const Type *LargestType, SCEVExpander &Rewriter); void SinkUnusedInvariants(Loop *L); void HandleFloatingPointIV(Loop *L, PHINode *PH); }; } char IndVarSimplify::ID = 0; static RegisterPass X("indvars", "Canonicalize Induction Variables"); Pass *llvm::createIndVarSimplifyPass() { return new IndVarSimplify(); } /// LinearFunctionTestReplace - This method rewrites the exit condition of the /// loop to be a canonical != comparison against the incremented loop induction /// variable. This pass is able to rewrite the exit tests of any loop where the /// SCEV analysis can determine a loop-invariant trip count of the loop, which /// is actually a much broader range than just linear tests. ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, Value *IndVar, BasicBlock *ExitingBlock, BranchInst *BI, SCEVExpander &Rewriter) { // If the exiting block is not the same as the backedge block, we must compare // against the preincremented value, otherwise we prefer to compare against // the post-incremented value. Value *CmpIndVar; const SCEV *RHS = BackedgeTakenCount; if (ExitingBlock == L->getLoopLatch()) { // Add one to the "backedge-taken" count to get the trip count. // If this addition may overflow, we have to be more pessimistic and // cast the induction variable before doing the add. const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType()); const SCEV *N = SE->getAddExpr(BackedgeTakenCount, SE->getIntegerSCEV(1, BackedgeTakenCount->getType())); if ((isa(N) && !N->isZero()) || SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { // No overflow. Cast the sum. RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType()); } else { // Potential overflow. Cast before doing the add. RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, IndVar->getType()); RHS = SE->getAddExpr(RHS, SE->getIntegerSCEV(1, IndVar->getType())); } // The BackedgeTaken expression contains the number of times that the // backedge branches to the loop header. This is one less than the // number of times the loop executes, so use the incremented indvar. CmpIndVar = L->getCanonicalInductionVariableIncrement(); } else { // We have to use the preincremented value... RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, IndVar->getType()); CmpIndVar = IndVar; } // Expand the code for the iteration count. assert(RHS->isLoopInvariant(L) && "Computed iteration count is not loop invariant!"); Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI); // Insert a new icmp_ne or icmp_eq instruction before the branch. ICmpInst::Predicate Opcode; if (L->contains(BI->getSuccessor(0))) Opcode = ICmpInst::ICMP_NE; else Opcode = ICmpInst::ICMP_EQ; DOUT << "INDVARS: Rewriting loop exit condition to:\n" << " LHS:" << *CmpIndVar // includes a newline << " op:\t" << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" << " RHS:\t" << *RHS << "\n"; ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond"); Instruction *OrigCond = cast(BI->getCondition()); // It's tempting to use replaceAllUsesWith here to fully replace the old // comparison, but that's not immediately safe, since users of the old // comparison may not be dominated by the new comparison. Instead, just // update the branch to use the new comparison; in the common case this // will make old comparison dead. BI->setCondition(Cond); RecursivelyDeleteTriviallyDeadInstructions(OrigCond); ++NumLFTR; Changed = true; return Cond; } /// RewriteLoopExitValues - Check to see if this loop has a computable /// loop-invariant execution count. If so, this means that we can compute the /// final value of any expressions that are recurrent in the loop, and /// substitute the exit values from the loop into any instructions outside of /// the loop that use the final values of the current expressions. /// /// This is mostly redundant with the regular IndVarSimplify activities that /// happen later, except that it's more powerful in some cases, because it's /// able to brute-force evaluate arbitrary instructions as long as they have /// constant operands at the beginning of the loop. void IndVarSimplify::RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount, SCEVExpander &Rewriter) { // Verify the input to the pass in already in LCSSA form. assert(L->isLCSSAForm()); SmallVector ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); // Find all values that are computed inside the loop, but used