//===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass is responsible for finalizing the functions frame layout, saving // callee saved registers, and for emitting prolog & epilog code for the // function. // // This pass must be run after register allocation. After this pass is // executed, it is illegal to construct MO_FrameIndex operands. // // This pass provides an optional shrink wrapping variant of prolog/epilog // insertion, enabled via --shrink-wrap. See ShrinkWrapping.cpp. // //===----------------------------------------------------------------------===// #include "PrologEpilogInserter.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; char PEI::ID = 0; static RegisterPass X("prologepilog", "Prologue/Epilogue Insertion"); /// createPrologEpilogCodeInserter - This function returns a pass that inserts /// prolog and epilog code, and eliminates abstract frame references. /// FunctionPass *llvm::createPrologEpilogCodeInserter() { return new PEI(); } /// runOnMachineFunction - Insert prolog/epilog code and replace abstract /// frame indexes with appropriate references. /// bool PEI::runOnMachineFunction(MachineFunction &Fn) { const Function* F = Fn.getFunction(); const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo(); RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : NULL; FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn); // Get MachineModuleInfo so that we can track the construction of the // frame. if (MachineModuleInfo *MMI = getAnalysisIfAvailable()) Fn.getFrameInfo()->setMachineModuleInfo(MMI); // Calculate the MaxCallFrameSize and HasCalls variables for the function's // frame information. Also eliminates call frame pseudo instructions. calculateCallsInformation(Fn); // Allow the target machine to make some adjustments to the function // e.g. UsedPhysRegs before calculateCalleeSavedRegisters. TRI->processFunctionBeforeCalleeSavedScan(Fn, RS); // Scan the function for modified callee saved registers and insert spill code // for any callee saved registers that are modified. calculateCalleeSavedRegisters(Fn); // Determine placement of CSR spill/restore code: // - with shrink wrapping, place spills and restores to tightly // enclose regions in the Machine CFG of the function where // they are used. Without shrink wrapping // - default (no shrink wrapping), place all spills in the // entry block, all restores in return blocks. placeCSRSpillsAndRestores(Fn); // Add the code to save and restore the callee saved registers if (!F->hasFnAttr(Attribute::Naked)) insertCSRSpillsAndRestores(Fn); // Allow the target machine to make final modifications to the function // before the frame layout is finalized. TRI->processFunctionBeforeFrameFinalized(Fn); // Calculate actual frame offsets for all abstract stack objects... calculateFrameObjectOffsets(Fn); // Add prolog and epilog code to the function. This function is required // to align the stack frame as necessary for any stack variables or // called functions. Because of this, calculateCalleeSavedRegisters // must be called before this function in order to set the HasCalls // and MaxCallFrameSize variables. if (!F->hasFnAttr(Attribute::Naked)) insertPrologEpilogCode(Fn); // Replace all MO_FrameIndex operands with physical register references // and actual offsets. // replaceFrameIndices(Fn); // If register scavenging is needed, as we've enabled doing it as a // post-pass, scavenge the virtual registers that frame index elimiation // inserted. if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging) scavengeFrameVirtualRegs(Fn); delete RS; clearAllSets(); return true; } #if 0 void PEI::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); if (ShrinkWrapping || ShrinkWrapFunc != "") { AU.addRequired(); AU.addRequired(); } AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } #endif /// calculateCallsInformation - Calculate the MaxCallFrameSize and HasCalls /// variables for the function's frame information and eliminate call frame /// pseudo instructions. void PEI::calculateCallsInformation(MachineFunction &Fn) { const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); unsigned