//===- DataStructure.cpp - Implement the core data structure analysis -----===// // // This file implements the core data structure functionality. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DSGraph.h" #include "llvm/Function.h" #include "llvm/iOther.h" #include "llvm/DerivedTypes.h" #include "llvm/Target/TargetData.h" #include "llvm/Assembly/Writer.h" #include "Support/STLExtras.h" #include "Support/Statistic.h" #include "Support/Timer.h" #include namespace { Statistic<> NumFolds ("dsnode", "Number of nodes completely folded"); Statistic<> NumCallNodesMerged("dsnode", "Number of call nodes merged"); }; namespace DS { // TODO: FIXME extern TargetData TD; } using namespace DS; DSNode *DSNodeHandle::HandleForwarding() const { assert(!N->ForwardNH.isNull() && "Can only be invoked if forwarding!"); // Handle node forwarding here! DSNode *Next = N->ForwardNH.getNode(); // Cause recursive shrinkage Offset += N->ForwardNH.getOffset(); if (--N->NumReferrers == 0) { // Removing the last referrer to the node, sever the forwarding link N->stopForwarding(); } N = Next; N->NumReferrers++; if (N->Size <= Offset) { assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?"); Offset = 0; } return N; } //===----------------------------------------------------------------------===// // DSNode Implementation //===----------------------------------------------------------------------===// DSNode::DSNode(const Type *T, DSGraph *G) : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) { // Add the type entry if it is specified... if (T) mergeTypeInfo(T, 0); G->getNodes().push_back(this); } // DSNode copy constructor... do not copy over the referrers list! DSNode::DSNode(const DSNode &N, DSGraph *G) : NumReferrers(0), Size(N.Size), ParentGraph(G), Ty(N.Ty), Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) { G->getNodes().push_back(this); } void DSNode::assertOK() const { assert((Ty != Type::VoidTy || Ty == Type::VoidTy && (Size == 0 || (NodeType & DSNode::Array))) && "Node not OK!"); assert(ParentGraph && "Node has no parent?"); const DSGraph::ScalarMapTy &SM = ParentGraph->getScalarMap(); for (unsigned i = 0, e = Globals.size(); i != e; ++i) { assert(SM.find(Globals[i]) != SM.end()); assert(SM.find(Globals[i])->second.getNode() == this); } } /// forwardNode - Mark this node as being obsolete, and all references to it /// should be forwarded to the specified node and offset. /// void DSNode::forwardNode(DSNode *To, unsigned Offset) { assert(this != To && "Cannot forward a node to itself!"); assert(ForwardNH.isNull() && "Already forwarding from this node!"); if (To->Size <= 1) Offset = 0; assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) && "Forwarded offset is wrong!"); ForwardNH.setNode(To); ForwardNH.setOffset(Offset); NodeType = DEAD; Size = 0; Ty = Type::VoidTy; } // addGlobal - Add an entry for a global value to the Globals list. This also // marks the node with the 'G' flag if it does not already have it. // void DSNode::addGlobal(GlobalValue *GV) { // Keep the list sorted. std::vector::iterator I = std::lower_bound(Globals.begin(), Globals.end(), GV); if (I == Globals.end() || *I != GV) { //assert(GV->getType()->getElementType() == Ty); Globals.insert(I, GV); NodeType |= GlobalNode; } } /// foldNodeCompletely - If we determine that this node has some funny /// behavior happening to it that we cannot represent, we fold it down to a /// single, completely pessimistic, node. This node is represented as a /// single byte with a single TypeEntry of "void". /// void DSNode::foldNodeCompletely() { if (isNodeCompletelyFolded()) return; // If this node is already folded... ++NumFolds; // Create the node we are going to forward to... DSNode *DestNode = new DSNode(0, ParentGraph); DestNode->NodeType = NodeType|DSNode::Array; DestNode->Ty = Type::VoidTy; DestNode->Size = 1; DestNode->Globals.swap(Globals); // Start forwarding to the destination node... forwardNode(DestNode, 0); if (Links.size()) { DestNode->Links.push_back(Links[0]); DSNodeHandle NH(DestNode); // If we have links, merge all of our outgoing links together... for (unsigned i = Links.size()-1; i != 0; --i) NH.getNode()->Links[0].mergeWith(Links[i]); Links.clear(); } else { DestNode->Links.resize(1); } } /// isNodeCompletelyFolded - Return true if this node has been completely /// folded down to something that can never be expanded, effectively losing /// all of the field sensitivity that may be present in the node. /// bool DSNode::isNodeCompletelyFolded() const { return getSize() == 1 && Ty == Type::VoidTy && isArray(); } namespace { /// TypeElementWalker Class - Used for implementation of physical subtyping... /// class TypeElementWalker { struct StackState { const Type *Ty; unsigned Offset; unsigned Idx; StackState(const Type *T, unsigned Off = 0) : Ty(T), Offset(Off), Idx(0) {} }; std::vector Stack; public: TypeElementWalker(const Type *T) { Stack.push_back(T); StepToLeaf(); } bool isDone() const { return Stack.empty(); } const Type *getCurrentType() const { return Stack.back().Ty; } unsigned getCurrentOffset() const { return Stack.back().Offset; } void StepToNextType() { PopStackAndAdvance(); StepToLeaf(); } private: /// PopStackAndAdvance - Pop the current element off of the stack and /// advance the underlying element to the next contained member. void PopStackAndAdvance() { assert(!Stack.empty() && "Cannot pop an empty stack!"); Stack.pop_back(); while (!Stack.empty()) { StackState &SS = Stack.back(); if (const StructType *ST = dyn_cast(SS.Ty)) { ++SS.Idx; if (SS.Idx != ST->getElementTypes().size()) { const StructLayout *SL = TD.getStructLayout(ST); SS.Offset += SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]; return; } Stack.pop_back(); // At the end of the structure } else { const