//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the MemorySSA class. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/MemorySSA.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CFGPrinter.h" #include "llvm/Analysis/IteratedDominanceFrontier.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/AssemblyAnnotationWriter.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Use.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "memoryssa" static cl::opt DotCFGMSSA("dot-cfg-mssa", cl::value_desc("file name for generated dot file"), cl::desc("file name for generated dot file"), cl::init("")); INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, true) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, true) INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", "Memory SSA Printer", false, false) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", "Memory SSA Printer", false, false) static cl::opt MaxCheckLimit( "memssa-check-limit", cl::Hidden, cl::init(100), cl::desc("The maximum number of stores/phis MemorySSA" "will consider trying to walk past (default = 100)")); // Always verify MemorySSA if expensive checking is enabled. #ifdef EXPENSIVE_CHECKS bool llvm::VerifyMemorySSA = true; #else bool llvm::VerifyMemorySSA = false; #endif /// Enables memory ssa as a dependency for loop passes in legacy pass manager. cl::opt llvm::EnableMSSALoopDependency( "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), cl::desc("Enable MemorySSA dependency for loop pass manager")); static cl::opt VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), cl::Hidden, cl::desc("Enable verification of MemorySSA.")); namespace llvm { /// An assembly annotator class to print Memory SSA information in /// comments. class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { friend class MemorySSA; const MemorySSA *MSSA; public: MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} void emitBasicBlockStartAnnot(const BasicBlock *BB, formatted_raw_ostream &OS) override { if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) OS << "; " << *MA << "\n"; } void emitInstructionAnnot(const Instruction *I, formatted_raw_ostream &OS) override { if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) OS << "; " << *MA << "\n"; } }; } // end namespace llvm namespace { /// Our current alias analysis API differentiates heavily between calls and /// non-calls, and functions called on one usually assert on the other. /// This class encapsulates the distinction to simplify other code that wants /// "Memory affecting instructions and related data" to use as a key. /// For example, this class is used as a densemap key in the use optimizer. class MemoryLocOrCall { public: bool IsCall = false; MemoryLocOrCall(MemoryUseOrDef *MUD) : MemoryLocOrCall(MUD->getMemoryInst()) {} MemoryLocOrCall(const MemoryUseOrDef *MUD) : MemoryLocOrCall(MUD->getMemoryInst()) {} MemoryLocOrCall(Instruction *Inst) { if (auto *C = dyn_cast(Inst)) { IsCall = true; Call = C; } else { IsCall = false; // There is no such thing as a memorylocation for a fence inst, and it is // unique in that regard. if (!isa(Inst)) Loc = MemoryLocation::get(Inst); } } explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} const CallBase *getCall() const { assert(IsCall); return Call; } MemoryLocation getLoc() const { assert(!IsCall); return Loc; } bool operator==(const MemoryLocOrCall &Other) const { if (IsCall != Other.IsCall) return false; if (!IsCall) return Loc == Other.Loc; if (Call->getCalledOperand() != Other.Call->getCalledOperand()) return false; return Call->arg_size() == Other.Call->arg_size() && std::equal(Call->arg_begin(), Call->arg_end(), Other.Call->arg_begin()); } private: union { const CallBase *Call; MemoryLocation Loc; }; }; } // end anonymous namespace namespace llvm { template <> struct DenseMapInfo { static inline MemoryLocOrCall getEmptyKey() { return MemoryLocOrCall(DenseMapInfo::getEmptyKey()); } static inline MemoryLocOrCall getTombstoneKey() { return MemoryLocOrCall(DenseMapInfo::getTombstoneKey()); } static unsigned getHashValue(const MemoryLocOrCall &MLOC) { if (!MLOC.IsCall) return hash_combine( MLOC.IsCall, DenseMapInfo::getHashValue(MLOC.getLoc())); hash_code hash = hash_combine(MLOC.IsCall, DenseMapInfo::getHashValue( MLOC.getCall()->getCalledOperand())); for (const Value *Arg : MLOC.getCall()->args()) hash = hash_combine(hash, DenseMapInfo::getHashValue(Arg)); return hash; } static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { return LHS == RHS; } }; } // end namespace llvm /// This does one-way checks to see if Use could theoretically be hoisted above /// MayClobber. This will not check the other way around. /// /// This assumes that, for the purposes of MemorySSA, Use comes directly after /// MayClobber, with no potentially clobbering operations in between them. /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) static bool areLoadsReorderable(const LoadInst *Use, const LoadInst *MayClobber) { bool VolatileUse = Use->isVolatile(); bool VolatileClobber = MayClobber->isVolatile(); // Volatile operations may never be reordered with other volatile operations. if (VolatileUse && VolatileClobber) return false; // Otherwise, volatile doesn't matter here. From the language reference: // 'optimizers may change the order of volatile operations relative to // non-volatile operations.'" // If a load is seq_cst, it cannot be moved above other loads. If its ordering // is weaker, it can be moved above other loads. We just need to be sure that // MayClobber isn't an acquire load, because loads can't be moved above // acquire loads. // // Note that this explicitly *does* allow the free reordering of monotonic (or // weaker) loads of the same address. bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), AtomicOrdering::Acquire); return !(SeqCstUse || MayClobberIsAcquire); } namespace { struct ClobberAlias { bool IsClobber; Optional AR; }; } // end anonymous namespace // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being // ignored if IsClobber = false. template static ClobberAlias instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, const Instruction *UseInst, AliasAnalysisType &AA) { Instruction *DefInst = MD->getMemoryInst(); assert(DefInst && "Defining instruction not actually an instruction"); Optional AR; if (const IntrinsicInst *II = dyn_cast(DefInst)) { // These intrinsics will show up as affecting memory, but they are just // markers, mostly. // // FIXME: We probably don't actually want MemorySSA to model these at all // (including creating MemoryAccesses for them): we just end up inventing // clobbers where they don't really exist at all. Please see D43269 for // context. switch (II->getIntrinsicID()) { case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::assume: case Intrinsic::experimental_noalias_scope_decl: return {false, NoAlias}; case Intrinsic::dbg_addr: case Intrinsic::dbg_declare: case Intrinsic::dbg_label: case Intrinsic::dbg_value: llvm_unreachable("debuginfo shouldn't have associated defs!"); default: break; } } if (auto *CB = dyn_cast_or_null(UseInst)) { ModRefInfo I = AA.getModRefInfo(DefInst, CB); AR = isMustSet(I) ? MustAlias : MayAlias; return {isModOrRefSet(I), AR}; } if (auto *DefLoad = dyn_cast(DefInst)) if (auto *UseLoad = dyn_cast_or_null(UseInst)) return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); AR = isMustSet(I) ? MustAlias : MayAlias; return {isModSet(I), AR}; } template static ClobberAlias instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, const MemoryLocOrCall &UseMLOC, AliasAnalysisType &AA) { // FIXME: This is a temporary hack to allow a single instructionClobbersQuery // to exist while MemoryLocOrCall is pushed through places. if (UseMLOC.IsCall) return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), AA); return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), AA); } // Return true when MD may alias MU, return false otherwise. bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, AliasAnalysis &AA) { return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; } namespace { struct UpwardsMemoryQuery { // True if our original query started off as a call bool IsCall = false; // The pointer location we started the query with. This will be empty if // IsCall is true. MemoryLocation StartingLoc; // This is the instruction we were querying about. const Instruction *Inst = nullptr; // The MemoryAccess we actually got called with, used to test local domination const MemoryAccess *OriginalAccess = nullptr; Optional AR = MayAlias; bool SkipSelfAccess = false; UpwardsMemoryQuery() = default; UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) : IsCall(isa(Inst)), Inst(Inst), OriginalAccess(Access) { if (!IsCall) StartingLoc = MemoryLocation::get(Inst); } }; } // end anonymous namespace template static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, const Instruction *I) { // If the memory can't be changed, then loads of the memory can't be // clobbered. if (auto *LI = dyn_cast(I)) return I->hasMetadata(LLVMContext::MD_invariant_load) || AA.pointsToConstantMemory(MemoryLocation::get(LI)); return false; } /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing /// inbetween `Start` and `ClobberAt` can clobbers `Start`. /// /// This is meant to be as simple and self-contained as possible. Because it /// uses no cache, etc., it can be relatively expensive. /// /// \param Start The MemoryAccess