MaxCallFrameSize = 0; bool HasCalls = false; // Get the function call frame set-up and tear-down instruction opcode int FrameSetupOpcode = RegInfo->getCallFrameSetupOpcode(); int FrameDestroyOpcode = RegInfo->getCallFrameDestroyOpcode(); // Early exit for targets which have no call frame setup/destroy pseudo // instructions. if (FrameSetupOpcode == -1 && FrameDestroyOpcode == -1) return; std::vector FrameSDOps; for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo" " instructions should have a single immediate argument!"); unsigned Size = I->getOperand(0).getImm(); if (Size > MaxCallFrameSize) MaxCallFrameSize = Size; HasCalls = true; FrameSDOps.push_back(I); } else if (I->getOpcode() == TargetInstrInfo::INLINEASM) { // An InlineAsm might be a call; assume it is to get the stack frame // aligned correctly for calls. HasCalls = true; } MachineFrameInfo *FFI = Fn.getFrameInfo(); FFI->setHasCalls(HasCalls); FFI->setMaxCallFrameSize(MaxCallFrameSize); for (std::vector::iterator i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) { MachineBasicBlock::iterator I = *i; // If call frames are not being included as part of the stack frame, and // there is no dynamic allocation (therefore referencing frame slots off // sp), leave the pseudo ops alone. We'll eliminate them later. if (RegInfo->hasReservedCallFrame(Fn) || RegInfo->hasFP(Fn)) RegInfo->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I); } } /// calculateCalleeSavedRegisters - Scan the function for modified callee saved /// registers. void PEI::calculateCalleeSavedRegisters(MachineFunction &Fn) { const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); const TargetFrameInfo *TFI = Fn.getTarget().getFrameInfo(); MachineFrameInfo *FFI = Fn.getFrameInfo(); // Get the callee saved register list... const unsigned *CSRegs = RegInfo->getCalleeSavedRegs(&Fn); // These are used to keep track the callee-save area. Initialize them. MinCSFrameIndex = INT_MAX; MaxCSFrameIndex = 0; // Early exit for targets which have no callee saved registers. if (CSRegs == 0 || CSRegs[0] == 0) return; // Figure out which *callee saved* registers are modified by the current // function, thus needing to be saved and restored in the prolog/epilog. const TargetRegisterClass * const *CSRegClasses = RegInfo->getCalleeSavedRegClasses(&Fn); std::vector CSI; for (unsigned i = 0; CSRegs[i]; ++i) { unsigned Reg = CSRegs[i]; if (Fn.getRegInfo().isPhysRegUsed(Reg)) { // If the reg is modified, save it! CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i])); } else { for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); *AliasSet; ++AliasSet) { // Check alias registers too. if (Fn.getRegInfo().isPhysRegUsed(*AliasSet)) { CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i])); break; } } } } if (CSI.empty()) return; // Early exit if no callee saved registers are modified! unsigned NumFixedSpillSlots; const TargetFrameInfo::SpillSlot *FixedSpillSlots = TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots); // Now that we know which registers need to be saved and restored, allocate // stack slots for them. for (std::vector::iterator I = CSI.begin(), E = CSI.end(); I != E; ++I) { unsigned Reg = I->getReg(); const TargetRegisterClass *RC = I->getRegClass(); int FrameIdx; if (RegInfo->hasReservedSpillSlot(Fn, Reg, FrameIdx)) { I->setFrameIdx(FrameIdx); continue; } // Check to see if this physreg must be spilled to a particular stack slot // on this target. const TargetFrameInfo::SpillSlot *FixedSlot = FixedSpillSlots; while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots && FixedSlot->Reg != Reg) ++FixedSlot; if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) { // Nope, just spill it anywhere convenient. unsigned Align = RC->getAlignment(); unsigned StackAlign = TFI->getStackAlignment(); // We may not be able to satisfy the desired alignment specification of // the TargetRegisterClass if the stack alignment is smaller. Use the // min. Align = std::min(Align, StackAlign); FrameIdx = FFI->CreateStackObject(RC->getSize(), Align, true); if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; } else { // Spill it to the stack where we must. FrameIdx = FFI->CreateFixedObject(RC->getSize(), FixedSlot->Offset, true, false); } I->setFrameIdx(FrameIdx); } FFI->setCalleeSavedInfo(CSI); } /// insertCSRSpillsAndRestores - Insert spill and restore code for /// callee saved registers used in the function, handling shrink wrapping. /// void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) { // Get callee saved register information. MachineFrameInfo *FFI = Fn.getFrameInfo(); const std::vector &CSI = FFI->getCalleeSavedInfo(); FFI->setCalleeSavedInfoValid(true); // Early exit if no callee saved registers are modified! if (CSI.empty()) return; const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); MachineBasicBlock::iterator I; if (! ShrinkWrapThisFunction) { // Spill using target interface. I = EntryBlock->begin(); if (!TII.spillCalleeSavedRegisters(*EntryBlock, I, CSI)) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { // Add the callee-saved register as live-in. // It's killed at the spill. EntryBlock->addLiveIn(CSI[i].getReg()); // Insert the spill to the stack frame. TII.storeRegToStackSlot(*EntryBlock, I, CSI[i].getReg(), true, CSI[i].getFrameIdx(), CSI[i].getRegClass()); } } // Restore using target interface. for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) { MachineBasicBlock* MBB = ReturnBlocks[ri]; I = MBB->end(); --I; // Skip over all terminator instructions, which are part of the return // sequence. MachineBasicBlock::iterator I2 = I; while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator()) I = I2; bool AtStart = I == MBB->begin(); MachineBasicBlock::iterator BeforeI = I; if (!AtStart) --BeforeI; // Restore all registers immediately before the return and any // terminators that preceed it. if (!TII.restoreCalleeSavedRegisters(*MBB, I, CSI)) { for (unsigned i = 0, e = CSI.size(); i != e; ++i) { TII.loadRegFromStackSlot(*MBB, I, CSI[i].getReg(), CSI[i].getFrameIdx(), CSI[i].getRegClass()); assert(I != MBB->begin() && "loadRegFromStackSlot didn't insert any code!"); // Insert in reverse order. loadRegFromStackSlot can insert // multiple instructions. if (AtStart) I = MBB->begin(); else { I = BeforeI; ++I; } } } } return; } // Insert spills. std::vector blockCSI; for (CSRegBlockMap::iterator BI = CSRSave.begin(), BE = CSRSave.end(); BI != BE; ++BI) { MachineBasicBlock* MBB = BI->first; CSRegSet save = BI->second; if (save.empty()) continue; blockCSI.clear(); for (CSRegSet::iterator RI = save.begin(), RE = save.end(); RI != RE; ++RI) { blockCSI.push_back(CSI[*RI]); } assert(blockCSI.size() > 0 && "Could not collect callee saved register info"); I = MBB->begin(); // When shrink wrapping, use stack slot stores/loads. for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) { // Add the callee-saved register as live-in. // It's killed at the spill. MBB->addLiveIn(blockCSI[i].getReg()); // Insert the spill to the stack frame. TII.storeRegToStackSlot(*MBB, I, blockCSI[i].getReg(), true, blockCSI[i].getFrameIdx(), blockCSI[i].getRegClass()); } } for (CSRegBlockMap::iterator BI = CSRRestore.begin(), BE = CSRRestore.end(); BI != BE; ++BI) { MachineBasicBlock* MBB = BI->first; CSRegSet restore = BI->second; if (restore.empty()) continue; blockCSI.clear(); for (CSRegSet::iterator RI = restore.begin(), RE = restore.end(); RI != RE; ++RI) { blockCSI.push_back(CSI[*RI]); } assert(blockCSI.size() > 0 && "Could not find callee saved register info"); // If MBB is empty and needs restores, insert at the _beginning_. if (MBB->empty()) { I = MBB->begin(); } else { I = MBB->end(); --I; // Skip over all terminator instructions, which are part of the // return sequence. if (! I->getDesc().isTerminator()) { ++I; } else { MachineBasicBlock::iterator I2 = I; while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator()) I = I2; } } bool AtStart = I == MBB->begin(); MachineBasicBlock::iterator BeforeI = I; if (!AtStart) --BeforeI; // Restore all registers immediately before the return and any // terminators that preceed it. for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) { TII.loadRegFromStackSlot(*MBB, I, blockCSI[i].getReg(), blockCSI[i].getFrameIdx(), blockCSI[i].getRegClass()); assert(I != MBB->begin() && "loadRegFromStackSlot didn't insert any code!"); // Insert in reverse order. loadRegFromStackSlot can insert // multiple instructions. if (AtStart) I = MBB->begin(); else { I = BeforeI; ++I; } } } } /// AdjustStackOffset - Helper function used to adjust the stack frame offset. static inline void AdjustStackOffset(MachineFrameInfo *FFI, int FrameIdx, bool StackGrowsDown, int64_t &Offset, unsigned &MaxAlign) { // If the stack grows down, add the object size to find the lowest address. if (StackGrowsDown) Offset += FFI->getObjectSize(FrameIdx); unsigned Align = FFI->getObjectAlignment(FrameIdx); // If the alignment of this object is greater than that of the stack, then // increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary. Offset = (Offset + Align - 1) / Align * Align; if (StackGrowsDown) { FFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset } else { FFI->setObjectOffset(FrameIdx, Offset); Offset += FFI->getObjectSize(FrameIdx); } } /// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the /// abstract stack objects. /// void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) { const TargetFrameInfo &TFI = *Fn.getTarget().getFrameInfo(); bool StackGrowsDown = TFI.getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown; // Loop over all of the stack objects, assigning sequential addresses... MachineFrameInfo *FFI = Fn.getFrameInfo(); unsigned MaxAlign = 1; // Start at the beginning of the local area. // The Offset is the distance from the stack top in the direction // of stack growth -- so it's always nonnegative. int LocalAreaOffset = TFI.getOffsetOfLocalArea(); if (StackGrowsDown) LocalAreaOffset = -LocalAreaOffset; assert(LocalAreaOffset >= 0 && "Local area offset should be in direction of stack growth"); int64_t Offset = LocalAreaOffset; // If there are fixed sized objects that are preallocated in the local area, // non-fixed objects can't be allocated right at the start of local area. // We currently don't support filling in holes in between fixed sized // objects, so we adjust 'Offset' to point to the end of last fixed sized // preallocated object. for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) { int64_t FixedOff; if (StackGrowsDown) { // The maximum distance from the stack pointer is at lower address of // the object -- which is given by offset. For down growing stack // the offset is negative, so we negate the offset to get the distance. FixedOff = -FFI->getObjectOffset(i); } else { // The maximum distance from the start pointer is at the upper // address of the object. FixedOff = FFI->getObjectOffset(i) + FFI->getObjectSize(i); } if (FixedOff > Offset) Offset = FixedOff; } // First assign frame offsets to stack objects that are used to spill // callee saved registers. if (StackGrowsDown) { for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) { // If stack grows down, we need to add size of find the lowest // address of the object. Offset += FFI->getObjectSize(i); unsigned Align = FFI->getObjectAlignment(i); // If the alignment of this object is greater than that of the stack, // then increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; FFI->setObjectOffset(i, -Offset); // Set the computed offset } } else { int MaxCSFI = MaxCSFrameIndex, MinCSFI = MinCSFrameIndex; for (int i = MaxCSFI; i >= MinCSFI ; --i) { unsigned Align = FFI->getObjectAlignment(i); // If the alignment of this object is greater than that of the stack, // then increase the stack alignment to match. MaxAlign = std::max(MaxAlign, Align); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; FFI->setObjectOffset(i, Offset); Offset += FFI->getObjectSize(i); } } // Make sure the special register scavenging spill slot is closest to the // frame pointer if a frame pointer is required. const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); if (RS && RegInfo->hasFP(Fn) && !RegInfo->needsStackRealignment(Fn)) { int SFI = RS->getScavengingFrameIndex(); if (SFI >= 0) AdjustStackOffset(FFI, SFI, StackGrowsDown, Offset, MaxAlign); } // Make