ArrayType *AT = cast(SS.Ty); ++SS.Idx; if (SS.Idx != AT->getNumElements()) { SS.Offset += TD.getTypeSize(AT->getElementType()); return; } Stack.pop_back(); // At the end of the array } } } /// StepToLeaf - Used by physical subtyping to move to the first leaf node /// on the type stack. void StepToLeaf() { if (Stack.empty()) return; while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) { StackState &SS = Stack.back(); if (const StructType *ST = dyn_cast(SS.Ty)) { if (ST->getElementTypes().empty()) { assert(SS.Idx == 0); PopStackAndAdvance(); } else { // Step into the structure... assert(SS.Idx < ST->getElementTypes().size()); const StructLayout *SL = TD.getStructLayout(ST); Stack.push_back(StackState(ST->getElementTypes()[SS.Idx], SS.Offset+SL->MemberOffsets[SS.Idx])); } } else { const ArrayType *AT = cast(SS.Ty); if (AT->getNumElements() == 0) { assert(SS.Idx == 0); PopStackAndAdvance(); } else { // Step into the array... assert(SS.Idx < AT->getNumElements()); Stack.push_back(StackState(AT->getElementType(), SS.Offset+SS.Idx* TD.getTypeSize(AT->getElementType()))); } } } } }; } /// ElementTypesAreCompatible - Check to see if the specified types are /// "physically" compatible. If so, return true, else return false. We only /// have to check the fields in T1: T2 may be larger than T1. /// static bool ElementTypesAreCompatible(const Type *T1, const Type *T2) { TypeElementWalker T1W(T1), T2W(T2); while (!T1W.isDone() && !T2W.isDone()) { if (T1W.getCurrentOffset() != T2W.getCurrentOffset()) return false; const Type *T1 = T1W.getCurrentType(); const Type *T2 = T2W.getCurrentType(); if (T1 != T2 && !T1->isLosslesslyConvertibleTo(T2)) return false; T1W.StepToNextType(); T2W.StepToNextType(); } return T1W.isDone(); } /// mergeTypeInfo - This method merges the specified type into the current node /// at the specified offset. This may update the current node's type record if /// this gives more information to the node, it may do nothing to the node if /// this information is already known, or it may merge the node completely (and /// return true) if the information is incompatible with what is already known. /// /// This method returns true if the node is completely folded, otherwise false. /// bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset, bool FoldIfIncompatible) { // Check to make sure the Size member is up-to-date. Size can be one of the // following: // Size = 0, Ty = Void: Nothing is known about this node. // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero // Size = 1, Ty = Void, Array = 1: The node is collapsed // Otherwise, sizeof(Ty) = Size // assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) || (Size == 0 && !Ty->isSized() && !isArray()) || (Size == 1 && Ty == Type::VoidTy && isArray()) || (Size == 0 && !Ty->isSized() && !isArray()) || (TD.getTypeSize(Ty) == Size)) && "Size member of DSNode doesn't match the type structure!"); assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!"); if (Offset == 0 && NewTy == Ty) return false; // This should be a common case, handle it efficiently // Return true immediately if the node is completely folded. if (isNodeCompletelyFolded()) return true; // If this is an array type, eliminate the outside arrays because they won't // be used anyway. This greatly reduces the size of large static arrays used // as global variables, for example. // bool WillBeArray = false; while (const ArrayType *AT = dyn_cast(NewTy)) { // FIXME: we might want to keep small arrays, but must be careful about // things like: [2 x [10000 x int*]] NewTy = AT->getElementType(); WillBeArray = true; } // Figure out how big the new type we're merging in is... unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0; // Otherwise check to see if we can fold this type into the current node. If // we can't, we fold the node completely, if we can, we potentially update our // internal state. // if (Ty == Type::VoidTy) { // If this is the first type that this node has seen, just accept it without // question.... assert(Offset == 0 && "Cannot have an offset into a void node!"); assert(!isArray() && "This shouldn't happen!"); Ty = NewTy; NodeType &= ~Array; if (WillBeArray) NodeType |= Array; Size = NewTySize; // Calculate the number of outgoing links from this node. Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift); return false; } // Handle node expansion case here... if (Offset+NewTySize > Size) { // It is illegal to grow this node if we have treated it as an array of // objects... if (isArray()) { if (FoldIfIncompatible) foldNodeCompletely(); return true; } if (Offset) { // We could handle this case, but we don't for now... std::cerr << "UNIMP: Trying to merge a growth type into " << "offset != 0: Collapsing!\n"; if (FoldIfIncompatible) foldNodeCompletely(); return true; } // Okay, the situation is nice and simple, we are trying to merge a type in // at offset 0 that is bigger than our current type. Implement this by // switching to the new type and then merge in the smaller one, which should // hit the other code path here. If the other code path decides it's not // ok, it will collapse the node as appropriate. // const Type *OldTy = Ty; Ty = NewTy; NodeType &= ~Array; if (WillBeArray) NodeType |= Array; Size = NewTySize; // Must grow links to be the appropriate size... Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift); // Merge in the old type now... which is guaranteed to be smaller than the // "current" type. return mergeTypeInfo(OldTy, 0); } assert(Offset <= Size && "Cannot merge something into a part of our type that doesn't exist!"); // Find the section of Ty that NewTy overlaps with... first we find the // type that starts at offset Offset. // unsigned O = 0; const Type *SubType = Ty; while (O < Offset) { assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!"); switch (SubType->getPrimitiveID()) { case Type::StructTyID: { const StructType *STy = cast(SubType); const StructLayout &SL = *TD.getStructLayout(STy); unsigned i = 0, e = SL.MemberOffsets.size(); for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i) /* empty */; // The offset we are looking for must be in the i'th element... SubType = STy->getElementTypes()[i]; O += SL.MemberOffsets[i]; break; } case Type::ArrayTyID: { SubType = cast(SubType)->getElementType(); unsigned ElSize = TD.getTypeSize(SubType); unsigned Remainder = (Offset-O) % ElSize; O = Offset-Remainder; break; } default: if (FoldIfIncompatible) foldNodeCompletely(); return true; } } assert(O == Offset && "Could not achieve the correct offset!"); // If we found our type exactly, early exit if (SubType == NewTy) return false; unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0; // Ok, we are getting desperate now. Check for physical subtyping, where we // just require each element in the node to be compatible. if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 && SubTypeSize && SubTypeSize < 256 && ElementTypesAreCompatible(NewTy, SubType)) return false; // Okay, so we found the leader type at the offset requested. Search the list // of types that starts at this offset. If SubType is currently an array or // structure, the type desired may actually be the first element of the // composite type... // unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored while (SubType != NewTy) { const Type *NextSubType = 0; unsigned NextSubTypeSize = 0; unsigned NextPadSize = 0; switch (SubType->getPrimitiveID()) { case Type::StructTyID: { const StructType *STy = cast(SubType); const StructLayout &SL = *TD.getStructLayout(STy); if (SL.MemberOffsets.size() > 1) NextPadSize = SL.MemberOffsets[1]; else NextPadSize = SubTypeSize; NextSubType = STy->getElementTypes()[0]; NextSubTypeSize = TD.getTypeSize(NextSubType); break; } case Type::ArrayTyID: NextSubType = cast(SubType)->getElementType(); NextSubTypeSize = TD.getTypeSize(NextSubType); NextPadSize = NextSubTypeSize; break; default: ; // fall out } if (NextSubType == 0) break; // In the default case, break out of the loop if (NextPadSize < NewTySize) break; // Don't allow shrinking to a smaller type than NewTySize SubType = NextSubType; SubTypeSize = NextSubTypeSize; PadSize = NextPadSize; } // If we found the type exactly, return it... if (SubType == NewTy) return false; // Check to see if we have a compatible, but different type... if (NewTySize == SubTypeSize) { // Check to see if this type is obviously convertible... int -> uint f.e. if (NewTy->isLosslesslyConvertibleTo(SubType)) return false; // Check to see if we have a pointer & integer mismatch going on here, // loading a pointer as a long, for example. // if (SubType->isInteger() && isa(NewTy) || NewTy->isInteger() && isa(SubType)) return false; } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) { // We are accessing the field, plus some structure padding. Ignore the // structure padding. return false; } Module *M = 0; if (getParentGraph()->getReturnNodes().size()) M = getParentGraph()->getReturnNodes().begin()->first->getParent(); DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: "; WriteTypeSymbolic(std::cerr, Ty, M) << "\n due to:"; WriteTypeSymbolic(std::cerr, NewTy, M) << " @ " << Offset << "!\n" << "SubType: "; WriteTypeSymbolic(std::cerr, SubType, M) << "\n\n"); if (FoldIfIncompatible) foldNodeCompletely(); return true; } // addEdgeTo - Add an edge from the current node to the specified node. This // can cause merging of nodes in the graph. // void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { if (NH.getNode() == 0) return; // Nothing to do DSNodeHandle &ExistingEdge = getLink(Offset); if (ExistingEdge.getNode()) { // Merge the two nodes... ExistingEdge.mergeWith(NH); } else { // No merging to perform... setLink(Offset, NH); // Just force a link in there... } } // MergeSortedVectors - Efficiently merge a vector into another vector where // duplicates are not allowed and both are sorted. This assumes that 'T's are // efficiently copyable and have sane comparison semantics. // static void MergeSortedVectors(std::vector &Dest, const std::vector &Src) { // By far, the most common cases will be the simple ones. In these cases, // avoid having to allocate a temporary vector... // if (Src.empty()) { // Nothing to merge in... return; } else if (Dest.empty()) { // Just copy the result in... Dest = Src; } else if (Src.size() == 1) { // Insert a single element... const GlobalValue *V = Src[0]; std::vector::iterator I = std::lower_bound(Dest.begin(), Dest.end(), V); if (I == Dest.end() || *I != Src[0]) // If not already contained... Dest.insert(I, Src[0]); } else if (Dest.size() == 1) { GlobalValue *Tmp = Dest[0]; // Save value in temporary... Dest = Src; // Copy over list... std::vector::iterator I = std::lower_bound(Dest.begin(), Dest.end(), Tmp); if (I == Dest.end() || *I != Tmp) // If not already contained... Dest.insert(I, Tmp); } else { // Make a copy to the side of Dest... std::vector Old(Dest); // Make space for all of the type entries now... Dest.resize(Dest.size()+Src.size()); // Merge the two sorted ranges together... into Dest. std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); // Now erase any duplicate entries that may have accumulated into the // vectors (because they were in both of the input sets) Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); } } // MergeNodes() - Helper function for DSNode::mergeWith(). // This function does the hard work of merging two nodes, CurNodeH // and NH after filtering out trivial cases and making sure that // CurNodeH.offset >= NH.offset. // // ***WARNING*** // Since