//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines structures to encapsulate the machine model as described in // the target description. // //===----------------------------------------------------------------------===// #include "CodeGenSchedule.h" #include "CodeGenInstruction.h" #include "CodeGenTarget.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Regex.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "subtarget-emitter" #ifndef NDEBUG static void dumpIdxVec(ArrayRef V) { for (unsigned Idx : V) dbgs() << Idx << ", "; } #endif namespace { // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. struct InstrsOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, ArrayRef Loc) override { ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); } }; // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. struct InstRegexOp : public SetTheory::Operator { const CodeGenTarget &Target; InstRegexOp(const CodeGenTarget &t): Target(t) {} /// Remove any text inside of parentheses from S. static std::string removeParens(llvm::StringRef S) { std::string Result; unsigned Paren = 0; // NB: We don't care about escaped parens here. for (char C : S) { switch (C) { case '(': ++Paren; break; case ')': --Paren; break; default: if (Paren == 0) Result += C; } } return Result; } void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, ArrayRef Loc) override { ArrayRef Instructions = Target.getInstructionsByEnumValue(); unsigned NumGeneric = Target.getNumFixedInstructions(); unsigned NumPseudos = Target.getNumPseudoInstructions(); auto Generics = Instructions.slice(0, NumGeneric); auto Pseudos = Instructions.slice(NumGeneric, NumPseudos); auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos); for (Init *Arg : Expr->getArgs()) { StringInit *SI = dyn_cast(Arg); if (!SI) PrintFatalError(Loc, "instregex requires pattern string: " + Expr->getAsString()); StringRef Original = SI->getValue(); // Extract a prefix that we can binary search on. static const char RegexMetachars[] = "()^$|*+?.[]\\{}"; auto FirstMeta = Original.find_first_of(RegexMetachars); // Look for top-level | or ?. We cannot optimize them to binary search. if (removeParens(Original).find_first_of("|?") != std::string::npos) FirstMeta = 0; Optional Regexpr = None; StringRef Prefix = Original.substr(0, FirstMeta); StringRef PatStr = Original.substr(FirstMeta); if (!PatStr.empty()) { // For the rest use a python-style prefix match. std::string pat = std::string(PatStr); if (pat[0] != '^') { pat.insert(0, "^("); pat.insert(pat.end(), ')'); } Regexpr = Regex(pat); } int NumMatches = 0; // The generic opcodes are unsorted, handle them manually. for (auto *Inst : Generics) { StringRef InstName = Inst->TheDef->getName(); if (InstName.startswith(Prefix) && (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) { Elts.insert(Inst->TheDef); NumMatches++; } } // Target instructions are split into two ranges: pseudo instructions // first, than non-pseudos. Each range is in lexicographical order // sorted by name. Find the sub-ranges that start with our prefix. struct Comp { bool operator()(const CodeGenInstruction *LHS, StringRef RHS) { return LHS->TheDef->getName() < RHS; } bool operator()(StringRef LHS, const CodeGenInstruction *RHS) { return LHS < RHS->TheDef->getName() && !RHS->TheDef->getName().startswith(LHS); } }; auto Range1 = std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp()); auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(), Prefix, Comp()); // For these ranges we know that instruction names start with the prefix. // Check if there's a regex that needs to be checked. const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) { StringRef InstName = Inst->TheDef->getName(); if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) { Elts.insert(Inst->TheDef); NumMatches++; } }; std::for_each(Range1.first, Range1.second, HandleNonGeneric); std::for_each(Range2.first, Range2.second, HandleNonGeneric); if (0 == NumMatches) PrintFatalError(Loc, "instregex has no matches: " + Original); } } }; } // end anonymous namespace /// CodeGenModels ctor interprets machine model records and populates maps. CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, const CodeGenTarget &TGT): Records(RK), Target(TGT) { Sets.addFieldExpander("InstRW", "Instrs"); // Allow Set evaluation to recognize the dags used in InstRW records: // (instrs Op1, Op1...) Sets.addOperator("instrs", std::make_unique()); Sets.addOperator("instregex", std::make_unique(Target)); // Instantiate a CodeGenProcModel for each SchedMachineModel with the values // that are explicitly referenced in tablegen records. Resources associated // with each processor will be derived later. Populate ProcModelMap with the // CodeGenProcModel instances. collectProcModels(); // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly // defined, and populate SchedReads and SchedWrites vectors. Implicit // SchedReadWrites that represent sequences derived from expanded variant will // be inferred later. collectSchedRW(); // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly // required by an instruction definition, and populate SchedClassIdxMap. Set // NumItineraryClasses to the number of explicit itinerary classes referenced // by instructions. Set NumInstrSchedClasses to the number of itinerary // classes plus any classes implied by instructions that derive from class // Sched and provide SchedRW list. This does not infer any new classes from // SchedVariant. collectSchedClasses(); // Find instruction itineraries for each processor. Sort and populate // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires // all itinerary classes to be discovered. collectProcItins(); // Find ItinRW records for each processor and itinerary class. // (For per-operand resources mapped to itinerary classes). collectProcItinRW(); // Find UnsupportedFeatures records for each processor. // (For per-operand resources mapped to itinerary classes). collectProcUnsupportedFeatures(); // Infer new SchedClasses from SchedVariant. inferSchedClasses(); // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and // ProcResourceDefs. LLVM_DEBUG( dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n"); collectProcResources(); // Collect optional processor description. collectOptionalProcessorInfo(); // Check MCInstPredicate definitions. checkMCInstPredicates(); // Check STIPredicate definitions. checkSTIPredicates(); // Find STIPredicate definitions for each processor model, and construct // STIPredicateFunction objects. collectSTIPredicates(); checkCompleteness(); } void CodeGenSchedModels::checkSTIPredicates() const { DenseMap Declarations; // There cannot be multiple declarations with the same name. const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl"); for (const Record *R : Decls) { StringRef Name = R->getValueAsString("Name"); const auto It = Declarations.find(Name); if (It == Declarations.end()) { Declarations[Name] = R; continue; } PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared."); PrintFatalNote(It->second->getLoc(), "Previous declaration was here."); } // Disallow InstructionEquivalenceClasses with an empty instruction list. const RecVec Defs = Records.getAllDerivedDefinitions("InstructionEquivalenceClass"); for (const Record *R : Defs) { RecVec Opcodes = R->getValueAsListOfDefs("Opcodes"); if (Opcodes.empty()) { PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass " "defined with an empty opcode list."); } } } // Used by function `processSTIPredicate` to construct a mask of machine // instruction operands. static APInt constructOperandMask(ArrayRef Indices) { APInt OperandMask; if (Indices.empty()) return OperandMask; int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end()); assert(MaxIndex >= 0 && "Invalid negative indices in input!"); OperandMask = OperandMask.zext(MaxIndex + 1); for (const int64_t Index : Indices) { assert(Index >= 0 && "Invalid negative indices!"); OperandMask.setBit(Index); } return OperandMask; } static void processSTIPredicate(STIPredicateFunction &Fn, const ProcModelMapTy &ProcModelMap) { DenseMap Opcode2Index; using OpcodeMapPair = std::pair; std::vector OpcodeMappings; std::vector> OpcodeMasks; DenseMap Predicate2Index; unsigned NumUniquePredicates = 0; // Number unique predicates and opcodes used by InstructionEquivalenceClass // definitions. Each unique opcode will be associated with an OpcodeInfo // object. for (const Record *Def : Fn.getDefinitions()) { RecVec Classes = Def->getValueAsListOfDefs("Classes"); for (const Record *EC : Classes) { const Record *Pred = EC->getValueAsDef("Predicate"); if (Predicate2Index.find(Pred) == Predicate2Index.end()) Predicate2Index[Pred] = NumUniquePredicates++; RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes"); for (const Record *Opcode : Opcodes) { if (Opcode2Index.find(Opcode) == Opcode2Index.end()) { Opcode2Index[Opcode] = OpcodeMappings.size(); OpcodeMappings.emplace_back(Opcode, OpcodeInfo()); } } } } // Initialize vector `OpcodeMasks` with default values. We want to keep track // of which processors "use" which opcodes. We also want to be able to // identify predicates that are used by different processors for a same // opcode. // This information is used later on by this algorithm to sort OpcodeMapping // elements based on their processor and predicate sets. OpcodeMasks.resize(OpcodeMappings.size()); APInt DefaultProcMask(ProcModelMap.size(), 0); APInt DefaultPredMask(NumUniquePredicates, 0); for (std::pair &MaskPair : OpcodeMasks) MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask); // Construct a OpcodeInfo object for every unique opcode declared by an // InstructionEquivalenceClass definition. for (const Record *Def : Fn.getDefinitions()) { RecVec Classes = Def->getValueAsListOfDefs("Classes"); const Record *SchedModel = Def->getValueAsDef("SchedModel"); unsigned ProcIndex = ProcModelMap.find(SchedModel)->second; APInt ProcMask(ProcModelMap.size(), 0); ProcMask.setBit(ProcIndex); for (const Record *EC : Classes) { RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes"); std::vector OpIndices = EC->getValueAsListOfInts("OperandIndices"); APInt OperandMask = constructOperandMask(OpIndices); const Record *Pred = EC->getValueAsDef("Predicate"); APInt PredMask(NumUniquePredicates, 0); PredMask.setBit(Predicate2Index[Pred]); for (const Record *Opcode : Opcodes) { unsigned OpcodeIdx = Opcode2Index[Opcode]; if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) { std::string Message = "Opcode " + Opcode->getName().str() + " used by multiple InstructionEquivalenceClass definitions."; PrintFatalError(EC->getLoc(), Message); } OpcodeMasks[OpcodeIdx].first |= ProcMask; OpcodeMasks[OpcodeIdx].second |= PredMask; OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second; OI.addPredicateForProcModel(ProcMask, OperandMask, Pred); } } } // Sort OpcodeMappings elements based on their CPU and predicate masks. // As a last resort, order elements by opcode identifier. llvm::sort(OpcodeMappings, [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) { unsigned LhsIdx = Opcode2Index[Lhs.first]; unsigned RhsIdx = Opcode2Index[Rhs.first]; const std::pair &LhsMasks = OpcodeMasks[LhsIdx]; const std::pair &RhsMasks = OpcodeMasks[RhsIdx]; auto LessThan = [](const APInt &Lhs, const APInt &Rhs) { unsigned LhsCountPopulation = Lhs.countPopulation(); unsigned RhsCountPopulation = Rhs.countPopulation(); return ((LhsCountPopulation < RhsCountPopulation) || ((LhsCountPopulation == RhsCountPopulation) && (Lhs.countLeadingZeros() > Rhs.countLeadingZeros()))); }; if (LhsMasks.first != RhsMasks.first) return LessThan(LhsMasks.first, RhsMasks.first); if (LhsMasks.second != RhsMasks.second) return LessThan(LhsMasks.second, RhsMasks.second); return LhsIdx < RhsIdx; }); // Now construct opcode groups. Groups are used by the SubtargetEmitter when // expanding the body of a STIPredicate function. In particular, each opcode // group is expanded into a sequence of labels in a switch statement. // It identifies opcodes for which different processors define same predicates // and same opcode masks. for (OpcodeMapPair &Info : OpcodeMappings) Fn.addOpcode(Info.first, std::move(Info.second)); } void CodeGenSchedModels::collectSTIPredicates() { // Map STIPredicateDecl records to elements of vector // CodeGenSchedModels::STIPredicates. DenseMap Decl2Index; RecVec RV = Records.getAllDerivedDefinitions("STIPredicate"); for (const Record *R : RV) { const Record *Decl = R->getValueAsDef("Declaration"); const auto It = Decl2Index.find(Decl); if (It == Decl2Index.end()) { Decl2Index[Decl] = STIPredicates.size(); STIPredicateFunction Predicate(Decl); Predicate.addDefinition(R); STIPredicates.emplace_back(std::move(Predicate)); continue; } STIPredicateFunction &PreviousDef = STIPredicates[It->second]; PreviousDef.addDefinition(R); } for (STIPredicateFunction &Fn : STIPredicates) processSTIPredicate(Fn, ProcModelMap); } void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask, const llvm::APInt &OperandMask, const Record *Predicate) { auto It = llvm::find_if( Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) { return P.Predicate == Predicate && P.OperandMask == OperandMask; }); if (It == Predicates.end()) { Predicates.emplace_back(CpuMask, OperandMask, Predicate); return; } It->ProcModelMask |= CpuMask; } void CodeGenSchedModels::checkMCInstPredicates() const { RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate"); if (MCPredicates.empty()) return; // A target cannot have multiple TIIPredicate definitions with a same name. llvm::StringMap TIIPredicates(MCPredicates.size()); for (const Record *TIIPred : MCPredicates) { StringRef Name = TIIPred->getValueAsString("FunctionName"); StringMap::const_iterator It = TIIPredicates.find(Name); if (It == TIIPredicates.end()) { TIIPredicates[Name] = TIIPred; continue; } PrintError(TIIPred->getLoc(), "TIIPredicate " + Name + " is multiply defined."); PrintFatalNote(It->second->getLoc(), " Previous definition of " + Name + " was here."); } } void CodeGenSchedModels::collectRetireControlUnits() { RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit"); for (Record *RCU : Units) { CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel")); if (PM.RetireControlUnit) { PrintError(RCU->getLoc(), "Expected a single RetireControlUnit definition"); PrintNote(PM.RetireControlUnit->getLoc(), "Previous definition of RetireControlUnit was here"); } PM.RetireControlUnit = RCU; } } void CodeGenSchedModels::collectLoadStoreQueueInfo() { RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue"); for (Record *Queue : Queues) { CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel")); if (Queue->isSubClassOf("LoadQueue")) { if (PM.LoadQueue) { PrintError(Queue->getLoc(), "Expected a single LoadQueue definition"); PrintNote(PM.LoadQueue->getLoc(), "Previous definition of LoadQueue was here"); } PM.LoadQueue = Queue; } if (Queue->isSubClassOf("StoreQueue")) { if (PM.StoreQueue) { PrintError(Queue->getLoc(), "Expected a single StoreQueue definition"); PrintNote(PM.LoadQueue->getLoc(), "Previous definition of StoreQueue was here"); } PM.StoreQueue = Queue; } } } /// Collect optional processor information. void CodeGenSchedModels::collectOptionalProcessorInfo() { // Find register file definitions for each processor. collectRegisterFiles(); // Collect processor RetireControlUnit descriptors if available. collectRetireControlUnits(); // Collect information about load/store queues. collectLoadStoreQueueInfo(); checkCompleteness(); } /// Gather all processor models. void CodeGenSchedModels::collectProcModels() { RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); llvm::sort(ProcRecords, LessRecordFieldName()); // Reserve space because we can. Reallocation would be ok. ProcModels.reserve(ProcRecords.size()+1); // Use idx=0 for NoModel/NoItineraries. Record *NoModelDef = Records.getDef("NoSchedModel"); Record *NoItinsDef = Records.getDef("NoItineraries"); ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); ProcModelMap[NoModelDef] = 0; // For each processor, find a unique machine model. LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n"); for (Record *ProcRecord : ProcRecords) addProcModel(ProcRecord); } /// Get a unique processor model based on the defined MachineModel and /// ProcessorItineraries. void CodeGenSchedModels::addProcModel(Record *ProcDef) { Record *ModelKey = getModelOrItinDef(ProcDef); if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) return; std::string Name = std::string(ModelKey->getName()); if (ModelKey->isSubClassOf("SchedMachineModel")) { Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); } else { // An itinerary is defined without a machine model. Infer a new model. if (!ModelKey->getValueAsListOfDefs("IID").empty()) Name = Name + "Model"; ProcModels.emplace_back(ProcModels.size(), Name, ProcDef->getValueAsDef("SchedModel"), ModelKey); } LLVM_DEBUG(ProcModels.back().dump()); } // Recursively find all reachable SchedReadWrite records. static void scanSchedRW(Record *RWDef, RecVec &RWDefs, SmallPtrSet &RWSet) { if (!RWSet.insert(RWDef).second) return; RWDefs.push_back(RWDef); // Reads don't currently have sequence records, but it can be added later. if (RWDef->isSubClassOf("WriteSequence")) { RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); for (Record *WSRec : Seq) scanSchedRW(WSRec, RWDefs, RWSet); } else if (RWDef->isSubClassOf("SchedVariant")) { // Visit each variant (guarded by a different predicate). RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); for (Record *Variant : Vars) { // Visit each RW in the sequence selected by the current variant. RecVec Selected = Variant->getValueAsListOfDefs("Selected"); for (Record *SelDef : Selected) scanSchedRW(SelDef, RWDefs, RWSet); } } } // Collect and sort all SchedReadWrites reachable via tablegen records. // More may be inferred later when inferring new SchedClasses from variants. void CodeGenSchedModels::collectSchedRW() { // Reserve idx=0 for invalid writes/reads. SchedWrites.resize(1); SchedReads.resize(1); SmallPtrSet RWSet; // Find all SchedReadWrites referenced by instruction defs. RecVec SWDefs, SRDefs; for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { Record *SchedDef = Inst->TheDef; if (SchedDef->isValueUnset("SchedRW")) continue; RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); for (Record *RW : RWs) { if (RW->isSubClassOf("SchedWrite")) scanSchedRW(RW, SWDefs, RWSet); else { assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); scanSchedRW(RW, SRDefs, RWSet); } } } // Find all ReadWrites referenced by InstRW. RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); for (Record *InstRWDef : InstRWDefs) { // For all OperandReadWrites. RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites"); for (Record *RWDef : RWDefs) { if (RWDef->isSubClassOf("SchedWrite")) scanSchedRW(RWDef, SWDefs, RWSet); else { assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); scanSchedRW(RWDef, SRDefs, RWSet); } } } // Find all ReadWrites referenced by ItinRW. RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); for (Record *ItinRWDef : ItinRWDefs) { // For all OperandReadWrites. RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites"); for (Record *RWDef : RWDefs) { if (RWDef->isSubClassOf("SchedWrite")) scanSchedRW(RWDef, SWDefs, RWSet); else { assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); scanSchedRW(RWDef, SRDefs, RWSet); } } } // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted // for the loop below that initializes Alias vectors. RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); llvm::sort(AliasDefs, LessRecord()); for (Record *ADef : AliasDefs) { Record *MatchDef = ADef->getValueAsDef("MatchRW"); Record *AliasDef = ADef->getValueAsDef("AliasRW"); if (MatchDef->isSubClassOf("SchedWrite")) { if (!AliasDef->isSubClassOf("SchedWrite")) PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite"); scanSchedRW(AliasDef, SWDefs, RWSet); } else { assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); if (!AliasDef->isSubClassOf("SchedRead")) PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead"); scanSchedRW(AliasDef, SRDefs, RWSet); } } // Sort and add the SchedReadWrites directly referenced by instructions or // itinerary resources. Index reads and writes in separate domains. llvm::sort(SWDefs, LessRecord()); for (Record *SWDef : SWDefs) { assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite"); SchedWrites.emplace_back(SchedWrites.size(), SWDef); } llvm::sort(SRDefs, LessRecord()); for (Record *SRDef : SRDefs) { assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite"); SchedReads.emplace_back(SchedReads.size(), SRDef); } // Initialize WriteSequence vectors. for (CodeGenSchedRW &CGRW : SchedWrites) { if (!CGRW.IsSequence) continue; findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence, /*IsRead=*/false); } // Initialize Aliases vectors. for (Record *ADef : AliasDefs) { Record *AliasDef = ADef->getValueAsDef("AliasRW"); getSchedRW(AliasDef).IsAlias = true; Record *MatchDef = ADef->getValueAsDef("MatchRW"); CodeGenSchedRW &RW = getSchedRW(MatchDef); if (RW.IsAlias) PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias"); RW.Aliases.push_back(ADef); } LLVM_DEBUG( dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n"; for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { dbgs() << WIdx << ": "; SchedWrites[WIdx].dump(); dbgs() << '\n'; } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { dbgs() << RIdx << ": "; SchedReads[RIdx].dump(); dbgs() << '\n'; } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); for (Record *RWDef : RWDefs) { if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) { StringRef Name = RWDef->getName(); if (Name != "NoWrite" && Name != "ReadDefault") dbgs() << "Unused SchedReadWrite " << Name << '\n'; } }); } /// Compute a SchedWrite name from a sequence of writes. std::string CodeGenSchedModels::genRWName(ArrayRef Seq, bool IsRead) { std::string Name("("); ListSeparator LS("_"); for (unsigned I : Seq) { Name += LS; Name += getSchedRW(I, IsRead).Name; } Name += ')'; return Name; } unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def, bool IsRead) const { const std::vector &RWVec = IsRead ? SchedReads : SchedWrites; const auto I = find_if( RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; }); return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); } bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { for (const CodeGenSchedRW &Read : SchedReads) { Record *ReadDef = Read.TheDef; if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) continue; RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); if (is_contained(ValidWrites, WriteDef)) { return true; } } return false; } static void splitSchedReadWrites(const RecVec &RWDefs, RecVec &WriteDefs, RecVec &ReadDefs) { for (Record *RWDef : RWDefs) { if (RWDef->isSubClassOf("SchedWrite")) WriteDefs.push_back(RWDef); else { assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); ReadDefs.push_back(RWDef); } } } // Split the SchedReadWrites defs and call findRWs for each list. void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &Writes, IdxVec &Reads) const { RecVec WriteDefs; RecVec ReadDefs; splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); findRWs(WriteDefs, Writes, false); findRWs(ReadDefs, Reads, true); } // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, bool IsRead) const { for (Record *RWDef : RWDefs) { unsigned Idx = getSchedRWIdx(RWDef, IsRead); assert(Idx && "failed to collect SchedReadWrite"); RWs.push_back(Idx); } } void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, bool IsRead) const { const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); if (!SchedRW.IsSequence) { RWSeq.push_back(RWIdx); return; } int Repeat = SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; for (int i = 0; i < Repeat; ++i) { for (unsigned I : SchedRW.Sequence) { expandRWSequence(I, RWSeq, IsRead); } } } // Expand a SchedWrite as a sequence following any aliases that coincide with // the given processor model. void CodeGenSchedModels::expandRWSeqForProc( unsigned RWIdx, IdxVec &RWSeq, bool IsRead, const CodeGenProcModel &ProcModel) const { const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); Record *AliasDef = nullptr; for (const Record *Rec : SchedWrite.Aliases) { const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW")); if (Rec->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = Rec->getValueAsDef("SchedModel"); if (&getProcModel(ModelDef) != &ProcModel) continue; } if (AliasDef) PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " "defined for processor " + ProcModel.ModelName + " Ensure only one SchedAlias exists per RW."); AliasDef = AliasRW.TheDef; } if (AliasDef) { expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), RWSeq, IsRead,ProcModel); return; } if (!SchedWrite.IsSequence) { RWSeq.push_back(RWIdx); return; } int Repeat = SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; for (int I = 0, E = Repeat; I < E; ++I) { for (unsigned Idx : SchedWrite.Sequence) { expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel); } } } // Find the existing SchedWrite that models this sequence of writes. unsigned CodeGenSchedModels::findRWForSequence(ArrayRef Seq, bool IsRead) { std::vector &RWVec = IsRead ? SchedReads : SchedWrites; auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) { return makeArrayRef(RW.Sequence) == Seq; }); // Index zero reserved for invalid RW. return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I); } /// Add this ReadWrite if it doesn't already exist. unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef Seq, bool IsRead) { assert(!Seq.empty() && "cannot insert empty sequence"); if (Seq.size() == 1) return Seq.back(); unsigned Idx = findRWForSequence(Seq, IsRead); if (Idx) return Idx; std::vector &RWVec = IsRead ? SchedReads : SchedWrites; unsigned RWIdx = RWVec.size(); CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); RWVec.push_back(SchedRW); return RWIdx; } /// Visit all the instruction definitions for this target to gather and /// enumerate the itinerary classes. These are the explicitly specified /// SchedClasses. More SchedClasses may be inferred. void CodeGenSchedModels::collectSchedClasses() { // NoItinerary is always the first class at Idx=0 assert(SchedClasses.empty() && "Expected empty sched class"); SchedClasses.emplace_back(0, "NoInstrModel", Records.getDef("NoItinerary")); SchedClasses.back().ProcIndices.push_back(0); // Create