//===- APFixedPoint.cpp - Fixed point constant handling ---------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Defines the implementation for the fixed point number interface. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APFixedPoint.h" #include "llvm/ADT/APFloat.h" namespace llvm { APFixedPoint APFixedPoint::convert(const FixedPointSemantics &DstSema, bool *Overflow) const { APSInt NewVal = Val; unsigned DstWidth = DstSema.getWidth(); unsigned DstScale = DstSema.getScale(); bool Upscaling = DstScale > getScale(); if (Overflow) *Overflow = false; if (Upscaling) { NewVal = NewVal.extend(NewVal.getBitWidth() + DstScale - getScale()); NewVal <<= (DstScale - getScale()); } else { NewVal >>= (getScale() - DstScale); } auto Mask = APInt::getBitsSetFrom( NewVal.getBitWidth(), std::min(DstScale + DstSema.getIntegralBits(), NewVal.getBitWidth())); APInt Masked(NewVal & Mask); // Change in the bits above the sign if (!(Masked == Mask || Masked == 0)) { // Found overflow in the bits above the sign if (DstSema.isSaturated()) NewVal = NewVal.isNegative() ? Mask : ~Mask; else if (Overflow) *Overflow = true; } // If the dst semantics are unsigned, but our value is signed and negative, we // clamp to zero. if (!DstSema.isSigned() && NewVal.isSigned() && NewVal.isNegative()) { // Found negative overflow for unsigned result if (DstSema.isSaturated()) NewVal = 0; else if (Overflow) *Overflow = true; } NewVal = NewVal.extOrTrunc(DstWidth); NewVal.setIsSigned(DstSema.isSigned()); return APFixedPoint(NewVal, DstSema); } int APFixedPoint::compare(const APFixedPoint &Other) const { APSInt ThisVal = getValue(); APSInt OtherVal = Other.getValue(); bool ThisSigned = Val.isSigned(); bool OtherSigned = OtherVal.isSigned(); unsigned OtherScale = Other.getScale(); unsigned OtherWidth = OtherVal.getBitWidth(); unsigned CommonWidth = std::max(Val.getBitWidth(), OtherWidth); // Prevent overflow in the event the widths are the same but the scales differ CommonWidth += getScale() >= OtherScale ? getScale() - OtherScale : OtherScale - getScale(); ThisVal = ThisVal.extOrTrunc(CommonWidth); OtherVal = OtherVal.extOrTrunc(CommonWidth); unsigned CommonScale = std::max(getScale(), OtherScale); ThisVal = ThisVal.shl(CommonScale - getScale()); OtherVal = OtherVal.shl(CommonScale - OtherScale); if (ThisSigned && OtherSigned) { if (ThisVal.sgt(OtherVal)) return 1; else if (ThisVal.slt(OtherVal)) return -1; } else if (!ThisSigned && !OtherSigned) { if (ThisVal.ugt(OtherVal)) return 1; else if (ThisVal.ult(OtherVal)) return -1; } else if (ThisSigned && !OtherSigned) { if (ThisVal.isSignBitSet()) return -1; else if (ThisVal.ugt(OtherVal)) return 1; else if (ThisVal.ult(OtherVal)) return -1; } else { // !ThisSigned && OtherSigned if (OtherVal.isSignBitSet()) return 1; else if (ThisVal.ugt(OtherVal)) return 1; else if (ThisVal.ult(OtherVal)) return -1; } return 0; } APFixedPoint APFixedPoint::getMax(const FixedPointSemantics &Sema) { bool IsUnsigned = !Sema.isSigned(); auto Val = APSInt::getMaxValue(Sema.getWidth(), IsUnsigned); if (IsUnsigned && Sema.hasUnsignedPadding()) Val = Val.lshr(1); return APFixedPoint(Val, Sema); } APFixedPoint APFixedPoint::getMin(const FixedPointSemantics &Sema) { auto Val = APSInt::getMinValue(Sema.getWidth(), !Sema.isSigned()); return APFixedPoint(Val, Sema); } bool FixedPointSemantics::fitsInFloatSemantics( const fltSemantics &FloatSema) const { // A fixed point semantic fits in a floating point semantic if the maximum // and minimum values as integers of the fixed point semantic can fit in the // floating point semantic. // If these values do not fit, then a floating point rescaling of the true // maximum/minimum value will not fit either, so the floating point semantic // cannot be used to perform such a rescaling. APSInt MaxInt = APFixedPoint::getMax(*this).getValue(); APFloat F(FloatSema); APFloat::opStatus Status = F.convertFromAPInt(MaxInt, MaxInt.isSigned(), APFloat::rmNearestTiesToAway); if ((Status & APFloat::opOverflow) || !isSigned()) return !