merging may cause either node to go away, we must always // use the node-handles to refer to the nodes. These node handles are // automatically updated during merging, so will always provide access // to the correct node after a merge. // void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) { assert(CurNodeH.getOffset() >= NH.getOffset() && "This should have been enforced in the caller."); // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with // respect to NH.Offset) is now zero. NOffset is the distance from the base // of our object that N starts from. // unsigned NOffset = CurNodeH.getOffset()-NH.getOffset(); unsigned NSize = NH.getNode()->getSize(); // If the two nodes are of different size, and the smaller node has the array // bit set, collapse! if (NSize != CurNodeH.getNode()->getSize()) { if (NSize < CurNodeH.getNode()->getSize()) { if (NH.getNode()->isArray()) NH.getNode()->foldNodeCompletely(); } else if (CurNodeH.getNode()->isArray()) { NH.getNode()->foldNodeCompletely(); } } // Merge the type entries of the two nodes together... if (NH.getNode()->Ty != Type::VoidTy) CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset); assert(!CurNodeH.getNode()->isDeadNode()); // If we are merging a node with a completely folded node, then both nodes are // now completely folded. // if (CurNodeH.getNode()->isNodeCompletelyFolded()) { if (!NH.getNode()->isNodeCompletelyFolded()) { NH.getNode()->foldNodeCompletely(); assert(NH.getNode() && NH.getOffset() == 0 && "folding did not make offset 0?"); NOffset = NH.getOffset(); NSize = NH.getNode()->getSize(); assert(NOffset == 0 && NSize == 1); } } else if (NH.getNode()->isNodeCompletelyFolded()) { CurNodeH.getNode()->foldNodeCompletely(); assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 && "folding did not make offset 0?"); NOffset = NH.getOffset(); NSize = NH.getNode()->getSize(); assert(NOffset == 0 && NSize == 1); } DSNode *N = NH.getNode(); if (CurNodeH.getNode() == N || N == 0) return; assert(!CurNodeH.getNode()->isDeadNode()); // Merge the NodeType information... CurNodeH.getNode()->NodeType |= N->NodeType; // Start forwarding to the new node! N->forwardNode(CurNodeH.getNode(), NOffset); assert(!CurNodeH.getNode()->isDeadNode()); // Make all of the outgoing links of N now be outgoing links of CurNodeH. // for (unsigned i = 0; i < N->getNumLinks(); ++i) { DSNodeHandle &Link = N->getLink(i << DS::PointerShift); if (Link.getNode()) { // Compute the offset into the current node at which to // merge this link. In the common case, this is a linear // relation to the offset in the original node (with // wrapping), but if the current node gets collapsed due to // recursive merging, we must make sure to merge in all remaining // links at offset zero. unsigned MergeOffset = 0; DSNode *CN = CurNodeH.getNode(); if (CN->Size != 1) MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize(); CN->addEdgeTo(MergeOffset, Link); } } // Now that there are no outgoing edges, all of the Links are dead. N->Links.clear(); // Merge the globals list... if (!N->Globals.empty()) { MergeSortedVectors(CurNodeH.getNode()->Globals, N->Globals); // Delete the globals from the old node... std::vector().swap(N->Globals); } } // mergeWith - Merge this node and the specified node, moving all links to and // from the argument node into the current node, deleting the node argument. // Offset indicates what offset the specified node is to be merged into the // current node. // // The specified node may be a null pointer (in which case, nothing happens). // void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { DSNode *N = NH.getNode(); if (N == 0 || (N == this && NH.getOffset() == Offset)) return; // Noop assert(!N->isDeadNode() && !isDeadNode()); assert(!hasNoReferrers() && "Should not try to fold a useless node!"); if (N == this) { // We cannot merge two pieces of the same node together, collapse the node // completely. DEBUG(std::cerr << "Attempting to merge two chunks of" << " the same node together!\n"); foldNodeCompletely(); return; } // If both nodes are not at offset 0, make sure that we are merging the node // at an later offset into the node with the zero offset. // if (Offset < NH.getOffset()) { N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); return; } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { // If the offsets are the same, merge the smaller node into the bigger node N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); return; } // Ok, now we can merge the two nodes. Use a static helper that works with // two node handles, since "this" may get merged away at intermediate steps. DSNodeHandle CurNodeH(this, Offset); DSNodeHandle NHCopy(NH); DSNode::MergeNodes(CurNodeH, NHCopy); } //===----------------------------------------------------------------------===// // DSCallSite Implementation //===----------------------------------------------------------------------===// // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h Function &DSCallSite::getCaller() const { return *Inst->getParent()->getParent(); } //===----------------------------------------------------------------------===// // DSGraph Implementation //===----------------------------------------------------------------------===// /// getFunctionNames - Return a space separated list of the name of the /// functions in this graph (if any) std::string DSGraph::getFunctionNames() const { switch (getReturnNodes().size()) { case 0: return "Globals graph"; case 1: return getReturnNodes().begin()->first->getName(); default: std::string Return; for (DSGraph::ReturnNodesTy::const_iterator I = getReturnNodes().begin(); I != getReturnNodes().end(); ++I) Return += I->first->getName() + " "; Return.erase(Return.end()-1, Return.end()); // Remove