a SchedClass for each unique combination of itinerary class and // SchedRW list. for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); IdxVec Writes, Reads; if (!Inst->TheDef->isValueUnset("SchedRW")) findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); // ProcIdx == 0 indicates the class applies to all processors. unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0}); InstrClassMap[Inst->TheDef] = SCIdx; } // Create classes for InstRW defs. RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); llvm::sort(InstRWDefs, LessRecord()); LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n"); for (Record *RWDef : InstRWDefs) createInstRWClass(RWDef); NumInstrSchedClasses = SchedClasses.size(); bool EnableDump = false; LLVM_DEBUG(EnableDump = true); if (!EnableDump) return; LLVM_DEBUG( dbgs() << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n"); for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { StringRef InstName = Inst->TheDef->getName(); unsigned SCIdx = getSchedClassIdx(*Inst); if (!SCIdx) { LLVM_DEBUG({ if (!Inst->hasNoSchedulingInfo) dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; }); continue; } CodeGenSchedClass &SC = getSchedClass(SCIdx); if (SC.ProcIndices[0] != 0) PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " "must not be subtarget specific."); IdxVec ProcIndices; if (SC.ItinClassDef->getName() != "NoItinerary") { ProcIndices.push_back(0); dbgs() << "Itinerary for " << InstName << ": " << SC.ItinClassDef->getName() << '\n'; } if (!SC.Writes.empty()) { ProcIndices.push_back(0); LLVM_DEBUG({ dbgs() << "SchedRW machine model for " << InstName; for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) dbgs() << " " << SchedWrites[*WI].Name; for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) dbgs() << " " << SchedReads[*RI].Name; dbgs() << '\n'; }); } const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; for (Record *RWDef : RWDefs) { const CodeGenProcModel &ProcModel = getProcModel(RWDef->getValueAsDef("SchedModel")); ProcIndices.push_back(ProcModel.Index); LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName); IdxVec Writes; IdxVec Reads; findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); LLVM_DEBUG({ for (unsigned WIdx : Writes) dbgs() << " " << SchedWrites[WIdx].Name; for (unsigned RIdx : Reads) dbgs() << " " << SchedReads[RIdx].Name; dbgs() << '\n'; }); } // If ProcIndices contains zero, the class applies to all processors. LLVM_DEBUG({ if (!llvm::is_contained(ProcIndices, 0)) { for (const CodeGenProcModel &PM : ProcModels) { if (!llvm::is_contained(ProcIndices, PM.Index)) dbgs() << "No machine model for " << Inst->TheDef->getName() << " on processor " << PM.ModelName << '\n'; } } }); } } // Get the SchedClass index for an instruction. unsigned CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const { return InstrClassMap.lookup(Inst.TheDef); } std::string CodeGenSchedModels::createSchedClassName(Record *ItinClassDef, ArrayRef OperWrites, ArrayRef OperReads) { std::string Name; if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") Name = std::string(ItinClassDef->getName()); for (unsigned Idx : OperWrites) { if (!Name.empty()) Name += '_'; Name += SchedWrites[Idx].Name; } for (unsigned Idx : OperReads) { Name += '_'; Name += SchedReads[Idx].Name; } return Name; } std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { std::string Name; ListSeparator LS("_"); for (const Record *InstDef : InstDefs) { Name += LS; Name += InstDef->getName(); } return Name; } /// Add an inferred sched class from an itinerary class and per-operand list of /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of /// processors that may utilize this class. unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, ArrayRef OperWrites, ArrayRef OperReads, ArrayRef ProcIndices) { assert(!ProcIndices.empty() && "expect at least one ProcIdx"); auto IsKeyEqual = [=](const CodeGenSchedClass &SC) { return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads); }; auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual); unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I); if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { IdxVec PI; std::set_union(SchedClasses[Idx].ProcIndices.begin(), SchedClasses[Idx].ProcIndices.end(), ProcIndices.begin(), ProcIndices.end(), std::back_inserter(PI)); SchedClasses[Idx].ProcIndices = std::move(PI); return Idx; } Idx = SchedClasses.size(); SchedClasses.emplace_back(Idx, createSchedClassName(ItinClassDef, OperWrites, OperReads), ItinClassDef); CodeGenSchedClass &SC = SchedClasses.back(); SC.Writes = OperWrites; SC.Reads = OperReads; SC.ProcIndices = ProcIndices; return Idx; } // Create classes for each set of opcodes that are in the same InstReadWrite // definition across all processors. void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that // intersects with an existing class via a previous InstRWDef. Instrs that do // not intersect with an existing class refer back to their former class as // determined from ItinDef or SchedRW. SmallMapVector, 4> ClassInstrs; // Sort Instrs into sets. const RecVec *InstDefs = Sets.expand(InstRWDef); if (InstDefs->empty()) PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); for (Record *InstDef : *InstDefs) { InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef); if (Pos == InstrClassMap.end()) PrintFatalError(InstDef->getLoc(), "No sched class for instruction."); unsigned SCIdx = Pos->second; ClassInstrs[SCIdx].push_back(InstDef); } // For each set of Instrs, create a new class if necessary, and map or remap // the Instrs to it. for (auto &Entry : ClassInstrs) { unsigned OldSCIdx = Entry.first; ArrayRef InstDefs = Entry.second; // If the all instrs in the current class are accounted for, then leave // them mapped to their old class. if (OldSCIdx) { const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; if (!RWDefs.empty()) { const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); unsigned OrigNumInstrs = count_if(*OrigInstDefs, [&](Record *OIDef) { return InstrClassMap[OIDef] == OldSCIdx; }); if (OrigNumInstrs == InstDefs.size()) { assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && "expected a generic SchedClass"); Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); // Make sure we didn't already have a InstRW containing this // instruction on this model. for (Record *RWD : RWDefs) { if (RWD->getValueAsDef("SchedModel") == RWModelDef && RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) { assert(!InstDefs.empty()); // Checked at function start. PrintError( InstRWDef->getLoc(), "Overlapping InstRW definition for \"" + InstDefs.front()->getName() + "\" also matches previous \"" + RWD->getValue("Instrs")->getValue()->getAsString() + "\"."); PrintFatalNote(RWD->getLoc(), "Previous match was here."); } } LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" << SchedClasses[OldSCIdx].Name << " on " << RWModelDef->getName() << "\n"); SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); continue; } } } unsigned SCIdx = SchedClasses.size(); SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr); CodeGenSchedClass &SC = SchedClasses.back(); LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; SC.Writes = SchedClasses[OldSCIdx].Writes; SC.Reads = SchedClasses[OldSCIdx].Reads; SC.ProcIndices.push_back(0); // If we had an old class, copy it's InstRWs to this new class. if (OldSCIdx) { Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) { if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) { assert(!InstDefs.empty()); // Checked at function start. PrintError( InstRWDef->getLoc(), "Overlapping InstRW definition for \"" + InstDefs.front()->getName() + "\" also matches previous \"" + OldRWDef->getValue("Instrs")->getValue()->getAsString() + "\"."); PrintFatalNote(OldRWDef->getLoc(), "Previous match was here."); } assert(OldRWDef != InstRWDef && "SchedClass has duplicate InstRW def"); SC.InstRWs.push_back(OldRWDef); } } // Map each Instr to this new class. for (Record *InstDef : InstDefs) InstrClassMap[InstDef] = SCIdx; SC.InstRWs.push_back(InstRWDef); } } // True if collectProcItins found anything. bool CodeGenSchedModels::hasItineraries() const { for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd())) if (PM.hasItineraries()) return true; return false; } // Gather the processor itineraries. void CodeGenSchedModels::collectProcItins() { LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n"); for (CodeGenProcModel &ProcModel : ProcModels) { if (!ProcModel.hasItineraries()) continue; RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); // Populate ItinDefList with Itinerary records. ProcModel.ItinDefList.resize(NumInstrSchedClasses); // Insert each itinerary data record in the correct position within // the processor model's