(Status & APFloat::opOverflow); APSInt MinInt = APFixedPoint::getMin(*this).getValue(); Status = F.convertFromAPInt(MinInt, MinInt.isSigned(), APFloat::rmNearestTiesToAway); return !(Status & APFloat::opOverflow); } FixedPointSemantics FixedPointSemantics::getCommonSemantics( const FixedPointSemantics &Other) const { unsigned CommonScale = std::max(getScale(), Other.getScale()); unsigned CommonWidth = std::max(getIntegralBits(), Other.getIntegralBits()) + CommonScale; bool ResultIsSigned = isSigned() || Other.isSigned(); bool ResultIsSaturated = isSaturated() || Other.isSaturated(); bool ResultHasUnsignedPadding = false; if (!ResultIsSigned) { // Both are unsigned. ResultHasUnsignedPadding = hasUnsignedPadding() && Other.hasUnsignedPadding() && !ResultIsSaturated; } // If the result is signed, add an extra bit for the sign. Otherwise, if it is // unsigned and has unsigned padding, we only need to add the extra padding // bit back if we are not saturating. if (ResultIsSigned || ResultHasUnsignedPadding) CommonWidth++; return FixedPointSemantics(CommonWidth, CommonScale, ResultIsSigned, ResultIsSaturated, ResultHasUnsignedPadding); } APFixedPoint APFixedPoint::add(const APFixedPoint &Other, bool *Overflow) const { auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics()); APFixedPoint ConvertedThis = convert(CommonFXSema); APFixedPoint ConvertedOther = Other.convert(CommonFXSema); APSInt ThisVal = ConvertedThis.getValue(); APSInt OtherVal = ConvertedOther.getValue(); bool Overflowed = false; APSInt Result; if (CommonFXSema.isSaturated()) { Result = CommonFXSema.isSigned() ? ThisVal.sadd_sat(OtherVal) : ThisVal.uadd_sat(OtherVal); } else { Result = ThisVal.isSigned() ? ThisVal.sadd_ov(OtherVal, Overflowed) : ThisVal.uadd_ov(OtherVal, Overflowed); } if (Overflow) *Overflow = Overflowed; return APFixedPoint(Result, CommonFXSema); } APFixedPoint APFixedPoint::sub(const APFixedPoint &Other, bool *Overflow) const { auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics()); APFixedPoint ConvertedThis = convert(CommonFXSema); APFixedPoint ConvertedOther = Other.convert(CommonFXSema); APSInt ThisVal = ConvertedThis.getValue(); APSInt OtherVal = ConvertedOther.getValue(); bool Overflowed = false; APSInt Result; if (CommonFXSema.isSaturated()) { Result = CommonFXSema.isSigned() ? ThisVal.ssub_sat(OtherVal) : ThisVal.usub_sat(OtherVal); } else { Result = ThisVal.isSigned() ? ThisVal.ssub_ov(OtherVal, Overflowed) : ThisVal.usub_ov(OtherVal, Overflowed); } if (Overflow) *Overflow = Overflowed; return APFixedPoint(Result, CommonFXSema); } APFixedPoint APFixedPoint::mul(const APFixedPoint &Other, bool *Overflow) const { auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics()); APFixedPoint ConvertedThis = convert(CommonFXSema); APFixedPoint ConvertedOther = Other.convert(CommonFXSema); APSInt ThisVal = ConvertedThis.getValue(); APSInt OtherVal = ConvertedOther.getValue(); bool Overflowed = false; // Widen the LHS and RHS so we can perform a full multiplication. unsigned Wide = CommonFXSema.getWidth() * 2; if (CommonFXSema.isSigned()) { ThisVal = ThisVal.sextOrSelf(Wide); OtherVal = OtherVal.sextOrSelf(Wide); } else { ThisVal = ThisVal.zextOrSelf(Wide); OtherVal = OtherVal.zextOrSelf(Wide); } // Perform the full multiplication and downscale to get the same scale. // // Note that the right shifts here perform an implicit downwards rounding. // This rounding could discard bits that would technically place the result // outside the representable range. We interpret the spec as allowing us to // perform the rounding step first, avoiding the overflow case that would // arise. APSInt Result; if (CommonFXSema.isSigned()) Result = ThisVal.smul_ov(OtherVal, Overflowed) .ashr(CommonFXSema.getScale()); else Result = ThisVal.umul_ov(OtherVal, Overflowed) .lshr(CommonFXSema.getScale()); assert(!Overflowed && "Full multiplication cannot overflow!"); Result.setIsSigned(CommonFXSema.isSigned()); // If our result lies outside of the representative range of the common // semantic, we either have overflow or saturation. APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue() .extOrTrunc(Wide); APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue() .extOrTrunc(Wide); if (CommonFXSema.isSaturated()) { if (Result < Min) Result = Min; else if (Result > Max) Result = Max; } else Overflowed = Result < Min || Result > Max; if (Overflow) *Overflow = Overflowed; return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()), CommonFXSema); } APFixedPoint APFixedPoint::div(const APFixedPoint &Other, bool *Overflow) const { auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics()); APFixedPoint ConvertedThis = convert(CommonFXSema); APFixedPoint ConvertedOther = Other.convert(CommonFXSema); APSInt ThisVal = ConvertedThis.getValue(); APSInt OtherVal = ConvertedOther.getValue(); bool Overflowed = false; // Widen the LHS and RHS so we can perform a full division. unsigned Wide = CommonFXSema.getWidth() * 2; if (CommonFXSema.isSigned()) { ThisVal = ThisVal.sextOrSelf(Wide); OtherVal = OtherVal.sextOrSelf(Wide); } else { ThisVal = ThisVal.zextOrSelf(Wide); OtherVal = OtherVal.zextOrSelf(Wide); } // Upscale to compensate for the loss of precision from division, and // perform the full division. ThisVal = ThisVal.shl(CommonFXSema.getScale()); APSInt Result; if (CommonFXSema.isSigned()) { APInt Rem; APInt::sdivrem(ThisVal, OtherVal, Result, Rem); // If the quotient is negative and the remainder is nonzero, round // towards negative infinity by subtracting epsilon from the result. if (ThisVal.isNegative() != OtherVal.isNegative() && !Rem.isNullValue()) Result = Result - 1; } else Result = ThisVal.udiv(OtherVal); Result.setIsSigned(CommonFXSema.isSigned()); // If our result lies outside of the representative range of the common // semantic, we either have overflow or saturation. APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue() .extOrTrunc(Wide); APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue() .extOrTrunc(Wide); if (CommonFXSema.isSaturated()) { if (Result < Min) Result = Min; else if (Result > Max) Result = Max; } else Overflowed = Result < Min || Result > Max; if (Overflow) *Overflow = Overflowed; return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()), CommonFXSema); } APFixedPoint APFixedPoint::shl(unsigned Amt, bool *Overflow) const { APSInt ThisVal = Val; bool Overflowed = false; // Widen the LHS. unsigned Wide = Sema.getWidth() * 2; if (Sema.isSigned()) ThisVal = ThisVal.sextOrSelf(Wide); else ThisVal = ThisVal.zextOrSelf(Wide); // Clamp the shift amount at the original width, and perform the shift. Amt = std::min(Amt, ThisVal.getBitWidth()); APSInt