last space character return Return; } } DSGraph::DSGraph(const DSGraph &G) : GlobalsGraph(0) { PrintAuxCalls = false; NodeMapTy NodeMap; cloneInto(G, ScalarMap, ReturnNodes, NodeMap); } DSGraph::DSGraph(const DSGraph &G, NodeMapTy &NodeMap) : GlobalsGraph(0) { PrintAuxCalls = false; cloneInto(G, ScalarMap, ReturnNodes, NodeMap); } DSGraph::~DSGraph() { FunctionCalls.clear(); AuxFunctionCalls.clear(); ScalarMap.clear(); ReturnNodes.clear(); // Drop all intra-node references, so that assertions don't fail... std::for_each(Nodes.begin(), Nodes.end(), std::mem_fun(&DSNode::dropAllReferences)); // Delete all of the nodes themselves... std::for_each(Nodes.begin(), Nodes.end(), deleter); } // dump - Allow inspection of graph in a debugger. void DSGraph::dump() const { print(std::cerr); } /// remapLinks - Change all of the Links in the current node according to the /// specified mapping. /// void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) { for (unsigned i = 0, e = Links.size(); i != e; ++i) { DSNodeHandle &H = OldNodeMap[Links[i].getNode()]; Links[i].setNode(H.getNode()); Links[i].setOffset(Links[i].getOffset()+H.getOffset()); } } /// cloneInto - Clone the specified DSGraph into the current graph. The /// translated ScalarMap for the old function is filled into the OldValMap /// member, and the translated ReturnNodes map is returned into ReturnNodes. /// /// The CloneFlags member controls various aspects of the cloning process. /// void DSGraph::cloneInto(const DSGraph &G, ScalarMapTy &OldValMap, ReturnNodesTy &OldReturnNodes, NodeMapTy &OldNodeMap, unsigned CloneFlags) { assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!"); assert(&G != this && "Cannot clone graph into itself!"); unsigned FN = Nodes.size(); // First new node... // Duplicate all of the nodes, populating the node map... Nodes.reserve(FN+G.Nodes.size()); // Remove alloca or mod/ref bits as specified... unsigned BitsToClear =((CloneFlags & StripAllocaBit) ? DSNode::AllocaNode : 0) | ((CloneFlags & StripModRefBits) ? (DSNode::Modified | DSNode::Read) : 0); BitsToClear |= DSNode::DEAD; // Clear dead flag... for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { DSNode *Old = G.Nodes[i]; DSNode *New = new DSNode(*Old, this); New->maskNodeTypes(~BitsToClear); OldNodeMap[Old] = New; } #ifndef NDEBUG Timer::addPeakMemoryMeasurement(); #endif // Rewrite the links in the new nodes to point into the current graph now. for (unsigned i = FN, e = Nodes.size(); i != e; ++i) Nodes[i]->remapLinks(OldNodeMap); // Copy the scalar map... merging all of the global nodes... for (ScalarMapTy::const_iterator I = G.ScalarMap.begin(), E = G.ScalarMap.end(); I != E; ++I) { DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()]; DSNodeHandle &H = OldValMap[I->first]; H.mergeWith(DSNodeHandle(MappedNode.getNode(), I->second.getOffset()+MappedNode.getOffset())); // If this is a global, add the global to this fn or merge if already exists if (isa(I->first)) ScalarMap[I->first].mergeWith(H); } if (!(CloneFlags & DontCloneCallNodes)) { // Copy the function calls list... unsigned FC = FunctionCalls.size(); // FirstCall FunctionCalls.reserve(FC+G.FunctionCalls.size()); for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i) FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap)); } if (!(CloneFlags & DontCloneAuxCallNodes)) { // Copy the auxillary function calls list... unsigned FC = AuxFunctionCalls.size(); // FirstCall AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size()); for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i) AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap)); } // Map the return node pointers over... for (ReturnNodesTy::const_iterator I = G.getReturnNodes().begin(), E = G.getReturnNodes().end(); I != E; ++I) { const DSNodeHandle &Ret = I->second; DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()]; OldReturnNodes.insert(std::make_pair(I->first, DSNodeHandle(MappedRet.getNode(), MappedRet.getOffset()+Ret.getOffset()))); } } /// mergeInGraph - The method is used for merging graphs together. If the /// argument graph is not *this, it makes a clone of the specified graph, then /// merges the nodes specified in the call site with the formal arguments in the /// graph. /// void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F, const DSGraph &Graph, unsigned CloneFlags) { ScalarMapTy OldValMap, *ScalarMap; DSNodeHandle RetVal; // If this is not a recursive call, clone the graph into this graph... if (&Graph != this) { // Clone the callee's graph into the current graph, keeping // track of where scalars in the old graph _used_ to point, // and of the new nodes matching nodes of the old graph. NodeMapTy OldNodeMap; // The clone call may invalidate any of the vectors in the data // structure graph. Strip locals and don't copy the list of callers ReturnNodesTy OldRetNodes; cloneInto(Graph, OldValMap, OldRetNodes, OldNodeMap, CloneFlags); // We need to map the arguments for the function to the cloned nodes old // argument values. Do this now. RetVal = OldRetNodes[&F]; ScalarMap = &OldValMap; } else { RetVal = getReturnNodeFor(F); ScalarMap = &getScalarMap(); } // Merge the return value with the return value of the context... RetVal.mergeWith(CS.getRetVal()); // Resolve all of the function arguments... Function::aiterator AI = F.abegin(); for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) { // Advance the argument iterator to the first pointer argument... while (AI != F.aend() && !isPointerType(AI->getType())) { ++AI; #ifndef NDEBUG if (AI == F.aend()) std::cerr << "Bad call to Function: " << F.getName() << "\n"; #endif } if (AI == F.aend()) break; // Add the link from the argument scalar to the provided value assert(ScalarMap->count(AI) && "Argument