ItinDefList. for (Record *ItinData : ItinRecords) { const Record *ItinDef = ItinData->getValueAsDef("TheClass"); bool FoundClass = false; for (const CodeGenSchedClass &SC : make_range(schedClassBegin(), schedClassEnd())) { // Multiple SchedClasses may share an itinerary. Update all of them. if (SC.ItinClassDef == ItinDef) { ProcModel.ItinDefList[SC.Index] = ItinData; FoundClass = true; } } if (!FoundClass) { LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName() << " missing class for itinerary " << ItinDef->getName() << '\n'); } } // Check for missing itinerary entries. assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); LLVM_DEBUG( for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { if (!ProcModel.ItinDefList[i]) dbgs() << ProcModel.ItinsDef->getName() << " missing itinerary for class " << SchedClasses[i].Name << '\n'; }); } } // Gather the read/write types for each itinerary class. void CodeGenSchedModels::collectProcItinRW() { RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); llvm::sort(ItinRWDefs, LessRecord()); for (Record *RWDef : ItinRWDefs) { if (!RWDef->getValueInit("SchedModel")->isComplete()) PrintFatalError(RWDef->getLoc(), "SchedModel is undefined"); Record *ModelDef = RWDef->getValueAsDef("SchedModel"); ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); if (I == ProcModelMap.end()) { PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel " + ModelDef->getName()); } ProcModels[I->second].ItinRWDefs.push_back(RWDef); } } // Gather the unsupported features for processor models. void CodeGenSchedModels::collectProcUnsupportedFeatures() { for (CodeGenProcModel &ProcModel : ProcModels) append_range( ProcModel.UnsupportedFeaturesDefs, ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")); } /// Infer new classes from existing classes. In the process, this may create new /// SchedWrites from sequences of existing SchedWrites. void CodeGenSchedModels::inferSchedClasses() { LLVM_DEBUG( dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n"); LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); // Visit all existing classes and newly created classes. for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); if (SchedClasses[Idx].ItinClassDef) inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); if (!SchedClasses[Idx].InstRWs.empty()) inferFromInstRWs(Idx); if (!SchedClasses[Idx].Writes.empty()) { inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, Idx, SchedClasses[Idx].ProcIndices); } assert(SchedClasses.size() < (NumInstrSchedClasses*6) && "too many SchedVariants"); } } /// Infer classes from per-processor itinerary resources. void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, unsigned FromClassIdx) { for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { const CodeGenProcModel &PM = ProcModels[PIdx]; // For all ItinRW entries. bool HasMatch = false; for (const Record *Rec : PM.ItinRWDefs) { RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses"); if (!llvm::is_contained(Matched, ItinClassDef)) continue; if (HasMatch) PrintFatalError(Rec->getLoc(), "Duplicate itinerary class " + ItinClassDef->getName() + " in ItinResources for " + PM.ModelName); HasMatch = true; IdxVec Writes, Reads; findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); inferFromRW(Writes, Reads, FromClassIdx, PIdx); } } } /// Infer classes from per-processor InstReadWrite definitions. void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); Record *Rec = SchedClasses[SCIdx].InstRWs[I]; const RecVec *InstDefs = Sets.expand(Rec); RecIter II = InstDefs->begin(), IE = InstDefs->end(); for (; II != IE; ++II) { if (InstrClassMap[*II] == SCIdx) break; } // If this class no longer has any instructions mapped to it, it has become // irrelevant. if (II == IE) continue; IdxVec Writes, Reads; findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses. SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx); } } namespace { // Helper for substituteVariantOperand. struct TransVariant { Record *VarOrSeqDef; // Variant or sequence. unsigned RWIdx; // Index of this variant or sequence's matched type. unsigned ProcIdx; // Processor model index or zero for any. unsigned TransVecIdx; // Index into PredTransitions::TransVec. TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} }; // Associate a predicate with the SchedReadWrite that it guards. // RWIdx is the index of the read/write variant. struct PredCheck { bool IsRead; unsigned RWIdx; Record *Predicate; PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} }; // A Predicate transition is a list of RW sequences guarded by a PredTerm. struct PredTransition { // A predicate term is a conjunction of PredChecks. SmallVector PredTerm; SmallVector, 16> WriteSequences; SmallVector, 16> ReadSequences; unsigned ProcIndex = 0; PredTransition() = default; PredTransition(ArrayRef PT, unsigned ProcId) { PredTerm.assign(PT.begin(), PT.end()); ProcIndex = ProcId; } }; // Encapsulate a set of partially constructed transitions. // The results are built by repeated calls to substituteVariants. class PredTransitions { CodeGenSchedModels &SchedModels; public: std::vector TransVec; PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} bool substituteVariantOperand(const SmallVectorImpl &RWSeq, bool IsRead, unsigned StartIdx); bool substituteVariants(const PredTransition &Trans); #ifndef NDEBUG void dump() const; #endif private: bool mutuallyExclusive(Record *PredDef, ArrayRef Preds, ArrayRef Term); void getIntersectingVariants( const CodeGenSchedRW &SchedRW, unsigned TransIdx, std::vector &IntersectingVariants); void pushVariant(const TransVariant &VInfo, bool IsRead); }; } // end anonymous namespace // Return true if this predicate is mutually exclusive with a PredTerm. This // degenerates into checking if the predicate is mutually exclusive with any // predicate in the Term's conjunction. // // All predicates associated with a given SchedRW are considered mutually // exclusive. This should work even if the conditions expressed by the // predicates are not exclusive because the predicates for a given SchedWrite // are always checked in the order they are defined in the .td file. Later // conditions implicitly negate any prior condition. bool PredTransitions::mutuallyExclusive(Record *PredDef, ArrayRef Preds, ArrayRef Term) { for (const PredCheck &PC: Term) { if (PC.Predicate == PredDef) return false; const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead); assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); if (any_of(Variants, [PredDef](const Record *R) { return R->getValueAsDef("Predicate") == PredDef; })) { // To check if PredDef is mutually exclusive with PC we also need to // check that PC.Predicate is exclusive with all predicates from variant // we're expanding. Consider following RW sequence with two variants // (1 & 2), where A, B and C are predicates from corresponding SchedVars: // // 1:A/B - 2:C/B // // Here C is not mutually exclusive with variant (1), because A doesn't // exist in variant (2). This means we have possible transitions from A // to C and from A to B, and fully expanded sequence would look like: // // if (A & C) return ...; // if (A & B) return ...; // if (B) return ...; // // Now let's consider another sequence: // // 1:A/B - 2:A/B // // Here A in variant (2) is mutually exclusive with variant (1), because // A also exists in (2). This means A->B transition is impossible and // expanded sequence would look like: // // if (A) return ...; // if (B) return ...; if (!count(Preds, PC.Predicate)) continue; return true; } } return false; } static std::vector getAllPredicates(ArrayRef Variants, unsigned ProcId) { std::vector Preds; for (auto &Variant : Variants) { if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar")) continue; Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate")); } return Preds; } // Populate IntersectingVariants with any variants or aliased sequences of the // given SchedRW whose processor indices and predicates are not mutually // exclusive with the given transition. void PredTransitions::getIntersectingVariants( const CodeGenSchedRW &SchedRW, unsigned TransIdx, std::vector &IntersectingVariants) { bool GenericRW = false; std::vector Variants; if (SchedRW.HasVariants) { unsigned VarProcIdx = 0; if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); VarProcIdx = SchedModels.getProcModel(ModelDef).Index; } if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) { // Push each variant. Assign TransVecIdx later. const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); for (Record *VarDef : VarDefs) Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0); if (VarProcIdx == 0) GenericRW = true; } } for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); AI != AE; ++AI) { // If either the SchedAlias itself or the SchedReadWrite