that we want to walk from. /// \param ClobberAt A clobber for Start. /// \param StartLoc The MemoryLocation for Start. /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. /// \param Query The UpwardsMemoryQuery we used for our search. /// \param AA The AliasAnalysis we used for our search. /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. template LLVM_ATTRIBUTE_UNUSED static void checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, const MemoryLocation &StartLoc, const MemorySSA &MSSA, const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, bool AllowImpreciseClobber = false) { assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); if (MSSA.isLiveOnEntryDef(Start)) { assert(MSSA.isLiveOnEntryDef(ClobberAt) && "liveOnEntry must clobber itself"); return; } bool FoundClobber = false; DenseSet VisitedPhis; SmallVector Worklist; Worklist.emplace_back(Start, StartLoc); // Walk all paths from Start to ClobberAt, while looking for clobbers. If one // is found, complain. while (!Worklist.empty()) { auto MAP = Worklist.pop_back_val(); // All we care about is that nothing from Start to ClobberAt clobbers Start. // We learn nothing from revisiting nodes. if (!VisitedPhis.insert(MAP).second) continue; for (const auto *MA : def_chain(MAP.first)) { if (MA == ClobberAt) { if (const auto *MD = dyn_cast(MA)) { // instructionClobbersQuery isn't essentially free, so don't use `|=`, // since it won't let us short-circuit. // // Also, note that this can't be hoisted out of the `Worklist` loop, // since MD may only act as a clobber for 1 of N MemoryLocations. FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); if (!FoundClobber) { ClobberAlias CA = instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); if (CA.IsClobber) { FoundClobber = true; // Not used: CA.AR; } } } break; } // We should never hit liveOnEntry, unless it's the clobber. assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); if (const auto *MD = dyn_cast(MA)) { // If Start is a Def, skip self. if (MD == Start) continue; assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) .IsClobber && "Found clobber before reaching ClobberAt!"); continue; } if (const auto *MU = dyn_cast(MA)) { (void)MU; assert (MU == Start && "Can only find use in def chain if Start is a use"); continue; } assert(isa(MA)); // Add reachable phi predecessors for (auto ItB = upward_defs_begin( {const_cast(MA), MAP.second}, MSSA.getDomTree()), ItE = upward_defs_end(); ItB != ItE; ++ItB) if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) Worklist.emplace_back(*ItB); } } // If the verify is done following an optimization, it's possible that // ClobberAt was a conservative clobbering, that we can now infer is not a // true clobbering access. Don't fail the verify if that's the case. // We do have accesses that claim they're optimized, but could be optimized // further. Updating all these can be expensive, so allow it for now (FIXME). if (AllowImpreciseClobber) return; // If ClobberAt is a MemoryPhi, we can assume something above it acted as a // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. assert((isa(ClobberAt) || FoundClobber) && "ClobberAt never acted as a clobber"); } namespace { /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up /// in one class. template class ClobberWalker { /// Save a few bytes by using unsigned instead of size_t. using ListIndex = unsigned; /// Represents a span of contiguous MemoryDefs, potentially ending in a /// MemoryPhi. struct DefPath { MemoryLocation Loc; // Note that, because we always walk in reverse, Last will always dominate // First. Also note that First and Last are inclusive. MemoryAccess *First; MemoryAccess *Last; Optional Previous; DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, Optional Previous) : Loc(Loc), First(First), Last(Last), Previous(Previous) {} DefPath(const MemoryLocation &Loc, MemoryAccess *Init, Optional Previous) : DefPath(Loc, Init, Init, Previous) {} }; const MemorySSA &MSSA; AliasAnalysisType &AA; DominatorTree &DT; UpwardsMemoryQuery *Query; unsigned *UpwardWalkLimit; // Phi optimization bookkeeping: // List of DefPath to process during the current phi optimization walk. SmallVector Paths; // List of visited pairs; we can skip paths already // visited with the same memory location. DenseSet VisitedPhis; // Record if phi translation has been performed during the current phi // optimization walk, as merging alias results after phi translation can // yield incorrect results. Context in PR46156. bool PerformedPhiTranslation = false; /// Find the nearest def or phi that `From` can legally be optimized to. const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { assert(From->getNumOperands() && "Phi with no operands?"); BasicBlock *BB = From->getBlock(); MemoryAccess *Result = MSSA.getLiveOnEntryDef(); DomTreeNode *Node = DT.getNode(BB); while ((Node = Node->getIDom())) { auto *Defs = MSSA.getBlockDefs(Node->getBlock()); if (Defs) return &*Defs->rbegin(); } return Result; } /// Result of calling walkToPhiOrClobber. struct UpwardsWalkResult { /// The "Result" of the walk. Either a clobber, the last thing we walked, or /// both. Include alias info when clobber found. MemoryAccess *Result; bool IsKnownClobber; Optional AR; }; /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. /// This will update Desc.Last as it walks. It will (optionally) also stop at /// StopAt. /// /// This does not test for whether StopAt is a clobber UpwardsWalkResult walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, const MemoryAccess *SkipStopAt = nullptr) const { assert(!isa(Desc.Last) && "Uses don't exist in my world"); assert(UpwardWalkLimit && "Need a valid walk limit"); bool LimitAlreadyReached = false; // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set // it to 1. This will not do any alias() calls. It either returns in the // first iteration in the loop below, or is set back to 0 if all def chains // are free of MemoryDefs. if (!*UpwardWalkLimit) { *UpwardWalkLimit = 1; LimitAlreadyReached = true; } for (MemoryAccess *Current : def_chain(Desc.Last)) { Desc.Last = Current; if (Current == StopAt || Current == SkipStopAt) return {Current, false, MayAlias}; if (auto *MD = dyn_cast(Current)) { if (MSSA.isLiveOnEntryDef(MD)) return {MD, true, MustAlias}; if (!--*UpwardWalkLimit) return {Current, true, MayAlias}; ClobberAlias CA = instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); if (CA.IsClobber) return {MD, true, CA.AR}; } } if (LimitAlreadyReached) *UpwardWalkLimit = 0; assert(isa(Desc.Last) && "Ended at a non-clobber that's not a phi?"); return {Desc.Last, false, MayAlias}; } void addSearches(MemoryPhi *Phi, SmallVectorImpl &PausedSearches, ListIndex PriorNode) { auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, &PerformedPhiTranslation); auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); for (const MemoryAccessPair &P : UpwardDefs) { PausedSearches.push_back(Paths.size()); Paths.emplace_back(P.second, P.first, PriorNode); } } /// Represents a search that terminated after finding a clobber. This clobber /// may or may not be present in the path of defs from LastNode..SearchStart, /// since it may have been retrieved from cache. struct TerminatedPath { MemoryAccess *Clobber; ListIndex LastNode; }; /// Get an access that keeps us from optimizing to the given phi. /// /// PausedSearches is an array of indices into the Paths array. Its incoming /// value is the indices of searches that stopped at the last phi optimization /// target. It's left in an unspecified state. /// /// If this returns None, NewPaused is a vector of searches that terminated /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. Optional getBlockingAccess(const MemoryAccess *StopWhere, SmallVectorImpl &PausedSearches, SmallVectorImpl &NewPaused, SmallVectorImpl &Terminated) { assert(!PausedSearches.empty() && "No searches to continue?"); // BFS vs DFS really doesn't make a difference here, so just do a DFS with // PausedSearches as our stack. while (!PausedSearches.empty()) { ListIndex PathIndex = PausedSearches.pop_back_val(); DefPath &Node = Paths[PathIndex]; // If we've already visited this path with this MemoryLocation, we don't // need to do so again. // // NOTE: That we just drop these paths on the ground makes caching // behavior sporadic. e.g. given a diamond: // A // B C // D // // ...If we walk D, B, A, C, we'll only cache the result of phi // optimization for A, B, and D; C will be skipped because it dies here. // This arguably isn't the worst thing ever, since: // - We generally query things in a top-down order, so if we got below D // without needing cache entries for {C, MemLoc}, then chances are // that those cache entries would end up ultimately unused. // - We still cache things for A, so C only needs to walk up a bit. // If this behavior becomes problematic, we can fix without a ton of extra // work. if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { if (PerformedPhiTranslation) { // If visiting this path performed Phi translation, don't continue, // since it may not be correct to merge results from two paths if one // relies on the phi translation. TerminatedPath Term{Node.Last, PathIndex}; return Term; } continue; } const MemoryAccess *SkipStopWhere = nullptr; if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { assert(isa(Query->OriginalAccess)); SkipStopWhere = Query->OriginalAccess; } UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere, /*SkipStopAt=*/SkipStopWhere); if (Res.IsKnownClobber) { assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); // If this wasn't a cache hit, we hit a clobber when walking. That's a // failure. TerminatedPath Term{Res.Result, PathIndex}; if (!MSSA.dominates(Res.Result, StopWhere)) return Term; // Otherwise, it's a valid thing to potentially optimize to. Terminated.push_back(Term); continue; } if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { // We've hit our target. Save this path off for if we want to continue // walking. If we are in the mode of skipping the OriginalAccess, and // we've reached back to the OriginalAccess, do not save path, we've // just looped back to self. if (Res.Result != SkipStopWhere) NewPaused.push_back(PathIndex); continue; } assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); addSearches(cast(Res.Result), PausedSearches, PathIndex); } return None; } template struct generic_def_path_iterator : public iterator_facade_base, std::forward_iterator_tag, T *> { generic_def_path_iterator() {} generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} T &operator*() const { return curNode(); } generic_def_path_iterator &operator++() { N = curNode().Previous; return *this; } bool operator==(const generic_def_path_iterator &O) const { if (N.hasValue() != O.N.hasValue()) return false; return !N.hasValue() || *N == *O.N; } private: T &curNode() const { return W->Paths[*N]; } Walker *W = nullptr; Optional N = None; }; using def_path_iterator = generic_def_path_iterator; using const_def_path_iterator = generic_def_path_iterator; iterator_range def_path(ListIndex From) { return make_range(def_path_iterator(this, From), def_path_iterator()); } iterator_range const_def_path(ListIndex From) const { return make_range(const_def_path_iterator(this, From), const_def_path_iterator()); } struct OptznResult { /// The path that contains our result. TerminatedPath PrimaryClobber; /// The paths that we can legally cache back from, but that aren't /// necessarily the result of the Phi optimization. SmallVector OtherClobbers; }; ListIndex defPathIndex(const DefPath &N) const { // The assert looks nicer if we don't need to do &N const DefPath *NP = &N; assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && "Out of bounds DefPath!"); return NP - &Paths.front(); } /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths /// that act as legal clobbers. Note that this won't return *all* clobbers. /// /// Phi optimization algorithm tl;dr: /// - Find the earliest def/phi, A, we can optimize to /// - Find if all paths from the starting memory access ultimately reach A /// - If not, optimization isn't possible. /// - Otherwise, walk from A to another clobber or phi, A'. /// - If A' is a def, we're done. /// - If A' is a phi, try to optimize it. /// /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, const MemoryLocation &Loc) { assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && "Reset the optimization state."); Paths.emplace_back(Loc, Start, Phi, None); // Stores how many "valid" optimization nodes we had prior to calling // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. auto PriorPathsSize = Paths.size(); SmallVector PausedSearches; SmallVector NewPaused; SmallVector TerminatedPaths; addSearches(Phi, PausedSearches, 0); // Moves the TerminatedPath with the "most dominated" Clobber to the end of // Paths. auto MoveDominatedPathToEnd = [&](SmallVectorImpl &Paths) { assert(!Paths.empty() && "Need a path to move"); auto Dom = Paths.begin(); for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) if (!MSSA.dominates(I->Clobber, Dom->Clobber)) Dom = I; auto Last = Paths.end() - 1; if (Last != Dom) std::iter_swap(Last, Dom); }; MemoryPhi *Current = Phi; while (true) { assert(!MSSA.isLiveOnEntryDef(Current) && "liveOnEntry wasn't treated as a clobber?"); const auto *Target = getWalkTarget(Current); // If a TerminatedPath doesn't dominate Target, then it wasn't a legal // optimization for the prior phi. assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { return MSSA.dominates(P.Clobber, Target); })); // FIXME: This is broken, because the Blocker may be reported to be // liveOnEntry, and we'll happily wait for that to disappear (read: never) // For the moment, this is fine, since we do nothing with blocker info. if (Optional Blocker = getBlockingAccess( Target, PausedSearches, NewPaused, TerminatedPaths)) { // Find the node we started at. We can't search based on N->Last, since // we may have gone around a loop with a different MemoryLocation. auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { return defPathIndex(N) < PriorPathsSize; }); assert(Iter != def_path_iterator()); DefPath &CurNode = *Iter; assert(CurNode.Last == Current); // Two things: // A. We can't reliably cache all of NewPaused back. Consider a case // where we have two paths in NewPaused; one of which can't optimize // above this phi, whereas the other can. If we cache the second path // back, we'll end up with suboptimal cache entries. We can handle // cases like this a bit better when we either try to find all // clobbers that block phi optimization, or when our cache starts // supporting unfinished searches. // B. We can't reliably cache TerminatedPaths back here without doing // extra checks; consider a case like: // T // / \ // D C // \ / // S // Where T is our target, C is a node with a clobber on it, D is a // diamond (with a clobber *only* on the left or right node, N), and // S is our start. Say we walk to D, through the node opposite N // (read: ignoring the clobber), and see a cache entry in the top // node of D. That cache entry gets put into TerminatedPaths. We then // walk up to C (N is later in our worklist), find the clobber, and // quit. If we append TerminatedPaths to OtherClobbers, we'll cache // the bottom part of D to the cached clobber, ignoring the clobber // in N. Again, this problem goes away if we start tracking all // blockers for a given phi optimization. TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; return {Result, {}}; } // If there's nothing left to search, then all paths led to valid clobbers // that we got from our cache; pick the nearest to the start, and allow // the rest to be cached back. if (NewPaused.empty()) { MoveDominatedPathToEnd(TerminatedPaths); TerminatedPath Result = TerminatedPaths.pop_back_val(); return {Result, std::move(TerminatedPaths)}; } MemoryAccess *DefChainEnd = nullptr; SmallVector Clobbers; for (ListIndex Paused : NewPaused) { UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); if (WR.IsKnownClobber) Clobbers.push_back({WR.Result, Paused}); else // Micro-opt: If we hit the end of the chain, save it. DefChainEnd = WR.Result; } if (!TerminatedPaths.empty()) { // If we couldn't find the dominating phi/liveOnEntry in the above loop, // do it now. if (!DefChainEnd) for (auto *MA : def_chain(const_cast(Target))) DefChainEnd = MA; assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); // If any of the terminated paths don't dominate the phi we'll try to // optimize, we need to figure out what they are and quit. const BasicBlock *ChainBB = DefChainEnd->getBlock(); for (const TerminatedPath &TP : TerminatedPaths) { // Because we know that DefChainEnd is as "high" as we can go, we // don't need local dominance checks; BB dominance is sufficient. if (DT.dominates(ChainBB, TP.Clobber->getBlock())) Clobbers.push_back(TP); } } // If we have clobbers in the def chain, find the one closest to Current // and quit. if (!Clobbers.empty()) { MoveDominatedPathToEnd(Clobbers); TerminatedPath Result = Clobbers.pop_back_val(); return {Result, std::move(Clobbers)}; } assert(all_of(NewPaused, [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); // Because liveOnEntry is a clobber, this must be a phi. auto *DefChainPhi = cast(DefChainEnd); PriorPathsSize = Paths.size(); PausedSearches.clear(); for (ListIndex I : NewPaused) addSearches(DefChainPhi, PausedSearches, I); NewPaused.clear(); Current = DefChainPhi; } } void verifyOptResult(const OptznResult &R) const { assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); })); } void resetPhiOptznState() { Paths.clear(); VisitedPhis.clear(); PerformedPhiTranslation = false; } public: ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) : MSSA(MSSA), AA(AA), DT(DT) {} AliasAnalysisType *getAA() { return &AA; } /// Finds the nearest clobber for the given query, optimizing phis if /// possible. MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, unsigned &UpWalkLimit) { Query = &Q; UpwardWalkLimit = &UpWalkLimit; // Starting limit must be > 0. if (!UpWalkLimit) UpWalkLimit++; MemoryAccess *Current = Start; // This walker pretends uses don't exist. If we're handed one, silently grab // its def. (This has the nice side-effect of ensuring we never cache uses) if (auto *MU = dyn_cast(Start)) Current = MU->getDefiningAccess(); DefPath FirstDesc(Q.StartingLoc, Current, Current, None); // Fast path for the overly-common case (no crazy phi optimization // necessary) UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); MemoryAccess *Result; if (WalkResult.IsKnownClobber) { Result = WalkResult.Result; Q.AR = WalkResult.AR; } else { OptznResult OptRes = tryOptimizePhi(cast(FirstDesc.Last), Current, Q.StartingLoc); verifyOptResult(OptRes); resetPhiOptznState(); Result = OptRes.PrimaryClobber.Clobber; } #ifdef EXPENSIVE_CHECKS