sure that the stack protector comes before the local variables on the // stack. if (FFI->getStackProtectorIndex() >= 0) AdjustStackOffset(FFI, FFI->getStackProtectorIndex(), StackGrowsDown, Offset, MaxAlign); // Then assign frame offsets to stack objects that are not used to spill // callee saved registers. for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) { if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex) continue; if (RS && (int)i == RS->getScavengingFrameIndex()) continue; if (FFI->isDeadObjectIndex(i)) continue; if (FFI->getStackProtectorIndex() == (int)i) continue; AdjustStackOffset(FFI, i, StackGrowsDown, Offset, MaxAlign); } // Make sure the special register scavenging spill slot is closest to the // stack pointer. if (RS && (!RegInfo->hasFP(Fn) || RegInfo->needsStackRealignment(Fn))) { int SFI = RS->getScavengingFrameIndex(); if (SFI >= 0) AdjustStackOffset(FFI, SFI, StackGrowsDown, Offset, MaxAlign); } if (!RegInfo->targetHandlesStackFrameRounding()) { // If we have reserved argument space for call sites in the function // immediately on entry to the current function, count it as part of the // overall stack size. if (FFI->hasCalls() && RegInfo->hasReservedCallFrame(Fn)) Offset += FFI->getMaxCallFrameSize(); // Round up the size to a multiple of the alignment. If the function has // any calls or alloca's, align to the target's StackAlignment value to // ensure that the callee's frame or the alloca data is suitably aligned; // otherwise, for leaf functions, align to the TransientStackAlignment // value. unsigned StackAlign; if (FFI->hasCalls() || FFI->hasVarSizedObjects() || (RegInfo->needsStackRealignment(Fn) && FFI->getObjectIndexEnd() != 0)) StackAlign = TFI.getStackAlignment(); else StackAlign = TFI.getTransientStackAlignment(); // If the frame pointer is eliminated, all frame offsets will be relative // to SP not FP; align to MaxAlign so this works. StackAlign = std::max(StackAlign, MaxAlign); unsigned AlignMask = StackAlign - 1; Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); } // Update frame info to pretend that this is part of the stack... FFI->setStackSize(Offset - LocalAreaOffset); // Remember the required stack alignment in case targets need it to perform // dynamic stack alignment. if (MaxAlign > FFI->getMaxAlignment()) FFI->setMaxAlignment(MaxAlign); } /// insertPrologEpilogCode - Scan the function for modified callee saved /// registers, insert spill code for these callee saved registers, then add /// prolog and epilog code to the function. /// void PEI::insertPrologEpilogCode(MachineFunction &Fn) { const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo(); // Add prologue to the function... TRI->emitPrologue(Fn); // Add epilogue to restore the callee-save registers in each exiting block for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { // If last instruction is a return instruction, add an epilogue if (!I->empty() && I->back().getDesc().isReturn()) TRI->emitEpilogue(Fn, *I); } } /// replaceFrameIndices - Replace all MO_FrameIndex operands with physical /// register references and actual offsets. /// void PEI::replaceFrameIndices(MachineFunction &Fn) { if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do? const TargetMachine &TM = Fn.getTarget(); assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!"); const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); const TargetFrameInfo *TFI = TM.getFrameInfo(); bool StackGrowsDown = TFI->getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown; int FrameSetupOpcode = TRI.getCallFrameSetupOpcode(); int FrameDestroyOpcode = TRI.getCallFrameDestroyOpcode(); for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { int SPAdj = 0; // SP offset due to call frame setup / destroy. if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(BB); for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) { if (I->getOpcode() == FrameSetupOpcode || I->getOpcode() == FrameDestroyOpcode) { // Remember how much SP has been adjusted to create the call // frame. int Size = I->getOperand(0).getImm(); if ((!StackGrowsDown && I->getOpcode() == FrameSetupOpcode) || (StackGrowsDown && I->getOpcode() == FrameDestroyOpcode)) Size = -Size; SPAdj += Size; MachineBasicBlock::iterator PrevI = BB->end(); if (I != BB->begin()) PrevI = prior(I); TRI.eliminateCallFramePseudoInstr(Fn, *BB, I); // Visit the instructions created by eliminateCallFramePseudoInstr(). if (PrevI == BB->end()) I = BB->begin(); // The replaced instr was the first in the block. else I = llvm::next(PrevI); continue; } MachineInstr *MI = I; bool DoIncr = true; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) if (MI->getOperand(i).isFI()) { // Some instructions (e.g. inline asm instructions) can have // multiple frame indices and/or cause eliminateFrameIndex // to insert more than one instruction. We need the register // scavenger to go through all of these instructions so that // it can update its register information. We keep the // iterator at the point before insertion so that we can // revisit them in full. bool AtBeginning = (I == BB->begin()); if (!AtBeginning) --I; // If this instruction has a FrameIndex operand, we need to // use that target machine register info object to eliminate // it. int Value; unsigned VReg = TRI.eliminateFrameIndex(MI, SPAdj, &Value, FrameIndexVirtualScavenging ? NULL : RS); if (VReg) { assert (FrameIndexVirtualScavenging && "Not scavenging, but virtual returned from " "eliminateFrameIndex()!"); FrameConstantRegMap[VReg] = FrameConstantEntry(Value, SPAdj); } // Reset the iterator if we were at the beginning of the BB. if (AtBeginning) { I = BB->begin(); DoIncr = false; } MI = 0; break; } if (DoIncr && I != BB->end()) ++I; // Update register states. if (RS && !FrameIndexVirtualScavenging && MI) RS->forward(MI); } assert(SPAdj == 0 && "Unbalanced call frame setup / destroy pairs?"); } } /// findLastUseReg - find the killing use of the specified register within /// the instruciton range. Return the operand number of the kill in Operand. static MachineBasicBlock::iterator findLastUseReg(MachineBasicBlock::iterator I, MachineBasicBlock::iterator ME, unsigned Reg) { // Scan forward to find the last use of this virtual register for (++I; I != ME; ++I) { MachineInstr *MI = I; bool isDefInsn = false; bool isKillInsn = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) if (MI->getOperand(i).isReg()) { unsigned OpReg = MI->getOperand(i).getReg(); if (OpReg == 0 || !TargetRegisterInfo::isVirtualRegister(OpReg)) continue; assert (OpReg == Reg && "overlapping use of scavenged index register!"); // If this is the killing use, we have a candidate. if (MI->getOperand(i).isKill()) isKillInsn = true; else if (MI->getOperand(i).isDef()) isDefInsn = true; } if (isKillInsn && !isDefInsn) return I; } // If we hit the end of the basic block, there was no kill of // the virtual register, which is wrong. assert (0 && "scavenged index register never killed!"); return ME; } /// scavengeFrameVirtualRegs - Replace all frame index virtual registers /// with physical registers. Use the register scavenger to find an /// appropriate register to use. void PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) { // Run through the instructions and find any virtual registers. for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { RS->enterBasicBlock(BB); // FIXME: The logic flow in this function is still too convoluted. // It needs a cleanup refactoring. Do that in preparation for tracking // more than one scratch register value and using ranges to find // available scratch registers. unsigned CurrentVirtReg = 0; unsigned CurrentScratchReg = 0; bool havePrevValue = false; int PrevValue = 0; MachineInstr *PrevLastUseMI = NULL; unsigned PrevLastUseOp = 0; bool trackingCurrentValue = false; int SPAdj = 0; int Value = 0; // The instruction stream may change in the loop, so check BB->end() // directly. for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) { MachineInstr *MI = I; bool isDefInsn = false; bool isKillInsn = false; bool clobbersScratchReg = false; bool DoIncr = true; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { if (MI->getOperand(i).isReg()) { MachineOperand &MO = MI->getOperand(i); unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (!TargetRegisterInfo::isVirtualRegister(Reg)) { // If we have a previous scratch reg, check and see if anything // here kills whatever value is in there. if (Reg == CurrentScratchReg) { if (MO.isUse()) { // Two-address operands implicitly kill if (MO.isKill() || MI->isRegTiedToDefOperand(i)) clobbersScratchReg = true; } else { assert (MO.isDef()); clobbersScratchReg = true; } } continue; } // If this is a def, remember that this insn defines the value. // This lets us properly consider insns which re-use the scratch // register, such as r2 = sub r2, #imm, in the middle of the // scratch range. if (MO.isDef()) isDefInsn = true; // Have we already allocated a scratch register for this virtual? if (Reg != CurrentVirtReg) { // When we first encounter a new virtual register, it // must be a definition. assert(MI->getOperand(i).isDef() && "frame index virtual missing def!"); // We can't have nested virtual register live ranges because // there's only a guarantee of one scavenged register at a time. assert (CurrentVirtReg == 0 && "overlapping frame index virtual registers!"); // If the target gave us information about what's in the register, // we can use that to re-use scratch regs. DenseMap::iterator Entry = FrameConstantRegMap.find(Reg); trackingCurrentValue = Entry != FrameConstantRegMap.end(); if (trackingCurrentValue) { SPAdj = (*Entry).second.second; Value = (*Entry).second.first; } else SPAdj = Value = 0; // If the scratch register from the last allocation is still // available, see if the value matches. If it does, just re-use it. if (trackingCurrentValue && havePrevValue && PrevValue == Value) { // FIXME: This assumes that the instructions in the live range // for the virtual register are exclusively for the purpose // of populating the value in the register. That's reasonable // for these frame index registers, but it's still a very, very // strong assumption. rdar://7322732. Better would be to // explicitly check each instruction in the range for references // to the virtual register. Only delete those insns that // touch the virtual register. // Find the last use of the new virtual register. Remove all // instruction between here and there, and update the current // instruction to reference the last use insn instead. MachineBasicBlock::iterator LastUseMI = findLastUseReg(I, BB->end(), Reg); // Remove all instructions up 'til the last use, since they're // just calculating the value we already have. BB->erase(I, LastUseMI); MI = I = LastUseMI; // Extend the live range of the scratch register PrevLastUseMI->getOperand(PrevLastUseOp).setIsKill(false); RS->setUsed(CurrentScratchReg); CurrentVirtReg = Reg; // We deleted the instruction we were scanning the operands of. // Jump back to the instruction iterator loop. Don't increment // past this instruction since we updated the iterator already. DoIncr = false; break; } // Scavenge a new scratch register CurrentVirtReg = Reg; const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(Reg); CurrentScratchReg = RS->FindUnusedReg(RC); if (CurrentScratchReg == 0) // No register is "free". Scavenge a register. CurrentScratchReg = RS->scavengeRegister(RC, I, SPAdj); PrevValue = Value; } // replace this reference to the virtual register with the // scratch register. assert (CurrentScratchReg && "Missing scratch register!"); MI->getOperand(i).setReg(CurrentScratchReg); if (MI->getOperand(i).isKill()) { isKillInsn = true; PrevLastUseOp = i; PrevLastUseMI = MI; } } } // If this is the last use of the scratch, stop tracking it. The // last use will be a kill operand in an instruction that does // not also define the scratch register. if (isKillInsn && !isDefInsn) { CurrentVirtReg = 0; havePrevValue = trackingCurrentValue; } // Similarly, notice if instruction clobbered the value in the // register we're tracking for possible later reuse. This is noted // above, but enforced here since the value is still live while we // process the rest of the operands of the instruction. if (clobbersScratchReg) { havePrevValue = false; CurrentScratchReg = 0; } if (DoIncr) { RS->forward(I); ++I; } } } }