that it aliases // to is defined within a processor model, constrain all variants to // that processor. unsigned AliasProcIdx = 0; if ((*AI)->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; } if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex) continue; if (!Variants.empty()) { const CodeGenProcModel &PM = *(SchedModels.procModelBegin() + AliasProcIdx); PrintFatalError((*AI)->getLoc(), "Multiple variants defined for processor " + PM.ModelName + " Ensure only one SchedAlias exists per RW."); } const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); if (AliasRW.HasVariants) { const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); for (Record *VD : VarDefs) Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0); } if (AliasRW.IsSequence) Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0); if (AliasProcIdx == 0) GenericRW = true; } std::vector AllPreds = getAllPredicates(Variants, TransVec[TransIdx].ProcIndex); for (TransVariant &Variant : Variants) { // Don't expand variants if the processor models don't intersect. // A zero processor index means any processor. if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm)) continue; } if (IntersectingVariants.empty()) { // The first variant builds on the existing transition. Variant.TransVecIdx = TransIdx; IntersectingVariants.push_back(Variant); } else { // Push another copy of the current transition for more variants. Variant.TransVecIdx = TransVec.size(); IntersectingVariants.push_back(Variant); TransVec.push_back(TransVec[TransIdx]); } } if (GenericRW && IntersectingVariants.empty()) { PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " "a matching predicate on any processor"); } } // Push the Reads/Writes selected by this variant onto the PredTransition // specified by VInfo. void PredTransitions:: pushVariant(const TransVariant &VInfo, bool IsRead) { PredTransition &Trans = TransVec[VInfo.TransVecIdx]; // If this operand transition is reached through a processor-specific alias, // then the whole transition is specific to this processor. IdxVec SelectedRWs; if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef); RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); } else { assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && "variant must be a SchedVariant or aliased WriteSequence"); SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); } const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); SmallVectorImpl> &RWSequences = IsRead ? Trans.ReadSequences : Trans.WriteSequences; if (SchedRW.IsVariadic) { unsigned OperIdx = RWSequences.size()-1; // Make N-1 copies of this transition's last sequence. RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1); RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1, RWSequences[OperIdx]); // Push each of the N elements of the SelectedRWs onto a copy of the last // sequence (split the current operand into N operands). // Note that write sequences should be expanded within this loop--the entire // sequence belongs to a single operand. for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); RWI != RWE; ++RWI, ++OperIdx) { IdxVec ExpandedRWs; if (IsRead) ExpandedRWs.push_back(*RWI); else SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); llvm::append_range(RWSequences[OperIdx], ExpandedRWs); } assert(OperIdx == RWSequences.size() && "missed a sequence"); } else { // Push this transition's expanded sequence onto this transition's last // sequence (add to the current operand's sequence). SmallVectorImpl &Seq = RWSequences.back(); IdxVec ExpandedRWs; for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); RWI != RWE; ++RWI) { if (IsRead) ExpandedRWs.push_back(*RWI); else SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); } llvm::append_range(Seq, ExpandedRWs); } } // RWSeq is a sequence of all Reads or all Writes for the next read or write // operand. StartIdx is an index into TransVec where partial results // starts. RWSeq must be applied to all transitions between StartIdx and the end // of TransVec. bool PredTransitions::substituteVariantOperand( const SmallVectorImpl &RWSeq, bool IsRead, unsigned StartIdx) { bool Subst = false; // Visit each original RW within the current sequence. for (SmallVectorImpl::const_iterator RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); // Push this RW on all partial PredTransitions or distribute variants. // New PredTransitions may be pushed within this loop which should not be // revisited (TransEnd must be loop invariant). for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); TransIdx != TransEnd; ++TransIdx) { // Distribute this partial PredTransition across intersecting variants. // This will push a copies of TransVec[TransIdx] on the back of TransVec. std::vector IntersectingVariants; getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); // Now expand each variant on top of its copy of the transition. for (const TransVariant &IV : IntersectingVariants) pushVariant(IV, IsRead); if (IntersectingVariants.empty()) { if (IsRead) TransVec[TransIdx].ReadSequences.back().push_back(*RWI); else TransVec[TransIdx].WriteSequences.back().push_back(*RWI); continue; } else { Subst = true; } } } return Subst; } // For each variant of a Read/Write in Trans, substitute the sequence of // Read/Writes guarded by the variant. This is exponential in the number of // variant Read/Writes, but in practice detection of mutually exclusive // predicates should result in linear growth in the total number variants. // // This is one step in a breadth-first search of nested variants. bool PredTransitions::substituteVariants(const PredTransition &Trans) { // Build up a set of partial results starting at the back of // PredTransitions. Remember the first new transition. unsigned StartIdx = TransVec.size(); bool Subst = false; assert(Trans.ProcIndex != 0); TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex); // Visit each original write sequence. for (SmallVectorImpl>::const_iterator WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); WSI != WSE; ++WSI) { // Push a new (empty) write sequence onto all partial Transitions. for (std::vector::iterator I = TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { I->WriteSequences.emplace_back(); } Subst |= substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); } // Visit each original read sequence. for (SmallVectorImpl>::const_iterator RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); RSI != RSE; ++RSI) { // Push a new (empty) read sequence onto all partial Transitions. for (std::vector::iterator I = TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { I->ReadSequences.emplace_back(); } Subst |= substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); } return Subst; } static void addSequences(CodeGenSchedModels &SchedModels, const SmallVectorImpl> &Seqs, IdxVec &Result, bool IsRead) { for (const auto &S : Seqs) if (!S.empty()) Result.push_back(SchedModels.findOrInsertRW(S, IsRead)); } #ifndef NDEBUG static void dumpRecVec(const RecVec &RV) { for (const Record *R : RV) dbgs() << R->getName() << ", "; } #endif static void dumpTransition(const CodeGenSchedModels &SchedModels, const CodeGenSchedClass &FromSC, const CodeGenSchedTransition &SCTrans, const RecVec &Preds) { LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "(" << FromSC.Index << ") to " << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "(" << SCTrans.ToClassIdx << ") on pred term: ("; dumpRecVec(Preds); dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n"); } // Create a new SchedClass for each variant found by inferFromRW. Pass static void inferFromTransitions(ArrayRef LastTransitions, unsigned FromClassIdx, CodeGenSchedModels &SchedModels) { // For each PredTransition, create a new CodeGenSchedTransition, which usually // requires creating a new SchedClass. for (ArrayRef::iterator I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { // Variant expansion (substituteVariants) may create unconditional // transitions. We don't need to build sched classes for them. if (I->PredTerm.empty()) continue; IdxVec OperWritesVariant, OperReadsVariant; addSequences(SchedModels, I->WriteSequences, OperWritesVariant, false); addSequences(SchedModels, I->ReadSequences, OperReadsVariant, true); CodeGenSchedTransition SCTrans; // Transition should not contain processor indices already assigned to // InstRWs in this scheduling class. const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx); if (FromSC.InstRWProcIndices.count(I->ProcIndex)) continue; SCTrans.ProcIndex = I->ProcIndex; SCTrans.ToClassIdx = SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, OperReadsVariant, I->ProcIndex); // The final PredTerm is unique set of predicates guarding the transition. RecVec Preds; transform(I->PredTerm, std::back_inserter(Preds), [](const PredCheck &P) { return