not in scalar map?"); DSNodeHandle &NH = (*ScalarMap)[AI]; assert(NH.getNode() && "Pointer argument without scalarmap entry?"); NH.mergeWith(CS.getPtrArg(i)); } } /// getCallSiteForArguments - Get the arguments and return value bindings for /// the specified function in the current graph. /// DSCallSite DSGraph::getCallSiteForArguments(Function &F) const { std::vector Args; for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I) if (isPointerType(I->getType())) Args.push_back(getScalarMap().find(I)->second); return DSCallSite(*(CallInst*)0, getReturnNodeFor(F), &F, Args); } // markIncompleteNodes - Mark the specified node as having contents that are not // known with the current analysis we have performed. Because a node makes all // of the nodes it can reach incomplete if the node itself is incomplete, we // must recursively traverse the data structure graph, marking all reachable // nodes as incomplete. // static void markIncompleteNode(DSNode *N) { // Stop recursion if no node, or if node already marked... if (N == 0 || N->isIncomplete()) return; // Actually mark the node N->setIncompleteMarker(); // Recusively process children... for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) if (DSNode *DSN = N->getLink(i).getNode()) markIncompleteNode(DSN); } static void markIncomplete(DSCallSite &Call) { // Then the return value is certainly incomplete! markIncompleteNode(Call.getRetVal().getNode()); // All objects pointed to by function arguments are incomplete! for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) markIncompleteNode(Call.getPtrArg(i).getNode()); } // markIncompleteNodes - Traverse the graph, identifying nodes that may be // modified by other functions that have not been resolved yet. This marks // nodes that are reachable through three sources of "unknownness": // // Global Variables, Function Calls, and Incoming Arguments // // For any node that may have unknown components (because something outside the // scope of current analysis may have modified it), the 'Incomplete' flag is // added to the NodeType. // void DSGraph::markIncompleteNodes(unsigned Flags) { // Mark any incoming arguments as incomplete... if (Flags & DSGraph::MarkFormalArgs) for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end(); FI != E; ++FI) { Function &F = *FI->first; if (F.getName() != "main") for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I) if (isPointerType(I->getType()) && ScalarMap.find(I) != ScalarMap.end()) markIncompleteNode(ScalarMap[I].getNode()); } // Mark stuff passed into functions calls as being incomplete... if (!shouldPrintAuxCalls()) for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) markIncomplete(FunctionCalls[i]); else for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) markIncomplete(AuxFunctionCalls[i]); // Mark all global nodes as incomplete... if ((Flags & DSGraph::IgnoreGlobals) == 0) for (unsigned i = 0, e = Nodes.size(); i != e; ++i) if (Nodes[i]->isGlobalNode() && Nodes[i]->getNumLinks()) markIncompleteNode(Nodes[i]); } static inline void killIfUselessEdge(DSNodeHandle &Edge) { if (DSNode *N = Edge.getNode()) // Is there an edge? if (N->getNumReferrers() == 1) // Does it point to a lonely node? // No interesting info? if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 && N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded()) Edge.setNode(0); // Kill the edge! } static inline bool nodeContainsExternalFunction(const DSNode *N) { const std::vector &Globals = N->getGlobals(); for (unsigned i = 0, e = Globals.size(); i != e; ++i) if (Globals[i]->isExternal()) return true; return false; } static void removeIdenticalCalls(std::vector &Calls) { // Remove trivially identical function calls unsigned NumFns = Calls.size(); std::sort(Calls.begin(), Calls.end()); // Sort by callee as primary key! // Scan the call list cleaning it up as necessary... DSNode *LastCalleeNode = 0; Function *LastCalleeFunc = 0; unsigned NumDuplicateCalls = 0; bool LastCalleeContainsExternalFunction = false; for (unsigned i = 0; i != Calls.size(); ++i) { DSCallSite &CS = Calls[i]; // If the Callee is a useless edge, this must be an unreachable call site, // eliminate it. if (CS.isIndirectCall() && CS.getCalleeNode()->getNumReferrers() == 1 && CS.getCalleeNode()->getNodeFlags() == 0) { // No useful info? std::cerr << "WARNING: Useless call site found??\n"; CS.swap(Calls.back()); Calls.pop_back(); --i; } else { // If the return value or any arguments point to a void node with no // information at all in it, and the call node is the only node to point // to it, remove the edge to the node (killing the node). // killIfUselessEdge(CS.getRetVal()); for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a) killIfUselessEdge(CS.getPtrArg(a)); // If this call site calls the same function as the last call site, and if // the function pointer contains an external function, this node will // never be resolved. Merge the arguments of the call node because no // information will be lost. // if ((CS.isDirectCall() && CS.getCalleeFunc() == LastCalleeFunc) || (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) { ++NumDuplicateCalls; if (NumDuplicateCalls == 1) { if (LastCalleeNode) LastCalleeContainsExternalFunction = nodeContainsExternalFunction(LastCalleeNode); else LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal(); } #if 1 if (LastCalleeContainsExternalFunction || // This should be more than enough context sensitivity! // FIXME: Evaluate how many times this is tripped! NumDuplicateCalls > 20) { DSCallSite &OCS = Calls[i-1]; OCS.mergeWith(CS); // The node will now be eliminated as a duplicate! if (CS.getNumPtrArgs() < OCS.getNumPtrArgs()) CS = OCS; else if (CS.getNumPtrArgs() > OCS.getNumPtrArgs()) OCS = CS; } #endif } else { if (CS.isDirectCall()) { LastCalleeFunc = CS.getCalleeFunc(); LastCalleeNode = 0; } else { LastCalleeNode = CS.getCalleeNode(); LastCalleeFunc = 0; } NumDuplicateCalls = 0; } } } Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end()); // Track the number of call nodes merged away... NumCallNodesMerged += NumFns-Calls.size(); DEBUG(if (NumFns != Calls.size()) std::cerr << "Merged " << (NumFns-Calls.size()) << " call nodes.