Result = ThisVal << Amt; Result.setIsSigned(Sema.isSigned()); // If our result lies outside of the representative range of the // semantic, we either have overflow or saturation. APSInt Max = APFixedPoint::getMax(Sema).getValue().extOrTrunc(Wide); APSInt Min = APFixedPoint::getMin(Sema).getValue().extOrTrunc(Wide); if (Sema.isSaturated()) { if (Result < Min) Result = Min; else if (Result > Max) Result = Max; } else Overflowed = Result < Min || Result > Max; if (Overflow) *Overflow = Overflowed; return APFixedPoint(Result.sextOrTrunc(Sema.getWidth()), Sema); } void APFixedPoint::toString(SmallVectorImpl &Str) const { APSInt Val = getValue(); unsigned Scale = getScale(); if (Val.isSigned() && Val.isNegative() && Val != -Val) { Val = -Val; Str.push_back('-'); } APSInt IntPart = Val >> Scale; // Add 4 digits to hold the value after multiplying 10 (the radix) unsigned Width = Val.getBitWidth() + 4; APInt FractPart = Val.zextOrTrunc(Scale).zext(Width); APInt FractPartMask = APInt::getAllOnesValue(Scale).zext(Width); APInt RadixInt = APInt(Width, 10); IntPart.toString(Str, /*Radix=*/10); Str.push_back('.'); do { (FractPart * RadixInt) .lshr(Scale) .toString(Str, /*Radix=*/10, Val.isSigned()); FractPart = (FractPart * RadixInt) & FractPartMask; } while (FractPart != 0); } APFixedPoint APFixedPoint::negate(bool *Overflow) const { if (!isSaturated()) { if (Overflow) *Overflow = (!isSigned() && Val != 0) || (isSigned() && Val.isMinSignedValue()); return APFixedPoint(-Val, Sema); } // We never overflow for saturation if (Overflow) *Overflow = false; if (isSigned()) return Val.isMinSignedValue() ? getMax(Sema) : APFixedPoint(-Val, Sema); else return APFixedPoint(Sema); } APSInt APFixedPoint::convertToInt(unsigned DstWidth, bool DstSign, bool *Overflow) const { APSInt Result = getIntPart(); unsigned SrcWidth = getWidth(); APSInt DstMin = APSInt::getMinValue(DstWidth, !DstSign); APSInt DstMax = APSInt::getMaxValue(DstWidth, !DstSign); if (SrcWidth < DstWidth) { Result = Result.extend(DstWidth); } else if (SrcWidth > DstWidth) { DstMin = DstMin.extend(SrcWidth); DstMax = DstMax.extend(SrcWidth); } if (Overflow) { if (Result.isSigned() && !DstSign) { *Overflow = Result.isNegative() || Result.ugt(DstMax); } else if (Result.isUnsigned() && DstSign) { *Overflow = Result.ugt(DstMax); } else { *Overflow = Result < DstMin || Result > DstMax; } } Result.setIsSigned(DstSign); return Result.extOrTrunc(DstWidth); } const fltSemantics *APFixedPoint::promoteFloatSemantics(const fltSemantics *S) { if (S == &APFloat::BFloat()) return &APFloat::IEEEdouble(); else if (S == &APFloat::IEEEhalf()) return &APFloat::IEEEsingle(); else if (S == &APFloat::IEEEsingle()) return &APFloat::IEEEdouble(); else if (S == &APFloat::IEEEdouble()) return &APFloat::IEEEquad(); llvm_unreachable("Could not promote float type!"); } APFloat APFixedPoint::convertToFloat(const fltSemantics &FloatSema) const { // For some operations, rounding mode has an effect on the result, while // other operations are lossless and should never result in rounding. // To signify which these operations are, we define two rounding modes here. APFloat::roundingMode RM = APFloat::rmNearestTiesToEven; APFloat::roundingMode LosslessRM = APFloat::rmTowardZero; // Make sure that we are operating in a type that works with this fixed-point // semantic. const fltSemantics *OpSema = &FloatSema; while (!Sema.fitsInFloatSemantics(*OpSema)) OpSema = promoteFloatSemantics(OpSema); // Convert the fixed point value bits as an integer. If the floating point // value does not have