P.Predicate; }); Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end()); dumpTransition(SchedModels, FromSC, SCTrans, Preds); SCTrans.PredTerm = std::move(Preds); SchedModels.getSchedClass(FromClassIdx) .Transitions.push_back(std::move(SCTrans)); } } std::vector CodeGenSchedModels::getAllProcIndices() const { std::vector ProcIdVec; for (const auto &PM : ProcModelMap) if (PM.second != 0) ProcIdVec.push_back(PM.second); // The order of the keys (Record pointers) of ProcModelMap are not stable. // Sort to stabalize the values. llvm::sort(ProcIdVec); return ProcIdVec; } static std::vector makePerProcessorTransitions(const PredTransition &Trans, ArrayRef ProcIndices) { std::vector PerCpuTransVec; for (unsigned ProcId : ProcIndices) { assert(ProcId != 0); PerCpuTransVec.push_back(Trans); PerCpuTransVec.back().ProcIndex = ProcId; } return PerCpuTransVec; } // Create new SchedClasses for the given ReadWrite list. If any of the // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant // of the ReadWrite list, following Aliases if necessary. void CodeGenSchedModels::inferFromRW(ArrayRef OperWrites, ArrayRef OperReads, unsigned FromClassIdx, ArrayRef ProcIndices) { LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); // Create a seed transition with an empty PredTerm and the expanded sequences // of SchedWrites for the current SchedClass. std::vector LastTransitions; LastTransitions.emplace_back(); for (unsigned WriteIdx : OperWrites) { IdxVec WriteSeq; expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false); LastTransitions[0].WriteSequences.emplace_back(); SmallVectorImpl &Seq = LastTransitions[0].WriteSequences.back(); Seq.append(WriteSeq.begin(), WriteSeq.end()); LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); } LLVM_DEBUG(dbgs() << " Reads: "); for (unsigned ReadIdx : OperReads) { IdxVec ReadSeq; expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true); LastTransitions[0].ReadSequences.emplace_back(); SmallVectorImpl &Seq = LastTransitions[0].ReadSequences.back(); Seq.append(ReadSeq.begin(), ReadSeq.end()); LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); } LLVM_DEBUG(dbgs() << '\n'); LastTransitions = makePerProcessorTransitions( LastTransitions[0], llvm::is_contained(ProcIndices, 0) ? ArrayRef(getAllProcIndices()) : ProcIndices); // Collect all PredTransitions for individual operands. // Iterate until no variant writes remain. bool SubstitutedAny; do { SubstitutedAny = false; PredTransitions Transitions(*this); for (const PredTransition &Trans : LastTransitions) SubstitutedAny |= Transitions.substituteVariants(Trans); LLVM_DEBUG(Transitions.dump()); LastTransitions.swap(Transitions.TransVec); } while (SubstitutedAny); // WARNING: We are about to mutate the SchedClasses vector. Do not refer to // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. inferFromTransitions(LastTransitions, FromClassIdx, *this); } // Check if any processor resource group contains all resource records in // SubUnits. bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) continue; RecVec SuperUnits = PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); RecIter RI = SubUnits.begin(), RE = SubUnits.end(); for ( ; RI != RE; ++RI) { if (!is_contained(SuperUnits, *RI)) { break; } } if (RI == RE) return true; } return false; } // Verify that overlapping groups have a common supergroup. void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) continue; RecVec CheckUnits = PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); for (unsigned j = i+1; j < e; ++j) { if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) continue; RecVec OtherUnits = PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), OtherUnits.begin(), OtherUnits.end()) != CheckUnits.end()) { // CheckUnits and OtherUnits overlap llvm::append_range(OtherUnits, CheckUnits); if (!hasSuperGroup(OtherUnits, PM)) { PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), "proc resource group overlaps with " + PM.ProcResourceDefs[j]->getName() + " but no supergroup contains both."); } } } } } // Collect all the RegisterFile definitions available in this target. void CodeGenSchedModels::collectRegisterFiles() { RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile"); // RegisterFiles is the vector of CodeGenRegisterFile. for (Record *RF : RegisterFileDefs) { // For each register file definition, construct a CodeGenRegisterFile object // and add it to the appropriate scheduling model. CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel")); PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF)); CodeGenRegisterFile &CGRF = PM.RegisterFiles.back(); CGRF.MaxMovesEliminatedPerCycle = RF->getValueAsInt("MaxMovesEliminatedPerCycle"); CGRF.AllowZeroMoveEliminationOnly = RF->getValueAsBit("AllowZeroMoveEliminationOnly"); // Now set the number of physical registers as well as the cost of registers // in each register class. CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs"); if (!CGRF.NumPhysRegs) { PrintFatalError(RF->getLoc(), "Invalid RegisterFile with zero physical registers"); } RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses"); std::vector RegisterCosts = RF->getValueAsListOfInts("RegCosts"); ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination"); for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) { int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1; bool AllowMoveElim = false; if (MoveElimInfo->size() > I) { BitInit *Val = cast(MoveElimInfo->getElement(I)); AllowMoveElim = Val->getValue(); } CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim); } } } // Collect and sort WriteRes, ReadAdvance, and ProcResources. void CodeGenSchedModels::collectProcResources() { ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); // Add any subtarget-specific SchedReadWrites that are directly associated // with processor resources. Refer to the parent SchedClass's ProcIndices to // determine which processors they apply to. for (const CodeGenSchedClass &SC : make_range(schedClassBegin(), schedClassEnd())) { if (SC.ItinClassDef) { collectItinProcResources(SC.ItinClassDef); continue; } // This class may have a default ReadWrite list which can be overriden by // InstRW definitions. for (Record *RW : SC.InstRWs) { Record *RWModelDef = RW->getValueAsDef("SchedModel"); unsigned PIdx = getProcModel(RWModelDef).Index; IdxVec Writes, Reads; findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); collectRWResources(Writes, Reads, PIdx); } collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices); } // Add resources separately defined by each subtarget. RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); for (Record *WR : WRDefs) { Record *ModelDef = WR->getValueAsDef("SchedModel"); addWriteRes(WR, getProcModel(ModelDef).Index); } RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); for (Record *SWR : SWRDefs) { Record *ModelDef = SWR->getValueAsDef("SchedModel"); addWriteRes(SWR, getProcModel(ModelDef).Index); } RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); for (Record *RA : RADefs) { Record *ModelDef = RA->getValueAsDef("SchedModel"); addReadAdvance(RA, getProcModel(ModelDef).Index); } RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); for (Record *SRA : SRADefs) { if (SRA->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = SRA->getValueAsDef("SchedModel"); addReadAdvance(SRA, getProcModel(ModelDef).Index); } } // Add ProcResGroups that are defined within this processor model, which may // not be directly referenced but may directly specify a buffer size. RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); for (Record *PRG : ProcResGroups) { if (!PRG->getValueInit("SchedModel")->isComplete()) continue; CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel")); if (!is_contained(PM.ProcResourceDefs, PRG)) PM.ProcResourceDefs.push_back(PRG); } // Add ProcResourceUnits unconditionally. for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) { if (!PRU->getValueInit("SchedModel")->isComplete()) continue; CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel")); if (!is_contained(PM.ProcResourceDefs, PRU)) PM.ProcResourceDefs.push_back(PRU); } // Finalize each ProcModel by sorting the record arrays. for (CodeGenProcModel &PM : ProcModels) { llvm::sort(PM.WriteResDefs, LessRecord()); llvm::sort(PM.ReadAdvanceDefs, LessRecord()); llvm::sort(PM.ProcResourceDefs, LessRecord()); LLVM_DEBUG( PM.dump(); dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(), RE = PM.WriteResDefs.end(); RI != RE; ++RI) { if ((*RI)->isSubClassOf("WriteRes")) dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; else dbgs() << (*RI)->getName() << " "; } dbgs() << "\nReadAdvanceDefs: "; for (RecIter RI = PM.ReadAdvanceDefs.begin(), RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { if ((*RI)->isSubClassOf("ReadAdvance")) dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; else dbgs() << (*RI)->getName() << " "; } dbgs() << "\nProcResourceDefs: "; for (RecIter RI = PM.ProcResourceDefs.begin(), RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs() << '\n'); verifyProcResourceGroups(PM); } ProcResourceDefs.clear(); ProcResGroups.clear(); } void CodeGenSchedModels::checkCompleteness() { bool Complete = true; bool HadCompleteModel = false; for (const CodeGenProcModel &ProcModel : procModels()) { const bool HasItineraries = ProcModel.hasItineraries(); if (!ProcModel.ModelDef->getValueAsBit("CompleteModel")) continue; for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { if (Inst->hasNoSchedulingInfo) continue; if (ProcModel.isUnsupported(*Inst)) continue; unsigned SCIdx = getSchedClassIdx(*Inst); if (!SCIdx) { if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) { PrintError(Inst->TheDef->getLoc(), "No schedule information for instruction '" + Inst->TheDef->getName() + "' in SchedMachineModel '" + ProcModel.ModelDef->getName() + "'"); Complete = false; } continue; } const CodeGenSchedClass &SC = getSchedClass(SCIdx); if (!SC.Writes.empty()) continue; if (HasItineraries && SC.ItinClassDef != nullptr && SC.ItinClassDef->getName() != "NoItinerary") continue; const RecVec &InstRWs = SC.InstRWs; auto I = find_if(InstRWs, [&ProcModel](const Record *R) { return R->getValueAsDef("SchedModel") == ProcModel.ModelDef; }); if (I == InstRWs.end()) { PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName + "' lacks information for '" + Inst->TheDef->getName() + "'"); Complete = false; } } HadCompleteModel = true; } if (!Complete) { errs() << "\n\nIncomplete schedule models found.\n" << "- Consider setting 'CompleteModel = 0' while developing new models.\n" << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n" << "- Instructions should usually have Sched<[...]> as a superclass, " "you may temporarily use an empty list.\n" << "- Instructions related to unsupported features can be excluded with " "list UnsupportedFeatures = [HasA,..,HasY]; in the " "processor model.\n\n"; PrintFatalError("Incomplete schedule model"); } } // Collect itinerary class resources for each processor. void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { const CodeGenProcModel &PM = ProcModels[PIdx]; // For all ItinRW entries. bool HasMatch = false; for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); II != IE; ++II) { RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); if (!llvm::is_contained(Matched, ItinClassDef)) continue; if (HasMatch) PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " + ItinClassDef->getName() + " in ItinResources for " + PM.ModelName); HasMatch = true; IdxVec Writes, Reads; findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); collectRWResources(Writes, Reads, PIdx); } } } void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, ArrayRef ProcIndices) { const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); if (SchedRW.TheDef) { if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { for (unsigned Idx : ProcIndices) addWriteRes(SchedRW.TheDef, Idx); } else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { for (unsigned Idx : ProcIndices) addReadAdvance(SchedRW.TheDef, Idx); } } for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); AI != AE; ++AI) { IdxVec AliasProcIndices; if ((*AI)->getValueInit("SchedModel")->isComplete()) { AliasProcIndices.push_back( getProcModel((*AI)->getValueAsDef("SchedModel")).Index); } else AliasProcIndices = ProcIndices; const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); IdxVec ExpandedRWs; expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); SI != SE; ++SI) { collectRWResources(*SI, IsRead, AliasProcIndices); } } } // Collect resources for a set of read/write types and processor indices. void CodeGenSchedModels::collectRWResources(ArrayRef Writes, ArrayRef Reads, ArrayRef ProcIndices) { for (unsigned Idx : Writes) collectRWResources(Idx, /*IsRead=*/false, ProcIndices); for (unsigned Idx : Reads) collectRWResources(Idx, /*IsRead=*/true, ProcIndices); } // Find the processor's resource units for this kind of resource. Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, const CodeGenProcModel &PM, ArrayRef Loc) const { if (ProcResKind->isSubClassOf("ProcResourceUnits")) return ProcResKind; Record *ProcUnitDef = nullptr; assert(!ProcResourceDefs.empty()); assert(!ProcResGroups.empty()); for (Record *ProcResDef : ProcResourceDefs) { if (ProcResDef->getValueAsDef("Kind") == ProcResKind && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) { if (ProcUnitDef) { PrintFatalError(Loc, "Multiple ProcessorResourceUnits associated with " + ProcResKind->getName()); } ProcUnitDef = ProcResDef; } } for (Record *ProcResGroup : ProcResGroups) { if (ProcResGroup == ProcResKind && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) { if (ProcUnitDef) { PrintFatalError(Loc, "Multiple ProcessorResourceUnits associated with " + ProcResKind->getName()); } ProcUnitDef = ProcResGroup; } } if (!ProcUnitDef) { PrintFatalError(Loc, "No ProcessorResources associated with " + ProcResKind->getName()); } return ProcUnitDef; } // Iteratively add a resource and its super resources. void CodeGenSchedModels::addProcResource(Record *ProcResKind, CodeGenProcModel &PM, ArrayRef Loc) { while (true) { Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc); // See if this ProcResource is already associated with this processor. if (is_contained(PM.ProcResourceDefs, ProcResUnits)) return; PM.ProcResourceDefs.push_back(ProcResUnits); if (ProcResUnits->isSubClassOf("ProcResGroup")) return; if (!ProcResUnits->getValueInit("Super")->isComplete()) return; ProcResKind = ProcResUnits->getValueAsDef("Super"); } } // Add resources for a SchedWrite to this processor if they don't exist. void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { assert(PIdx && "don't add resources to an invalid Processor model"); RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; if (is_contained(WRDefs, ProcWriteResDef)) return; WRDefs.push_back(ProcWriteResDef); // Visit ProcResourceKinds referenced by the newly discovered WriteRes. RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); WritePRI != WritePRE; ++WritePRI) { addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc()); } } // Add resources for a ReadAdvance to this processor if they don't exist. void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, unsigned PIdx) { RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; if (is_contained(RADefs, ProcReadAdvanceDef)) return; RADefs.push_back(ProcReadAdvanceDef); } unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { RecIter PRPos = find(ProcResourceDefs, PRDef); if (PRPos == ProcResourceDefs.end()) PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " "the ProcResources list for " + ModelName); // Idx=0 is reserved for invalid. return 1 + (PRPos - ProcResourceDefs.begin()); } bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const { for (const Record *TheDef : UnsupportedFeaturesDefs) { for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) { if (TheDef->getName() == PredDef->getName()) return true; } } return false; } #ifndef NDEBUG void CodeGenProcModel::dump() const { dbgs() << Index << ": " << ModelName << " " << (ModelDef ? ModelDef->getName() : "inferred") << " " << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; } void CodeGenSchedRW::dump() const { dbgs() << Name << (IsVariadic ? " (V) " : " "); if (IsSequence) { dbgs() << "("; dumpIdxVec(Sequence); dbgs() << ")"; } } void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' << " Writes: "; for (unsigned i = 0, N = Writes.size(); i < N; ++i) { SchedModels->getSchedWrite(Writes[i]).dump(); if (i < N-1) { dbgs() << '\n'; dbgs().indent(10); } } dbgs() << "\n Reads: "; for (unsigned i = 0, N = Reads.size(); i < N; ++i) { SchedModels->getSchedRead(Reads[i]).dump(); if (i < N-1) { dbgs() << '\n'; dbgs().indent(10); } } dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); if (!Transitions.empty()) { dbgs() << "\n Transitions for Proc "; for (const CodeGenSchedTransition &Transition : Transitions) { dbgs() << Transition.ProcIndex << ", "; } } dbgs() << '\n'; } void PredTransitions::dump() const { dbgs() << "Expanded Variants:\n"; for (std::vector::const_iterator TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { dbgs() << "{"; ListSeparator LS; for (const PredCheck &PC : TI->PredTerm) dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":" << PC.Predicate->getName(); dbgs() << "},\n => {"; for (SmallVectorImpl>::const_iterator WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); WSI != WSE; ++WSI) { dbgs() << "("; ListSeparator LS; for (unsigned N : *WSI) dbgs() << LS << SchedModels.getSchedWrite(N).Name; dbgs() << "),"; } dbgs() << "}\n"; } } #endif // NDEBUG