\n";); } // removeTriviallyDeadNodes - After the graph has been constructed, this method // removes all unreachable nodes that are created because they got merged with // other nodes in the graph. These nodes will all be trivially unreachable, so // we don't have to perform any non-trivial analysis here. // void DSGraph::removeTriviallyDeadNodes() { removeIdenticalCalls(FunctionCalls); removeIdenticalCalls(AuxFunctionCalls); for (unsigned i = 0; i != Nodes.size(); ++i) { DSNode *Node = Nodes[i]; if (Node->isComplete() && !Node->isModified() && !Node->isRead()) { // This is a useless node if it has no mod/ref info (checked above), // outgoing edges (which it cannot, as it is not modified in this // context), and it has no incoming edges. If it is a global node it may // have all of these properties and still have incoming edges, due to the // scalar map, so we check those now. // if (Node->getNumReferrers() == Node->getGlobals().size()) { const std::vector &Globals = Node->getGlobals(); // Loop through and make sure all of the globals are referring directly // to the node... for (unsigned j = 0, e = Globals.size(); j != e; ++j) { DSNode *N = ScalarMap.find(Globals[j])->second.getNode(); assert(N == Node && "ScalarMap doesn't match globals list!"); } // Make sure NumReferrers still agrees, if so, the node is truly dead. if (Node->getNumReferrers() == Globals.size()) { for (unsigned j = 0, e = Globals.size(); j != e; ++j) ScalarMap.erase(Globals[j]); Node->makeNodeDead(); } } } if (Node->getNodeFlags() == 0 && Node->hasNoReferrers()) { // This node is dead! delete Node; // Free memory... Nodes[i--] = Nodes.back(); Nodes.pop_back(); // Remove from node list... } } } /// markReachableNodes - This method recursively traverses the specified /// DSNodes, marking any nodes which are reachable. All reachable nodes it adds /// to the set, which allows it to only traverse visited nodes once. /// void DSNode::markReachableNodes(hash_set &ReachableNodes) { if (this == 0) return; assert(getForwardNode() == 0 && "Cannot mark a forwarded node!"); if (ReachableNodes.count(this)) return; // Already marked reachable ReachableNodes.insert(this); // Is reachable now for (unsigned i = 0, e = getSize(); i < e; i += DS::PointerSize) getLink(i).getNode()->markReachableNodes(ReachableNodes); } void DSCallSite::markReachableNodes(hash_set &Nodes) { getRetVal().getNode()->markReachableNodes(Nodes); if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes); for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i) getPtrArg(i).getNode()->markReachableNodes(Nodes); } // CanReachAliveNodes - Simple graph walker that recursively traverses the graph // looking for a node that is marked alive. If an alive node is found, return // true, otherwise return false. If an alive node is reachable, this node is // marked as alive... // static bool CanReachAliveNodes(DSNode *N, hash_set &Alive, hash_set &Visited, bool IgnoreGlobals) { if (N == 0) return false; assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!"); // If this is a global node, it will end up in the globals graph anyway, so we // don't need to worry about it. if (IgnoreGlobals && N->isGlobalNode()) return false; // If we know that this node is alive, return so! if (Alive.count(N)) return true; // Otherwise, we don't think the node is alive yet, check for infinite // recursion. if (Visited.count(N)) return false; // Found a cycle Visited.insert(N); // No recursion, insert into Visited... for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize) if (CanReachAliveNodes(N->getLink(i).getNode(), Alive, Visited, IgnoreGlobals)) { N->markReachableNodes(Alive); return true; } return false; } // CallSiteUsesAliveArgs - Return true if the specified call site can reach any // alive nodes. // static bool CallSiteUsesAliveArgs(DSCallSite &CS, hash_set &Alive, hash_set &Visited, bool IgnoreGlobals) { if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited, IgnoreGlobals)) return true; if (CS.isIndirectCall() && CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals)) return true; for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited, IgnoreGlobals)) return true; return false; } // removeDeadNodes - Use a more powerful reachability analysis to eliminate // subgraphs that are unreachable. This often occurs because the data // structure doesn't "escape" into it's caller, and thus should be eliminated // from the caller's graph entirely. This is only appropriate to use when // inlining graphs. // void DSGraph::removeDeadNodes(unsigned Flags) { DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK()); // Reduce the amount of work we have to do... remove dummy nodes left over by // merging... removeTriviallyDeadNodes(); // FIXME: Merge nontrivially identical call nodes... // Alive - a set that holds all nodes found to be reachable/alive. hash_set Alive; std::vector > GlobalNodes; // Mark all nodes reachable by (non-global) scalar nodes as alive... for (ScalarMapTy::iterator I = ScalarMap.begin(), E = ScalarMap.end(); I !