outside of it. // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan // the exit blocks of the loop to find them. for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { BasicBlock *ExitBB = ExitBlocks[i]; // If there are no PHI nodes in this exit block, then no values defined // inside the loop are used on this path, skip it. PHINode *PN = dyn_cast(ExitBB->begin()); if (!PN) continue; unsigned NumPreds = PN->getNumIncomingValues(); // Iterate over all of the PHI nodes. BasicBlock::iterator BBI = ExitBB->begin(); while ((PN = dyn_cast(BBI++))) { if (PN->use_empty()) continue; // dead use, don't replace it // Iterate over all of the values in all the PHI nodes. for (unsigned i = 0; i != NumPreds; ++i) { // If the value being merged in is not integer or is not defined // in the loop, skip it. Value *InVal = PN->getIncomingValue(i); if (!isa(InVal) || // SCEV only supports integer expressions for now. (!isa(InVal->getType()) && !isa(InVal->getType()))) continue; // If this pred is for a subloop, not L itself, skip it. if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) continue; // The Block is in a subloop, skip it. // Check that InVal is defined in the loop. Instruction *Inst = cast(InVal); if (!L->contains(Inst->getParent())) continue; // Okay, this instruction has a user outside of the current loop // and varies predictably *inside* the loop. Evaluate the value it // contains when the loop exits, if possible. const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); if (!ExitValue->isLoopInvariant(L)) continue; Changed = true; ++NumReplaced; Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << " LoopVal = " << *Inst << "\n"; PN->setIncomingValue(i, ExitVal); // If this instruction is dead now, delete it. RecursivelyDeleteTriviallyDeadInstructions(Inst); if (NumPreds == 1) { // Completely replace a single-pred PHI. This is safe, because the // NewVal won't be variant in the loop, so we don't need an LCSSA phi // node anymore. PN->replaceAllUsesWith(ExitVal); RecursivelyDeleteTriviallyDeadInstructions(PN); } } if (NumPreds != 1) { // Clone the PHI and delete the original one. This lets IVUsers and // any other maps purge the original user from their records. PHINode *NewPN = PN->clone(*Context); NewPN->takeName(PN); NewPN->insertBefore(PN); PN->replaceAllUsesWith(NewPN); PN->eraseFromParent(); } } } } void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { // First step. Check to see if there are any floating-point recurrences. // If there are, change them into integer recurrences, permitting analysis by // the SCEV routines. // BasicBlock *Header = L->getHeader(); SmallVector PHIs; for (BasicBlock::iterator I = Header->begin(); PHINode *PN = dyn_cast(I); ++I) PHIs.push_back(PN); for (unsigned i = 0, e = PHIs.size(); i != e; ++i) if (PHINode *PN = dyn_cast_or_null(PHIs[i])) HandleFloatingPointIV(L, PN); // If the loop previously had floating-point IV, ScalarEvolution // may not have been able to compute a trip count. Now that we've done some // re-writing, the trip count may be computable. if (Changed) SE->forgetLoopBackedgeTakenCount(L); } bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { IU = &getAnalysis(); LI = &getAnalysis(); SE = &getAnalysis(); DT = &getAnalysis(); Changed = false; // If there are any floating-point recurrences, attempt to // transform them to use integer recurrences. RewriteNonIntegerIVs(L); BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); // Create a rewriter object which we'll use to transform the code with. SCEVExpander Rewriter(*SE); // Check to see if this loop has a computable loop-invariant execution count. // If so, this means that we can compute the final value of any expressions // that are recurrent in the loop, and substitute the exit values from the // loop into any instructions outside of the loop that use the final values of // the current expressions. // if (!isa(BackedgeTakenCount)) RewriteLoopExitValues(L, BackedgeTakenCount, Rewriter); // Compute the type of the largest recurrence expression, and decide whether // a canonical induction variable should be inserted. const Type *LargestType = 0; bool NeedCannIV = false; if (!isa(BackedgeTakenCount)) { LargestType = BackedgeTakenCount->getType(); LargestType = SE->getEffectiveSCEVType(LargestType); // If we have a known trip count and a single exit block, we'll be // rewriting the loop