the required precision, we will round according to the // given mode. APFloat Flt(*OpSema); APFloat::opStatus S = Flt.convertFromAPInt(Val, Sema.isSigned(), RM); // If we cared about checking for precision loss, we could look at this // status. (void)S; // Scale down the integer value in the float to match the correct scaling // factor. APFloat ScaleFactor(std::pow(2, -(int)Sema.getScale())); bool Ignored; ScaleFactor.convert(*OpSema, LosslessRM, &Ignored); Flt.multiply(ScaleFactor, LosslessRM); if (OpSema != &FloatSema) Flt.convert(FloatSema, RM, &Ignored); return Flt; } APFixedPoint APFixedPoint::getFromIntValue(const APSInt &Value, const FixedPointSemantics &DstFXSema, bool *Overflow) { FixedPointSemantics IntFXSema = FixedPointSemantics::GetIntegerSemantics( Value.getBitWidth(), Value.isSigned()); return APFixedPoint(Value, IntFXSema).convert(DstFXSema, Overflow); } APFixedPoint APFixedPoint::getFromFloatValue(const APFloat &Value, const FixedPointSemantics &DstFXSema, bool *Overflow) { // For some operations, rounding mode has an effect on the result, while // other operations are lossless and should never result in rounding. // To signify which these operations are, we define two rounding modes here, // even though they are the same mode. APFloat::roundingMode RM = APFloat::rmTowardZero; APFloat::roundingMode LosslessRM = APFloat::rmTowardZero; const fltSemantics &FloatSema = Value.getSemantics(); if (Value.isNaN()) { // Handle NaN immediately. if (Overflow) *Overflow = true; return APFixedPoint(DstFXSema); } // Make sure that we are operating in a type that works with this fixed-point // semantic. const fltSemantics *OpSema = &FloatSema; while (!DstFXSema.fitsInFloatSemantics(*OpSema)) OpSema = promoteFloatSemantics(OpSema); APFloat Val = Value; bool Ignored; if (&FloatSema != OpSema) Val.convert(*OpSema, LosslessRM, &Ignored); // Scale up the float so that the 'fractional' part of the mantissa ends up in // the integer range instead. Rounding mode is irrelevant here. // It is fine if this overflows to infinity even for saturating types, // since we will use floating point comparisons to check for saturation. APFloat ScaleFactor(std::pow(2, DstFXSema.getScale())); ScaleFactor.convert(*OpSema, LosslessRM, &Ignored); Val.multiply(ScaleFactor, LosslessRM); // Convert to the integral representation of the value. This rounding mode // is significant. APSInt Res(DstFXSema.getWidth(), !DstFXSema.isSigned()); Val.convertToInteger(Res, RM, &Ignored); // Round the integral value and scale back. This makes the // overflow calculations below work properly. If we do not round here, // we risk checking for overflow with a value that is outside the // representable range of the fixed-point semantic even though no overflow // would occur had we rounded first. ScaleFactor = APFloat(std::pow(2, -(int)DstFXSema.getScale())); ScaleFactor.convert(*OpSema, LosslessRM, &Ignored); Val.roundToIntegral(RM); Val.multiply(ScaleFactor, LosslessRM); // Check for overflow/saturation by checking if the floating point value // is outside the range representable by the fixed-point value. APFloat FloatMax = getMax(DstFXSema).convertToFloat(*OpSema); APFloat FloatMin = getMin(DstFXSema).convertToFloat(*OpSema); bool Overflowed = false; if (DstFXSema.isSaturated()) { if (Val > FloatMax) Res = getMax(DstFXSema).getValue(); else if (Val < FloatMin) Res = getMin(DstFXSema).getValue(); } else Overflowed = Val > FloatMax || Val < FloatMin; if (Overflow) *Overflow = Overflowed; return APFixedPoint(Res, DstFXSema); } } // namespace llvm