=E;) if (isa(I->first)) { // Keep track of global nodes assert(I->second.getNode() && "Null global node?"); GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode())); ++I; } else { // Check to see if this is a worthless node generated for non-pointer // values, such as integers. Consider an addition of long types: A+B. // Assuming we can track all uses of the value in this context, and it is // NOT used as a pointer, we can delete the node. We will be able to // detect this situation if the node pointed to ONLY has Unknown bit set // in the node. In this case, the node is not incomplete, does not point // to any other nodes (no mod/ref bits set), and is therefore // uninteresting for data structure analysis. If we run across one of // these, prune the scalar pointing to it. // DSNode *N = I->second.getNode(); if (N->getNodeFlags() == DSNode::UnknownNode && !isa(I->first)){ ScalarMap.erase(I++); } else { I->second.getNode()->markReachableNodes(Alive); ++I; } } // The return value is alive as well... for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end(); I != E; ++I) I->second.getNode()->markReachableNodes(Alive); // Mark any nodes reachable by primary calls as alive... for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) FunctionCalls[i].markReachableNodes(Alive); bool Iterate; hash_set Visited; std::vector AuxFCallsAlive(AuxFunctionCalls.size()); do { Visited.clear(); // If any global node points to a non-global that is "alive", the global is // "alive" as well... Remove it from the GlobalNodes list so we only have // unreachable globals in the list. // Iterate = false; for (unsigned i = 0; i != GlobalNodes.size(); ++i) if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited, Flags & DSGraph::RemoveUnreachableGlobals)) { std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to erase GlobalNodes.pop_back(); // Erase efficiently Iterate = true; } for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) if (!AuxFCallsAlive[i] && CallSiteUsesAliveArgs(AuxFunctionCalls[i], Alive, Visited, Flags & DSGraph::RemoveUnreachableGlobals)) { AuxFunctionCalls[i].markReachableNodes(Alive); AuxFCallsAlive[i] = true; Iterate = true; } } while (Iterate); // Remove all dead aux function calls... unsigned CurIdx = 0; for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i) if (AuxFCallsAlive[i]) AuxFunctionCalls[CurIdx++].swap(AuxFunctionCalls[i]); if (!(Flags & DSGraph::RemoveUnreachableGlobals)) { assert(GlobalsGraph && "No globals graph available??"); // Move the unreachable call nodes to the globals graph... GlobalsGraph->AuxFunctionCalls.insert(GlobalsGraph->AuxFunctionCalls.end(), AuxFunctionCalls.begin()+CurIdx, AuxFunctionCalls.end()); } // Crop all the useless ones out... AuxFunctionCalls.erase(AuxFunctionCalls.begin()+CurIdx, AuxFunctionCalls.end()); // At this point, any nodes which are visited, but not alive, are nodes which // should be moved to the globals graph. Loop over all nodes, eliminating // completely unreachable nodes, and moving visited nodes to the globals graph // std::vector DeadNodes; DeadNodes.reserve(Nodes.size()); for (unsigned i = 0; i != Nodes.size(); ++i) if (!Alive.count(Nodes[i])) { DSNode *N = Nodes[i]; Nodes[i--] = Nodes.back(); // move node to end of vector Nodes.pop_back(); // Erase node from alive list. if (!(Flags & DSGraph::RemoveUnreachableGlobals) && // Not in TD pass Visited.count(N)) { // Visited but not alive? GlobalsGraph->Nodes.push_back(N); // Move node to globals graph N->setParentGraph(GlobalsGraph); } else { // Otherwise, delete the node assert((!N->isGlobalNode() || (Flags & DSGraph::RemoveUnreachableGlobals)) && "Killing a global?"); //std::cerr << "[" << i+1 << "/" << DeadNodes.size() // << "] Node is dead: "; N->dump(); DeadNodes.push_back(N); N->dropAllReferences(); } } else { assert(Nodes[i]->getForwardNode() == 0 && "Alive forwarded node?"); } // Now that the nodes have either been deleted or moved to the globals graph, // loop over the scalarmap, updating the entries for globals... // if (!(Flags & DSGraph::RemoveUnreachableGlobals)) { // Not in the TD pass? // In this array we start the remapping, which can cause merging. Because // of this, the DSNode pointers in GlobalNodes may be invalidated, so we // must always go through the ScalarMap (which contains DSNodeHandles [which // cannot be invalidated by merging]). // for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) { Value *G = GlobalNodes[i].first; ScalarMapTy::iterator I = ScalarMap.find(G); assert(I != ScalarMap.end() && "Global not in scalar map anymore?"); assert(I->second.getNode() && "Global not pointing to anything?"); assert(!Alive.count(I->second.getNode()) && "Node is alive??"); GlobalsGraph->ScalarMap[G].mergeWith(I->second); assert(GlobalsGraph->ScalarMap[G].getNode() && "Global not pointing to anything?"); ScalarMap.erase(I); } // Merging leaves behind silly nodes, we remove them to avoid polluting the // globals graph. if (!GlobalNodes.empty()) GlobalsGraph->removeTriviallyDeadNodes(); } else { // If we are in the top-down pass, remove all unreachable globals from the // ScalarMap... for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) if (!Alive.count(GlobalNodes[i].second)) ScalarMap.erase(GlobalNodes[i].first); } // Loop over all of the dead nodes now, deleting them since their referrer // count is zero. for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i) delete DeadNodes[i]; DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK()); } void DSGraph::AssertGraphOK() const { for (unsigned i = 0, e = Nodes.size(); i != e; ++i) Nodes[i]->assertOK(); for (ScalarMapTy::const_iterator I = ScalarMap.begin(), E = ScalarMap.end(); I != E; ++I) { assert(I->second.getNode() && "Null node in scalarmap!"); AssertNodeInGraph(I->second.getNode()); if (GlobalValue *GV = dyn_cast(I->first)) { assert(I->second.getNode()->isGlobalNode() && "Global points to node, but node isn't global?"); AssertNodeContainsGlobal(I->second.getNode(), GV); } } AssertCallNodesInGraph(); AssertAuxCallNodesInGraph(); }