exit test condition below, which requires a // canonical induction variable. if (ExitingBlock) NeedCannIV = true; } for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) { const SCEV *Stride = IU->StrideOrder[i]; const Type *Ty = SE->getEffectiveSCEVType(Stride->getType()); if (!LargestType || SE->getTypeSizeInBits(Ty) > SE->getTypeSizeInBits(LargestType)) LargestType = Ty; std::map::iterator SI = IU->IVUsesByStride.find(IU->StrideOrder[i]); assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); if (!SI->second->Users.empty()) NeedCannIV = true; } // Now that we know the largest of of the induction variable expressions // in this loop, insert a canonical induction variable of the largest size. Value *IndVar = 0; if (NeedCannIV) { // Check to see if the loop already has a canonical-looking induction // variable. If one is present and it's wider than the planned canonical // induction variable, temporarily remove it, so that the Rewriter // doesn't attempt to reuse it. PHINode *OldCannIV = L->getCanonicalInductionVariable(); if (OldCannIV) { if (SE->getTypeSizeInBits(OldCannIV->getType()) > SE->getTypeSizeInBits(LargestType)) OldCannIV->removeFromParent(); else OldCannIV = 0; } IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); ++NumInserted; Changed = true; DOUT << "INDVARS: New CanIV: " << *IndVar; // Now that the official induction variable is established, reinsert // the old canonical-looking variable after it so that the IR remains // consistent. It will be deleted as part of the dead-PHI deletion at // the end of the pass. if (OldCannIV) OldCannIV->insertAfter(cast(IndVar)); } // If we have a trip count expression, rewrite the loop's exit condition // using it. We can currently only handle loops with a single exit. ICmpInst *NewICmp = 0; if (!isa(BackedgeTakenCount) && ExitingBlock) { assert(NeedCannIV && "LinearFunctionTestReplace requires a canonical induction variable"); // Can't rewrite non-branch yet. if (BranchInst *BI = dyn_cast(ExitingBlock->getTerminator())) NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, ExitingBlock, BI, Rewriter); } // Rewrite IV-derived expressions. Clears the rewriter cache. RewriteIVExpressions(L, LargestType, Rewriter); // The Rewriter may not be used from this point on. // Loop-invariant instructions in the preheader that aren't used in the // loop may be sunk below the loop to reduce register pressure. SinkUnusedInvariants(L); // For completeness, inform IVUsers of the IV use in the newly-created // loop exit test instruction. if (NewICmp) IU->AddUsersIfInteresting(cast(NewICmp->getOperand(0))); // Clean up dead instructions. DeleteDeadPHIs(L->getHeader()); // Check a post-condition. assert(L->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!"); return Changed; } void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType, SCEVExpander &Rewriter) { SmallVector DeadInsts; // Rewrite all induction variable expressions in terms of the canonical // induction variable. // // If there were induction variables of other sizes or offsets, manually // add the offsets to the primary induction variable and cast, avoiding // the need for the code evaluation methods to insert induction variables // of different sizes. for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) { const SCEV *Stride = IU->StrideOrder[i]; std::map::iterator SI = IU->IVUsesByStride.find(IU->StrideOrder[i]); assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); ilist &List = SI->second->Users; for (ilist::iterator UI = List.begin(), E = List.end(); UI != E; ++UI) { Value *Op = UI->getOperandValToReplace(); const Type *UseTy = Op->getType(); Instruction *User = UI->getUser(); // Compute the final addrec to expand into code. const SCEV *AR = IU->getReplacementExpr(*UI); // FIXME: It is an extremely bad idea to indvar substitute anything more // complex than affine induction variables. Doing so will put expensive // polynomial evaluations inside of the loop, and the str reduction pass // currently can only reduce affine polynomials. For now just disable // indvar subst on anything more complex than an affine addrec, unless // it can be expanded to a trivial value. if (!AR->isLoopInvariant(L) && !Stride->isLoopInvariant(L)) continue; // Determine the insertion point for this user. By default, insert // immediately before the user. The SCEVExpander class will automatically // hoist loop invariants out of the loop. For PHI nodes, there may be // multiple uses, so compute the nearest common dominator for the // incoming blocks. Instruction *InsertPt = User; if (PHINode *PHI = dyn_cast(InsertPt)) for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) if (PHI->getIncomingValue(i) == Op) { if (InsertPt == User) InsertPt = PHI->getIncomingBlock(i)->getTerminator(); else InsertPt = DT->findNearestCommonDominator(InsertPt->getParent(), PHI->getIncomingBlock(i)) ->getTerminator(); } // Now expand it into actual Instructions and patch it into place. Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); // Patch the new value into place. if (Op->hasName()) NewVal->takeName(Op); User->replaceUsesOfWith(Op, NewVal); UI->setOperandValToReplace(NewVal); DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << " into = " << *NewVal << "\n"; ++NumRemoved; Changed = true; // The old value may be dead now. DeadInsts.push_back(Op); } } // Clear the rewriter cache, because values that are in the rewriter's cache // can be deleted in the loop below, causing the AssertingVH in the cache to // trigger. Rewriter.clear(); // Now that we're done iterating through lists, clean up any instructions // which are now dead. while (!DeadInsts.empty()) { Instruction *Inst = dyn_cast_or_null(DeadInsts.pop_back_val()); if (Inst) RecursivelyDeleteTriviallyDeadInstructions(Inst); } } /// If there's a single exit block, sink any loop-invariant values that /// were defined in the preheader but not used inside the loop into the /// exit block to reduce register pressure in the loop. void IndVarSimplify::SinkUnusedInvariants(Loop *L) { BasicBlock *ExitBlock = L->getExitBlock(); if (!ExitBlock) return; Instruction *InsertPt = ExitBlock->getFirstNonPHI(); BasicBlock *Preheader = L->getLoopPreheader(); BasicBlock::iterator I = Preheader->getTerminator(); while (I != Preheader->begin()) { --I; // New instructions were inserted at the end of the preheader. if (isa(I)) break; // Don't move instructions which might have side effects, since the side // effects need to complete before instructions inside the loop. Also // don't move instructions which might read memory, since the loop may // modify memory. Note that it's okay if the instruction might have // undefined behavior: LoopSimplify guarantees that the preheader // dominates the exit block. if (I->mayHaveSideEffects() || I->mayReadFromMemory()) continue; // Determine if there is a use in or before the loop (direct or // otherwise). bool UsedInLoop = false; for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) { BasicBlock *UseBB = cast(UI)->getParent(); if (PHINode *P = dyn_cast(UI)) { unsigned i = PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); UseBB = P->getIncomingBlock(i); } if (UseBB == Preheader || L->contains(UseBB)) { UsedInLoop = true; break; } } // If there is, the def must remain in the preheader. if (UsedInLoop) continue; // Otherwise, sink it to the exit block. Instruction *ToMove = I; bool Done = false; if (I != Preheader->begin()) --I; else Done = true; ToMove->moveBefore(InsertPt); if (Done) break; InsertPt = ToMove; } } /// Return true if it is OK to use SIToFPInst for an inducation variable /// with given inital and exit values. static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV, uint64_t intIV, uint64_t intEV) { if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative()) return true; // If the iteration range can be handled by SIToFPInst then use it. APInt Max = APInt::getSignedMaxValue(32); if (Max.getZExtValue() > static_cast(abs64(intEV - intIV))) return true; return false; } /// convertToInt - Convert APF to an integer, if possible. static bool convertToInt(const APFloat &APF, uint64_t *intVal) { bool isExact = false; if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) return false; if (APF.convertToInteger(intVal, 32, APF.isNegative(), APFloat::rmTowardZero, &isExact) != APFloat::opOK) return false; if (!isExact) return false; return true; } /// HandleFloatingPointIV - If the loop has floating induction variable /// then insert corresponding integer induction variable if possible. /// For example, /// for(double i = 0; i < 10000; ++i) /// bar(i) /// is converted into /// for(int i = 0; i < 10000; ++i) /// bar((double)i); /// void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) { unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0)); unsigned