if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); #endif return Result; } }; struct RenamePassData { DomTreeNode *DTN; DomTreeNode::const_iterator ChildIt; MemoryAccess *IncomingVal; RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, MemoryAccess *M) : DTN(D), ChildIt(It), IncomingVal(M) {} void swap(RenamePassData &RHS) { std::swap(DTN, RHS.DTN); std::swap(ChildIt, RHS.ChildIt); std::swap(IncomingVal, RHS.IncomingVal); } }; } // end anonymous namespace namespace llvm { template class MemorySSA::ClobberWalkerBase { ClobberWalker Walker; MemorySSA *MSSA; public: ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) : Walker(*M, *A, *D), MSSA(M) {} MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, const MemoryLocation &, unsigned &); // Third argument (bool), defines whether the clobber search should skip the // original queried access. If true, there will be a follow-up query searching // for a clobber access past "self". Note that the Optimized access is not // updated if a new clobber is found by this SkipSelf search. If this // additional query becomes heavily used we may decide to cache the result. // Walker instantiations will decide how to set the SkipSelf bool. MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); }; /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no /// longer does caching on its own, but the name has been retained for the /// moment. template class MemorySSA::CachingWalker final : public MemorySSAWalker { ClobberWalkerBase *Walker; public: CachingWalker(MemorySSA *M, ClobberWalkerBase *W) : MemorySSAWalker(M), Walker(W) {} ~CachingWalker() override = default; using MemorySSAWalker::getClobberingMemoryAccess; MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { return Walker->getClobberingMemoryAccessBase(MA, UWL, false); } MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, const MemoryLocation &Loc, unsigned &UWL) { return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); } MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { unsigned UpwardWalkLimit = MaxCheckLimit; return getClobberingMemoryAccess(MA, UpwardWalkLimit); } MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, const MemoryLocation &Loc) override { unsigned UpwardWalkLimit = MaxCheckLimit; return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); } void invalidateInfo(MemoryAccess *MA) override { if (auto *MUD = dyn_cast(MA)) MUD->resetOptimized(); } }; template class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { ClobberWalkerBase *Walker; public: SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W) : MemorySSAWalker(M), Walker(W) {} ~SkipSelfWalker() override = default; using MemorySSAWalker::getClobberingMemoryAccess; MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { return Walker->getClobberingMemoryAccessBase(MA, UWL, true); } MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, const MemoryLocation &Loc, unsigned &UWL) { return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); } MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { unsigned UpwardWalkLimit = MaxCheckLimit; return getClobberingMemoryAccess(MA, UpwardWalkLimit); } MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, const MemoryLocation &Loc) override { unsigned UpwardWalkLimit = MaxCheckLimit; return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); } void invalidateInfo(MemoryAccess *MA) override { if (auto *MUD = dyn_cast(MA)) MUD->resetOptimized(); } }; } // end namespace llvm void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, bool RenameAllUses) { // Pass through values to our successors for (const BasicBlock *S : successors(BB)) { auto It = PerBlockAccesses.find(S); // Rename the phi nodes in our successor block if (It == PerBlockAccesses.end() || !isa(It->second->front())) continue; AccessList *Accesses = It->second.get(); auto *Phi = cast(&Accesses->front()); if (RenameAllUses) { bool ReplacementDone = false; for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) if (Phi->getIncomingBlock(I) == BB) { Phi->setIncomingValue(I, IncomingVal); ReplacementDone = true; } (void) ReplacementDone; assert(ReplacementDone && "Incomplete phi during partial rename"); } else Phi->addIncoming(IncomingVal, BB); } } /// Rename a single basic block into MemorySSA form. /// Uses the standard SSA renaming algorithm. /// \returns The new incoming value. MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, bool RenameAllUses) { auto It = PerBlockAccesses.find(BB); // Skip most processing if the list is empty. if (It != PerBlockAccesses.end()) { AccessList *Accesses = It->second.get(); for (MemoryAccess &L : *Accesses) { if (MemoryUseOrDef *MUD = dyn_cast(&L)) { if (MUD->getDefiningAccess() == nullptr || RenameAllUses) MUD->setDefiningAccess(IncomingVal); if (isa(&L)) IncomingVal = &L; } else { IncomingVal = &L; } } } return IncomingVal; } /// This is the standard SSA renaming algorithm. /// /// We walk the dominator tree in preorder, renaming accesses, and then filling /// in phi nodes in our successors. void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, SmallPtrSetImpl &Visited, bool SkipVisited, bool RenameAllUses) { assert(Root && "Trying to rename accesses in an unreachable block"); SmallVector WorkStack; // Skip everything if we already renamed this block and we are skipping. // Note: You can't sink this into the if, because we need it to occur // regardless of whether we skip blocks or not. bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; if (SkipVisited && AlreadyVisited) return; IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); WorkStack.push_back({Root, Root->begin(), IncomingVal}); while (!WorkStack.empty()) { DomTreeNode *Node = WorkStack.back().DTN; DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; IncomingVal = WorkStack.back().IncomingVal; if (ChildIt == Node->end()) { WorkStack.pop_back(); } else { DomTreeNode *Child = *ChildIt; ++WorkStack.back().ChildIt; BasicBlock *BB = Child->getBlock(); // Note: You can't sink this into the if, because we need it to occur // regardless of whether we skip blocks or not. AlreadyVisited = !Visited.insert(BB).second; if (SkipVisited && AlreadyVisited) { // We already visited this during our renaming, which can happen when // being asked to rename multiple blocks. Figure out the incoming val, // which is the last def. // Incoming value can only change if there is a block def, and in that // case, it's the last block def in the list. if (auto *BlockDefs = getWritableBlockDefs(BB)) IncomingVal = &*BlockDefs->rbegin(); } else IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); renameSuccessorPhis(BB, IncomingVal, RenameAllUses); WorkStack.push_back({Child, Child->begin(), IncomingVal}); } } } /// This handles unreachable block accesses by deleting phi nodes in /// unreachable blocks, and marking all other unreachable MemoryAccess's as /// being uses of the live on entry definition. void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { assert(!DT->isReachableFromEntry(BB) && "Reachable block found while handling unreachable blocks"); // Make sure phi nodes in our reachable successors end up with a // LiveOnEntryDef for our incoming edge, even though our block is forward // unreachable. We could just disconnect these blocks from the CFG fully, // but we do not right now. for (const BasicBlock *S : successors(BB)) { if (!DT->isReachableFromEntry(S)) continue; auto It = PerBlockAccesses.find(S); // Rename the phi nodes in our successor block if (It == PerBlockAccesses.end() || !isa(It->second->front())) continue; AccessList *Accesses = It->second.get(); auto *Phi = cast(&Accesses->front()); Phi->addIncoming(LiveOnEntryDef.get(), BB); } auto It = PerBlockAccesses.find(BB); if (It == PerBlockAccesses.end()) return; auto &Accesses = It->second; for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { auto Next = std::next(AI); // If we have a phi, just remove it. We are going to replace all // users with live on entry. if (auto *UseOrDef = dyn_cast(AI)) UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); else Accesses->erase(AI); AI = Next; } } MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), SkipWalker(nullptr), NextID(0) { // Build MemorySSA using a batch alias analysis. This reuses the internal // state that AA collects during an alias()/getModRefInfo() call. This is // safe because there are no CFG changes while building MemorySSA and can // significantly reduce the time spent by the compiler in AA, because we will // make queries about all the instructions in the Function. assert(AA && "No alias analysis?"); BatchAAResults BatchAA(*AA); buildMemorySSA(BatchAA); // Intentionally leave AA to nullptr while building so we don't accidently // use non-batch AliasAnalysis. this->AA = AA; // Also create the walker here. getWalker(); } MemorySSA::~MemorySSA() { // Drop all our references for (const auto &Pair : PerBlockAccesses) for (MemoryAccess &MA : *Pair.second) MA.dropAllReferences(); } MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); if (Res.second) Res.first->second = std::make_unique(); return Res.first->second.get(); } MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); if (Res.second) Res.first->second = std::make_unique(); return Res.first->second.get(); } namespace llvm { /// This class is a batch walker of all MemoryUse's in the program, and points /// their defining access at the thing that actually