BackEdge = IncomingEdge^1; // Check incoming value. ConstantFP *InitValue = dyn_cast(PH->getIncomingValue(IncomingEdge)); if (!InitValue) return; uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits(); if (!convertToInt(InitValue->getValueAPF(), &newInitValue)) return; // Check IV increment. Reject this PH if increement operation is not // an add or increment value can not be represented by an integer. BinaryOperator *Incr = dyn_cast(PH->getIncomingValue(BackEdge)); if (!Incr) return; if (Incr->getOpcode() != Instruction::FAdd) return; ConstantFP *IncrValue = NULL; unsigned IncrVIndex = 1; if (Incr->getOperand(1) == PH) IncrVIndex = 0; IncrValue = dyn_cast(Incr->getOperand(IncrVIndex)); if (!IncrValue) return; uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits(); if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue)) return; // Check Incr uses. One user is PH and the other users is exit condition used // by the conditional terminator. Value::use_iterator IncrUse = Incr->use_begin(); Instruction *U1 = cast(IncrUse++); if (IncrUse == Incr->use_end()) return; Instruction *U2 = cast(IncrUse++); if (IncrUse != Incr->use_end()) return; // Find exit condition. FCmpInst *EC = dyn_cast(U1); if (!EC) EC = dyn_cast(U2); if (!EC) return; if (BranchInst *BI = dyn_cast(EC->getParent()->getTerminator())) { if (!BI->isConditional()) return; if (BI->getCondition() != EC) return; } // Find exit value. If exit value can not be represented as an interger then // do not handle this floating point PH. ConstantFP *EV = NULL; unsigned EVIndex = 1; if (EC->getOperand(1) == Incr) EVIndex = 0; EV = dyn_cast(EC->getOperand(EVIndex)); if (!EV) return; uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits(); if (!convertToInt(EV->getValueAPF(), &intEV)) return; // Find new predicate for integer comparison. CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; switch (EC->getPredicate()) { case CmpInst::FCMP_OEQ: case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; case CmpInst::FCMP_OGT: case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_UGT; break; case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_UGE; break; case CmpInst::FCMP_OLT: case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_ULT; break; case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_ULE; break; default: break; } if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return; // Insert new integer induction variable. PHINode *NewPHI = PHINode::Create(Type::Int32Ty, PH->getName()+".int", PH); NewPHI->addIncoming(Context->getConstantInt(Type::Int32Ty, newInitValue), PH->getIncomingBlock(IncomingEdge)); Value *NewAdd = BinaryOperator::CreateAdd(NewPHI, Context->getConstantInt(Type::Int32Ty, newIncrValue), Incr->getName()+".int", Incr); NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge)); // The back edge is edge 1 of newPHI, whatever it may have been in the // original PHI. ConstantInt *NewEV = Context->getConstantInt(Type::Int32Ty, intEV); Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV); Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1)); ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(), NewPred, LHS, RHS, EC->getNameStart()); // In the following deltions, PH may become dead and may be deleted. // Use a WeakVH to observe whether this happens. WeakVH WeakPH = PH; // Delete old, floating point, exit comparision instruction. NewEC->takeName(EC); EC->replaceAllUsesWith(NewEC); RecursivelyDeleteTriviallyDeadInstructions(EC); // Delete old, floating point, increment instruction. Incr->replaceAllUsesWith(Context->getUndef(Incr->getType())); RecursivelyDeleteTriviallyDeadInstructions(Incr); // Replace floating induction variable, if it isn't already deleted. // Give SIToFPInst preference over UIToFPInst because it is faster on // platforms that are widely used. if (WeakPH && !PH->use_empty()) { if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) { SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv", PH->getParent()->getFirstNonPHI()); PH->replaceAllUsesWith(Conv); } else { UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv", PH->getParent()->getFirstNonPHI()); PH->replaceAllUsesWith(Conv); } RecursivelyDeleteTriviallyDeadInstructions(PH); } // Add a new IVUsers entry for the newly-created integer PHI. IU->AddUsersIfInteresting(NewPHI); }