clobbers them. Because it /// is a batch walker that touches everything, it does not operate like the /// other walkers. This walker is basically performing a top-down SSA renaming /// pass, where the version stack is used as the cache. This enables it to be /// significantly more time and memory efficient than using the regular walker, /// which is walking bottom-up. class MemorySSA::OptimizeUses { public: OptimizeUses(MemorySSA *MSSA, CachingWalker *Walker, BatchAAResults *BAA, DominatorTree *DT) : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} void optimizeUses(); private: /// This represents where a given memorylocation is in the stack. struct MemlocStackInfo { // This essentially is keeping track of versions of the stack. Whenever // the stack changes due to pushes or pops, these versions increase. unsigned long StackEpoch; unsigned long PopEpoch; // This is the lower bound of places on the stack to check. It is equal to // the place the last stack walk ended. // Note: Correctness depends on this being initialized to 0, which densemap // does unsigned long LowerBound; const BasicBlock *LowerBoundBlock; // This is where the last walk for this memory location ended. unsigned long LastKill; bool LastKillValid; Optional AR; }; void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, SmallVectorImpl &, DenseMap &); MemorySSA *MSSA; CachingWalker *Walker; BatchAAResults *AA; DominatorTree *DT; }; } // end namespace llvm /// Optimize the uses in a given block This is basically the SSA renaming /// algorithm, with one caveat: We are able to use a single stack for all /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just /// going to be some position in that stack of possible ones. /// /// We track the stack positions that each MemoryLocation needs /// to check, and last ended at. This is because we only want to check the /// things that changed since last time. The same MemoryLocation should /// get clobbered by the same store (getModRefInfo does not use invariantness or /// things like this, and if they start, we can modify MemoryLocOrCall to /// include relevant data) void MemorySSA::OptimizeUses::optimizeUsesInBlock( const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, SmallVectorImpl &VersionStack, DenseMap &LocStackInfo) { /// If no accesses, nothing to do. MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); if (Accesses == nullptr) return; // Pop everything that doesn't dominate the current block off the stack, // increment the PopEpoch to account for this. while (true) { assert( !VersionStack.empty() && "Version stack should have liveOnEntry sentinel dominating everything"); BasicBlock *BackBlock = VersionStack.back()->getBlock(); if (DT->dominates(BackBlock, BB)) break; while (VersionStack.back()->getBlock() == BackBlock) VersionStack.pop_back(); ++PopEpoch; } for (MemoryAccess &MA : *Accesses) { auto *MU = dyn_cast(&MA); if (!MU) { VersionStack.push_back(&MA); ++StackEpoch; continue; } if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); continue; } MemoryLocOrCall UseMLOC(MU); auto &LocInfo = LocStackInfo[UseMLOC]; // If the pop epoch changed, it means we've removed stuff from top of // stack due to changing blocks. We may have to reset the lower bound or // last kill info. if (LocInfo.PopEpoch != PopEpoch) { LocInfo.PopEpoch = PopEpoch; LocInfo.StackEpoch = StackEpoch; // If the lower bound was in something that no longer dominates us, we // have to reset it. // We can't simply track stack size, because the stack may have had // pushes/pops in the meantime. // XXX: This is non-optimal, but only is slower cases with heavily // branching dominator trees. To get the optimal number of queries would // be to make lowerbound and lastkill a per-loc stack, and pop it until // the top of that stack dominates us. This does not seem worth it ATM. // A much cheaper optimization would be to always explore the deepest // branch of the dominator tree first. This will guarantee this resets on // the smallest set of blocks. if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && !DT->dominates(LocInfo.LowerBoundBlock, BB)) { // Reset the lower bound of things to check. // TODO: Some day we should be able to reset to last kill, rather than // 0. LocInfo.LowerBound = 0; LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); LocInfo.LastKillValid = false; } } else if (LocInfo.StackEpoch != StackEpoch) { // If all that has changed is the StackEpoch, we only have to check the // new things on the stack, because we've checked everything before. In // this case, the lower bound of things to check remains the same. LocInfo.PopEpoch = PopEpoch; LocInfo.StackEpoch = StackEpoch; } if (!LocInfo.LastKillValid) { LocInfo.LastKill = VersionStack.size() - 1; LocInfo.LastKillValid = true; LocInfo.AR = MayAlias; } // At this point, we should have corrected last kill and LowerBound to be // in bounds. assert(LocInfo.LowerBound < VersionStack.size() && "Lower bound out of range"); assert(LocInfo.LastKill < VersionStack.size() && "Last kill info out of range"); // In any case, the new upper bound is the top of the stack. unsigned long UpperBound = VersionStack.size() - 1; if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" << *(MU->getMemoryInst()) << ")" << " because there are " << UpperBound - LocInfo.LowerBound << " stores to disambiguate\n"); // Because we did not walk, LastKill is no longer valid, as this may // have been a kill. LocInfo.LastKillValid = false; continue; } bool FoundClobberResult = false; unsigned UpwardWalkLimit = MaxCheckLimit; while (UpperBound > LocInfo.LowerBound) { if (isa(VersionStack[UpperBound])) { // For phis, use the walker, see where we ended up, go there MemoryAccess *Result = Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); // We are guaranteed to find it or something is wrong while (VersionStack[UpperBound] != Result) { assert(UpperBound != 0); --UpperBound; } FoundClobberResult = true; break; } MemoryDef *MD = cast(VersionStack[UpperBound]); ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); if (CA.IsClobber) { FoundClobberResult = true; LocInfo.AR = CA.AR; break; } --UpperBound; } // Note: Phis always have AliasResult AR set to MayAlias ATM. // At the end of this loop, UpperBound is either a clobber, or lower bound // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. if (FoundClobberResult || UpperBound < LocInfo.LastKill) { // We were last killed now by where we got to if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) LocInfo.AR = None; MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); LocInfo.LastKill = UpperBound; } else { // Otherwise, we checked all the new ones, and now we know we can get to // LastKill. MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); } LocInfo.LowerBound = VersionStack.size() - 1; LocInfo.LowerBoundBlock = BB; } } /// Optimize uses to point to their actual clobbering definitions. void MemorySSA::OptimizeUses::optimizeUses() { SmallVector VersionStack; DenseMap LocStackInfo; VersionStack.push_back(MSSA->getLiveOnEntryDef()); unsigned long StackEpoch = 1; unsigned long PopEpoch = 1; // We perform a non-recursive top-down dominator tree walk. for (const auto *DomNode : depth_first(DT->getRootNode())) optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, LocStackInfo); } void MemorySSA::placePHINodes( const SmallPtrSetImpl &DefiningBlocks) { // Determine where our MemoryPhi's should go ForwardIDFCalculator IDFs(*DT); IDFs.setDefiningBlocks(DefiningBlocks); SmallVector IDFBlocks; IDFs.calculate(IDFBlocks); // Now place MemoryPhi nodes. for (auto &BB : IDFBlocks) createMemoryPhi(BB); } void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { // We create an access to represent "live on entry", for things like // arguments or users of globals, where the memory they use is defined before // the beginning of the function. We do not actually insert it into the IR. // We do not define a live on exit for the immediate uses, and thus our // semantics do *not* imply that something with no immediate uses can simply // be removed. BasicBlock &StartingPoint = F.getEntryBlock(); LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, &StartingPoint, NextID++)); // We maintain lists of memory accesses per-block, trading memory for time. We // could just look up the memory access for every possible instruction in the // stream. SmallPtrSet DefiningBlocks; // Go through each block, figure out where defs occur, and chain together all // the accesses. for (BasicBlock &B : F) { bool InsertIntoDef = false; AccessList *Accesses = nullptr; DefsList *Defs = nullptr; for (Instruction &I : B) { MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); if (!MUD) continue; if (!Accesses) Accesses = getOrCreateAccessList(&B); Accesses->push_back(MUD); if (isa(MUD)) { InsertIntoDef = true; if (!Defs) Defs = getOrCreateDefsList(&B); Defs->push_back(*MUD); } } if (InsertIntoDef) DefiningBlocks.insert(&B); } placePHINodes(DefiningBlocks); // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get // filled in with all blocks. SmallPtrSet Visited; renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); ClobberWalkerBase WalkerBase(this, &BAA, DT); CachingWalker WalkerLocal(this, &WalkerBase); OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); // Mark the uses in unreachable blocks as live on entry, so that they go // somewhere. for (auto &BB : F) if (!Visited.count(&BB)) markUnreachableAsLiveOnEntry(&BB); } MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { if (Walker) return Walker.get(); if (!WalkerBase) WalkerBase = std::make_unique>(this, AA, DT); Walker = std::make_unique>(this, WalkerBase.get()); return Walker.get(); } MemorySSAWalker *MemorySSA::getSkipSelfWalker() { if (SkipWalker) return SkipWalker.get(); if (!WalkerBase) WalkerBase = std::make_unique>(this, AA, DT); SkipWalker = std::make_unique>(this, WalkerBase.get()); return SkipWalker.get(); } // This is a helper function used by the creation routines. It places NewAccess // into the access and defs lists for a given basic block, at the given // insertion point. void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, const BasicBlock *BB, InsertionPlace Point) { auto *Accesses = getOrCreateAccessList(BB); if (Point == Beginning) { // If it's a phi node, it goes first, otherwise, it goes after any phi // nodes. if (isa(NewAccess)) { Accesses->push_front(NewAccess); auto *Defs = getOrCreateDefsList(BB); Defs->push_front(*NewAccess); } else { auto AI = find_if_not( *Accesses, [](const MemoryAccess &MA) { return isa(MA); }); Accesses->insert(AI, NewAccess); if (!isa(NewAccess)) { auto *Defs = getOrCreateDefsList(BB); auto DI = find_if_not( *Defs, [](const MemoryAccess &MA) { return isa(MA); }); Defs->insert(DI, *NewAccess); } } } else { Accesses->push_back(NewAccess); if (!isa(NewAccess)) { auto *Defs = getOrCreateDefsList(BB); Defs->push_back(*NewAccess); } } BlockNumberingValid.erase(BB); } void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, AccessList::iterator InsertPt) { auto *Accesses = getWritableBlockAccesses(BB); bool WasEnd = InsertPt == Accesses->end(); Accesses->insert(AccessList::iterator(InsertPt), What); if (!isa(What)) { auto *Defs = getOrCreateDefsList(BB); // If we got asked to insert at the end, we have an easy job, just shove it // at the end. If we got asked to insert before an existing def, we also get // an iterator. If we got asked to insert before a use, we have to hunt for // the next def. if (WasEnd) { Defs->push_back(*What); } else if (isa(InsertPt)) { Defs->insert(InsertPt->getDefsIterator(), *What); } else { while (InsertPt != Accesses->end() && !isa(InsertPt)) ++InsertPt; // Either we found a def, or we are inserting at the end if (InsertPt == Accesses->end()) Defs->push_back(*What); else Defs->insert(InsertPt->getDefsIterator(), *What); } } BlockNumberingValid.erase(BB); } void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { // Keep it in the lookup tables, remove from the lists removeFromLists(What, false); // Note that moving should implicitly invalidate the optimized state of a // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a // MemoryDef. if (auto *MD = dyn_cast(What)) MD->resetOptimized(); What->setBlock(BB); } // Move What before Where in the IR. The end result is that What will belong to // the right lists and have the right Block set, but will not otherwise be // correct. It will not have the right defining access, and if it is a def, // things below it will not properly be updated. void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where) { prepareForMoveTo(What, BB); insertIntoListsBefore(What, BB, Where); } void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point) { if (isa(What)) { assert(Point == Beginning && "Can only move a Phi at the beginning of the block"); // Update lookup table entry ValueToMemoryAccess.erase(What->getBlock()); bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; (void)Inserted; assert(Inserted && "Cannot move a Phi to a block that already has one"); } prepareForMoveTo(What, BB); insertIntoListsForBlock(What, BB, Point); } MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); // Phi's always are placed at the front of the block. insertIntoListsForBlock(Phi, BB, Beginning); ValueToMemoryAccess[BB] = Phi; return Phi; } MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, MemoryAccess *Definition, const MemoryUseOrDef *Template, bool CreationMustSucceed) { assert(!isa(I) && "Cannot create a defined access for a PHI"); MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); if (CreationMustSucceed) assert(NewAccess != nullptr && "Tried to create a memory access for a " "non-memory touching instruction"); if (NewAccess) { assert((!Definition || !isa(Definition)) && "A use cannot be a defining access"); NewAccess->setDefiningAccess(Definition); } return NewAccess; } // Return true if the instruction has ordering constraints. // Note specifically that this only considers stores and loads // because others are still considered ModRef by getModRefInfo. static inline bool isOrdered(const Instruction *I) { if (auto *SI = dyn_cast(I)) { if (!SI->isUnordered()) return true; } else if (auto *LI = dyn_cast(I)) { if (!LI->isUnordered()) return true; } return false; } /// Helper function to create new memory accesses template MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, AliasAnalysisType *AAP, const MemoryUseOrDef *Template) { // The assume intrinsic has a control dependency which we model by claiming // that it writes arbitrarily. Debuginfo intrinsics may be considered // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory // dependencies here. // FIXME: Replace this special casing with a more accurate modelling of // assume's control dependency. if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::assume: case Intrinsic::experimental_noalias_scope_decl: return nullptr; } } // Using a nonstandard AA pipelines might leave us with unexpected modref // results for I, so add a check to not model instructions that may not read // from or write to memory. This is necessary for correctness. if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) return nullptr; bool Def, Use; if (Template) { Def = isa(Template); Use = isa(Template); #if !defined(NDEBUG) ModRefInfo ModRef = AAP->getModRefInfo(I, None); bool DefCheck, UseCheck; DefCheck = isModSet(ModRef) || isOrdered(I); UseCheck = isRefSet(ModRef); assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); #endif } else { // Find out what affect this instruction has on memory. ModRefInfo ModRef = AAP->getModRefInfo(I, None); // The isOrdered check is used to ensure that volatiles end up as defs // (atomics end up as ModRef right now anyway). Until we separate the // ordering chain from the memory chain, this enables people to see at least // some relative ordering to volatiles. Note that getClobberingMemoryAccess // will still give an answer that bypasses other volatile loads. TODO: // Separate memory aliasing and ordering into two different chains so that // we can precisely represent both "what memory will this read/write/is // clobbered by" and "what instructions can I move this past". Def = isModSet(ModRef) || isOrdered(I); Use = isRefSet(ModRef); } // It's possible for an instruction to not modify memory at all. During // construction, we ignore them. if (!Def && !Use) return nullptr; MemoryUseOrDef *MUD; if (Def) MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); else MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); ValueToMemoryAccess[I] = MUD; return MUD; } /// Properly remove \p MA from all of MemorySSA's lookup tables. void MemorySSA::removeFromLookups(MemoryAccess *MA) { assert(MA->use_empty() && "Trying to remove memory access that still has uses"); BlockNumbering.erase(MA); if (auto *MUD = dyn_cast(MA)) MUD->setDefiningAccess(nullptr); // Invalidate our walker's cache if necessary if (!isa(MA)) getWalker()->invalidateInfo(MA); Value *MemoryInst; if (const auto *MUD = dyn_cast(MA)) MemoryInst = MUD->getMemoryInst(); else MemoryInst = MA->getBlock(); auto VMA = ValueToMemoryAccess.find(MemoryInst); if (VMA->second == MA) ValueToMemoryAccess.erase(VMA); } /// Properly remove \p MA from all of MemorySSA's lists. /// /// Because of the way the intrusive list and use lists work, it is important to /// do removal in the right order. /// ShouldDelete defaults to true, and will cause the memory access to also be /// deleted, not just removed. void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { BasicBlock *BB = MA->getBlock(); // The access list owns the reference, so we erase it from the non-owning list // first. if (!isa(MA)) { auto DefsIt = PerBlockDefs.find(BB); std::unique_ptr &Defs = DefsIt->second; Defs->remove(*MA); if (Defs->empty()) PerBlockDefs.erase(DefsIt); } // The erase call here will delete it. If we don't want it deleted, we call // remove instead. auto AccessIt = PerBlockAccesses.find(BB); std::unique_ptr &Accesses = AccessIt->second; if (ShouldDelete) Accesses->erase(MA); else Accesses->remove(MA); if (Accesses->empty()) { PerBlockAccesses.erase(AccessIt); BlockNumberingValid.erase(BB); } } void MemorySSA::print(raw_ostream &OS) const { MemorySSAAnnotatedWriter Writer(this); F.print(OS, &Writer); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } #endif void MemorySSA::verifyMemorySSA() const { verifyOrderingDominationAndDefUses(F); verifyDominationNumbers(F); verifyPrevDefInPhis(F); // Previously, the verification used to also verify that the clobberingAccess // cached by MemorySSA is the same as the clobberingAccess found at a later // query to AA. This does not hold true in general due to the current fragility // of BasicAA which has arbitrary caps on the things it analyzes before giving // up. As a result, transformations that are correct, will lead to BasicAA // returning different Alias answers before and after that transformation. // Invalidating MemorySSA is not an option, as the results in BasicAA can be so // random, in the worst case we'd need to rebuild MemorySSA from scratch after // every transformation, which defeats the purpose of using it. For such an // example, see test4 added in D51960. } void MemorySSA::verifyPrevDefInPhis(Function &F) const { #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) for (const BasicBlock &BB : F) { if (MemoryPhi *Phi = getMemoryAccess(&BB)) { for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { auto *Pred = Phi->getIncomingBlock(I); auto *IncAcc = Phi->getIncomingValue(I); // If Pred has no unreachable predecessors, get last def looking at // IDoms. If, while walkings IDoms, any of these has an unreachable // predecessor, then the incoming def can be any access. if (auto *DTNode = DT->getNode(Pred)) { while (DTNode) { if (auto *DefList = getBlockDefs(DTNode->getBlock())) { auto *LastAcc = &*(--DefList->end()); assert(LastAcc == IncAcc && "Incorrect incoming access into phi."); break; } DTNode = DTNode->getIDom(); } } else { // If Pred has unreachable predecessors, but has at least a Def, the // incoming access can be the last Def in Pred, or it could have been // optimized to LoE. After an update, though, the LoE may have been // replaced by another access, so IncAcc may be any access. // If Pred has unreachable predecessors and no Defs, incoming access // should be LoE; However, after an update, it may be any access. } } } } #endif } /// Verify that all of the blocks we believe to have valid domination numbers /// actually have valid domination numbers. void MemorySSA::verifyDominationNumbers(const Function &F) const { #ifndef NDEBUG if (BlockNumberingValid.empty()) return; SmallPtrSet ValidBlocks = BlockNumberingValid; for (const BasicBlock &BB : F) { if (!ValidBlocks.count(&BB)) continue; ValidBlocks.erase(&BB); const AccessList *Accesses = getBlockAccesses(&BB); // It's correct to say an empty block has valid numbering. if (!Accesses) continue; // Block numbering starts at 1. unsigned long LastNumber = 0; for (const MemoryAccess &MA : *Accesses) { auto ThisNumberIter = BlockNumbering.find(&MA); assert(ThisNumberIter != BlockNumbering.end() && "MemoryAccess has no domination number in a valid block!"); unsigned long ThisNumber = ThisNumberIter->second; assert(ThisNumber > LastNumber && "Domination numbers should be strictly increasing!"); LastNumber = ThisNumber; } } assert(ValidBlocks.empty() && "All valid BasicBlocks should exist in F -- dangling pointers?"); #endif } /// Verify ordering: the order and existence of MemoryAccesses matches the /// order and existence of memory affecting instructions. /// Verify domination: each definition dominates all of its uses. /// Verify def-uses: the immediate use information - walk all the memory /// accesses and verifying that, for each use, it appears in the appropriate /// def's use list void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { #if !defined(NDEBUG) // Walk all the blocks, comparing what the lookups think and what the access // lists think, as well as the order in the blocks vs the order in the access // lists. SmallVector ActualAccesses; SmallVector ActualDefs; for (BasicBlock &B : F) { const AccessList *AL = getBlockAccesses(&B); const auto *DL = getBlockDefs(&B); MemoryPhi *Phi = getMemoryAccess(&B); if (Phi) { // Verify ordering. ActualAccesses.push_back(Phi); ActualDefs.push_back(Phi); // Verify domination for (const Use &U : Phi->uses()) assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); #if defined(EXPENSIVE_CHECKS) // Verify def-uses. assert(Phi->getNumOperands() == static_cast(std::distance( pred_begin(&B), pred_end(&B))) && "Incomplete MemoryPhi Node"); for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { verifyUseInDefs(Phi->getIncomingValue(I), Phi); assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && "Incoming phi block not a block predecessor"); } #endif } for (Instruction &I : B) { MemoryUseOrDef *MA = getMemoryAccess(&I); assert((!MA || (AL && (isa(MA) || DL))) && "We have memory affecting instructions " "in this block but they are not in the " "access list or defs list"); if (MA) { // Verify ordering. ActualAccesses.push_back(MA); if (MemoryAccess *MD = dyn_cast(MA)) { // Verify ordering. ActualDefs.push_back(MA); // Verify domination. for (const Use &U : MD->uses()) assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); } #if defined(EXPENSIVE_CHECKS) // Verify def-uses. verifyUseInDefs(MA->getDefiningAccess(), MA); #endif } } // Either we hit the assert, really have no accesses, or we have both // accesses and an access list. Same with defs. if (!AL && !DL) continue; // Verify ordering. assert(AL->size() == ActualAccesses.size() && "We don't have the same number of accesses in the block as on the " "access list"); assert((DL || ActualDefs.size() == 0) && "Either we should have a defs list, or we should have no defs"); assert((!DL || DL->size() == ActualDefs.size()) && "We don't have the same number of defs in the block as on the " "def list"); auto ALI = AL->begin(); auto AAI = ActualAccesses.begin(); while (ALI != AL->end() && AAI != ActualAccesses.end()) { assert(&*ALI == *AAI && "Not the same accesses in the same order"); ++ALI; ++AAI; } ActualAccesses.clear(); if (DL) { auto DLI = DL->begin(); auto ADI = ActualDefs.begin(); while (DLI != DL->end() && ADI != ActualDefs.end()) { assert(&*DLI == *ADI && "Not the same defs in the same order"); ++DLI; ++ADI; } } ActualDefs.clear(); } #endif } /// Verify the def-use lists in MemorySSA, by verifying that \p Use /// appears in the use list of \p Def. void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { #ifndef NDEBUG // The live on entry use may cause us to get a NULL def here if (!Def) assert(isLiveOnEntryDef(Use) && "Null def but use not point to live on entry def"); else assert(is_contained(Def->users(), Use) && "Did not find use in def's use list"); #endif } /// Perform a local numbering on blocks so that instruction ordering can be /// determined in constant time. /// TODO: We currently just number in order. If we numbered by N, we could /// allow at least N-1 sequences of insertBefore or insertAfter (and at least /// log2(N) sequences of mixed before and after) without needing to invalidate /// the numbering. void MemorySSA::renumberBlock(const BasicBlock *B) const { // The pre-increment ensures the numbers really start at 1. unsigned long CurrentNumber = 0; const AccessList *AL = getBlockAccesses(B); assert(AL != nullptr && "Asking to renumber an empty block"); for (const auto &I : *AL) BlockNumbering[&I] = ++CurrentNumber; BlockNumberingValid.insert(B); } /// Determine, for two memory accesses in the same block, /// whether \p Dominator dominates \p Dominatee. /// \returns True if \p Dominator dominates \p Dominatee. bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, const MemoryAccess *Dominatee) const { const BasicBlock *DominatorBlock = Dominator->getBlock(); assert((DominatorBlock == Dominatee->getBlock()) && "Asking for local domination when accesses are in different blocks!"); // A node dominates itself. if (Dominatee == Dominator) return true; // When Dominatee is defined on function entry, it is not dominated by another // memory access. if (isLiveOnEntryDef(Dominatee)) return false; // When Dominator is defined on function entry, it dominates the other memory // access. if (isLiveOnEntryDef(Dominator)) return true; if (!BlockNumberingValid.count(DominatorBlock)) renumberBlock(DominatorBlock); unsigned long DominatorNum = BlockNumbering.lookup(Dominator); // All numbers start with 1 assert(DominatorNum != 0 && "Block was not numbered properly"); unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); assert(DominateeNum != 0 && "Block was not numbered properly"); return DominatorNum < DominateeNum; } bool MemorySSA::dominates(const MemoryAccess *Dominator, const MemoryAccess *Dominatee) const { if (Dominator == Dominatee) return true; if (isLiveOnEntryDef(Dominatee)) return false; if (Dominator->getBlock() != Dominatee->getBlock()) return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); return locallyDominates(Dominator, Dominatee); } bool MemorySSA::dominates(const MemoryAccess *Dominator, const Use &Dominatee) const { if (MemoryPhi *MP = dyn_cast(Dominatee.getUser())) { BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); // The def must dominate the incoming block of the phi. if (UseBB != Dominator->getBlock()) return DT->dominates(Dominator->getBlock(), UseBB); // If the UseBB and the DefBB are the same, compare locally. return locallyDominates(Dominator, cast(Dominatee)); } // If it's not a PHI node use, the normal dominates can already handle it. return dominates(Dominator, cast(Dominatee.getUser())); } const static char LiveOnEntryStr[] = "liveOnEntry"; void MemoryAccess::print(raw_ostream &OS) const { switch (getValueID()) { case MemoryPhiVal: return static_cast(this)->print(OS); case MemoryDefVal: return static_cast(this)->print(OS); case MemoryUseVal: return static_cast(this)->print(OS); } llvm_unreachable("invalid value id"); } void MemoryDef::print(raw_ostream &OS) const { MemoryAccess *UO = getDefiningAccess(); auto printID = [&OS](MemoryAccess *A) { if (A && A->getID()) OS << A->getID(); else OS << LiveOnEntryStr; }; OS << getID() << " = MemoryDef("; printID(UO); OS << ")"; if (isOptimized()) { OS << "->"; printID(getOptimized()); if (Optional AR = getOptimizedAccessType()) OS << " " << *AR; } } void MemoryPhi::print(raw_ostream &OS) const { ListSeparator LS(","); OS << getID() << " = MemoryPhi("; for (const auto &Op : operands()) { BasicBlock *BB = getIncomingBlock(Op); MemoryAccess *MA = cast(Op); OS << LS << '{'; if (BB->hasName()) OS << BB->getName(); else BB->printAsOperand(OS, false); OS << ','; if (unsigned ID = MA->getID()) OS << ID; else OS << LiveOnEntryStr; OS << '}'; } OS << ')'; } void MemoryUse::print(raw_ostream &OS) const { MemoryAccess *UO = getDefiningAccess(); OS << "MemoryUse("; if (UO && UO->getID()) OS << UO->getID(); else OS << LiveOnEntryStr; OS << ')'; if (Optional AR = getOptimizedAccessType()) OS << " " << *AR; } void MemoryAccess::dump() const { // Cannot completely remove virtual function even in release mode. #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) print(dbgs()); dbgs() << "\n"; #endif } char MemorySSAPrinterLegacyPass::ID = 0; MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); } void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); } class DOTFuncMSSAInfo { private: const Function &F; MemorySSAAnnotatedWriter MSSAWriter; public: DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) : F(F), MSSAWriter(&MSSA) {} const Function *getFunction() { return &F; } MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } }; namespace llvm { template <> struct GraphTraits : public GraphTraits { static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { return &(CFGInfo->getFunction()->getEntryBlock()); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph using nodes_iterator = pointer_iterator; static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { return nodes_iterator(CFGInfo->getFunction()->begin()); } static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { return nodes_iterator(CFGInfo->getFunction()->end()); } static size_t size(DOTFuncMSSAInfo *CFGInfo) { return CFGInfo->getFunction()->size(); } }; template <> struct DOTGraphTraits : public DefaultDOTGraphTraits { DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + "' function"; } std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { return DOTGraphTraits::getCompleteNodeLabel( Node, nullptr, [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { BB.print(OS, &CFGInfo->getWriter(), true, true); }, [](std::string &S, unsigned &I, unsigned Idx) -> void { std::string Str = S.substr(I, Idx - I); StringRef SR = Str; if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || SR.count("MemoryUse(")) return; DOTGraphTraits::eraseComment(S, I, Idx); }); } static std::string getEdgeSourceLabel(const BasicBlock *Node, const_succ_iterator I) { return DOTGraphTraits::getEdgeSourceLabel(Node, I); } /// Display the raw branch weights from PGO. std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, DOTFuncMSSAInfo *CFGInfo) { return ""; } std::string getNodeAttributes(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos ? "style=filled, fillcolor=lightpink" : ""; } }; } // namespace llvm bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { auto &MSSA = getAnalysis().getMSSA(); if (DotCFGMSSA != "") { DOTFuncMSSAInfo CFGInfo(F, MSSA); WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); } else MSSA.print(dbgs()); if (VerifyMemorySSA) MSSA.verifyMemorySSA(); return false; } AnalysisKey MemorySSAAnalysis::Key; MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); auto &AA = AM.getResult(F); return MemorySSAAnalysis::Result(std::make_unique(F, &AA, &DT)); } bool MemorySSAAnalysis::Result::invalidate( Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv) { auto PAC = PA.getChecker(); return !(PAC.preserved() || PAC.preservedSet>()) || Inv.invalidate(F, PA) || Inv.invalidate(F, PA); } PreservedAnalyses MemorySSAPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { auto &MSSA = AM.getResult(F).getMSSA(); if (DotCFGMSSA != "") { DOTFuncMSSAInfo CFGInfo(F, MSSA); WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); } else { OS << "MemorySSA for function: " << F.getName() << "\n"; MSSA.print(OS); } return PreservedAnalyses::all(); } PreservedAnalyses MemorySSAVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { AM.getResult(F).getMSSA().verifyMemorySSA(); return PreservedAnalyses::all(); } char MemorySSAWrapperPass::ID = 0; MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); } void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); } bool MemorySSAWrapperPass::runOnFunction(Function &F) { auto &DT = getAnalysis().getDomTree(); auto &AA = getAnalysis().getAAResults(); MSSA.reset(new MemorySSA(F, &AA, &DT)); return false; } void MemorySSAWrapperPass::verifyAnalysis() const { if (VerifyMemorySSA) MSSA->verifyMemorySSA(); } void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { MSSA->print(OS); } MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} /// Walk the use-def chains starting at \p StartingAccess and find /// the MemoryAccess that actually clobbers Loc. /// /// \returns our clobbering memory access template MemoryAccess * MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase( MemoryAccess *StartingAccess, const MemoryLocation &Loc, unsigned &UpwardWalkLimit) { if (isa(StartingAccess)) return StartingAccess; auto *StartingUseOrDef = cast(StartingAccess); if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) return StartingUseOrDef; Instruction *I = StartingUseOrDef->getMemoryInst(); // Conservatively, fences are always clobbers, so don't perform the walk if we // hit a fence. if (!isa(I) && I->isFenceLike()) return StartingUseOrDef; UpwardsMemoryQuery Q; Q.OriginalAccess = StartingUseOrDef; Q.StartingLoc = Loc; Q.Inst = nullptr; Q.IsCall = false; // Unlike the other function, do not walk to the def of a def, because we are // handed something we already believe is the clobbering access. // We never set SkipSelf to true in Q in this method. MemoryAccess *DefiningAccess = isa(StartingUseOrDef) ? StartingUseOrDef->getDefiningAccess() : StartingUseOrDef; MemoryAccess *Clobber = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); LLVM_DEBUG(dbgs() << *Clobber << "\n"); return Clobber; } template MemoryAccess * MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase( MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { auto *StartingAccess = dyn_cast(MA); // If this is a MemoryPhi, we can't do anything. if (!StartingAccess) return MA; bool IsOptimized = false; // If this is an already optimized use or def, return the optimized result. // Note: Currently, we store the optimized def result in a separate field, // since we can't use the defining access. if (StartingAccess->isOptimized()) { if (!SkipSelf || !isa(StartingAccess)) return StartingAccess->getOptimized(); IsOptimized = true; } const Instruction *I = StartingAccess->getMemoryInst(); // We can't sanely do anything with a fence, since they conservatively clobber // all memory, and have no locations to get pointers from to try to // disambiguate. if (!isa(I) && I->isFenceLike()) return StartingAccess; UpwardsMemoryQuery Q(I, StartingAccess); if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); StartingAccess->setOptimized(LiveOnEntry); StartingAccess->setOptimizedAccessType(None); return LiveOnEntry; } MemoryAccess *OptimizedAccess; if (!IsOptimized) { // Start with the thing we already think clobbers this location MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); // At this point, DefiningAccess may be the live on entry def. // If it is, we will not get a better result. if (MSSA->isLiveOnEntryDef(DefiningAccess)) { StartingAccess->setOptimized(DefiningAccess); StartingAccess->setOptimizedAccessType(None); return DefiningAccess; } OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); StartingAccess->setOptimized(OptimizedAccess); if (MSSA->isLiveOnEntryDef(OptimizedAccess)) StartingAccess->setOptimizedAccessType(None); else if (Q.AR == MustAlias) StartingAccess->setOptimizedAccessType(MustAlias); } else OptimizedAccess = StartingAccess->getOptimized(); LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); MemoryAccess *Result; if (SkipSelf && isa(OptimizedAccess) && isa(StartingAccess) && UpwardWalkLimit) { assert(isa(Q.OriginalAccess)); Q.SkipSelfAccess = true; Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); } else Result = OptimizedAccess; LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); return Result; } MemoryAccess * DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { if (auto *Use = dyn_cast(MA)) return Use->getDefiningAccess(); return MA; } MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( MemoryAccess *StartingAccess, const MemoryLocation &) { if (auto *Use = dyn_cast(StartingAccess)) return Use->getDefiningAccess(); return StartingAccess; } void MemoryPhi::deleteMe(DerivedUser *Self) { delete static_cast(Self); } void MemoryDef::deleteMe(DerivedUser *Self) { delete static_cast(Self); } void MemoryUse::deleteMe(DerivedUser *Self) { delete static_cast(Self); } bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const { auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) { Ptr = Ptr->stripPointerCasts(); if (!isa(Ptr)) return true; return isa(Ptr); }; Ptr = Ptr->stripPointerCasts(); if (auto *GEP = dyn_cast(Ptr)) { return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && GEP->hasAllConstantIndices(); } return IsGuaranteedLoopInvariantBase(Ptr); }