//===- BranchFolding.cpp - Fold machine code branch instructions ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass forwards branches to unconditional branches to make them branch // directly to the target block. This pass often results in dead MBB's, which // it then removes. // // Note that this pass must be run after register allocation, it cannot handle // SSA form. It also must handle virtual registers for targets that emit virtual // ISA (e.g. NVPTX). // //===----------------------------------------------------------------------===// #include "BranchFolding.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineSizeOpts.h" #include "llvm/CodeGen/MBFIWrapper.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/InitializePasses.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "branch-folder" STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); STATISTIC(NumBranchOpts, "Number of branches optimized"); STATISTIC(NumTailMerge , "Number of block tails merged"); STATISTIC(NumHoist , "Number of times common instructions are hoisted"); STATISTIC(NumTailCalls, "Number of tail calls optimized"); static cl::opt FlagEnableTailMerge("enable-tail-merge", cl::init(cl::BOU_UNSET), cl::Hidden); // Throttle for huge numbers of predecessors (compile speed problems) static cl::opt TailMergeThreshold("tail-merge-threshold", cl::desc("Max number of predecessors to consider tail merging"), cl::init(150), cl::Hidden); // Heuristic for tail merging (and, inversely, tail duplication). // TODO: This should be replaced with a target query. static cl::opt TailMergeSize("tail-merge-size", cl::desc("Min number of instructions to consider tail merging"), cl::init(3), cl::Hidden); namespace { /// BranchFolderPass - Wrap branch folder in a machine function pass. class BranchFolderPass : public MachineFunctionPass { public: static char ID; explicit BranchFolderPass(): MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // end anonymous namespace char BranchFolderPass::ID = 0; char &llvm::BranchFolderPassID = BranchFolderPass::ID; INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, "Control Flow Optimizer", false, false) bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; TargetPassConfig *PassConfig = &getAnalysis(); // TailMerge can create jump into if branches that make CFG irreducible for // HW that requires structurized CFG. bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && PassConfig->getEnableTailMerge(); MBFIWrapper MBBFreqInfo( getAnalysis()); BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, getAnalysis(), &getAnalysis().getPSI()); return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo()); } BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist, MBFIWrapper &FreqInfo, const MachineBranchProbabilityInfo &ProbInfo, ProfileSummaryInfo *PSI, unsigned MinTailLength) : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) { if (MinCommonTailLength == 0) MinCommonTailLength = TailMergeSize; switch (FlagEnableTailMerge) { case cl::BOU_UNSET: EnableTailMerge = DefaultEnableTailMerge; break; case cl::BOU_TRUE: EnableTailMerge = true; break; case cl::BOU_FALSE: EnableTailMerge = false; break; } } void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { assert(MBB->pred_empty() && "MBB must be dead!"); LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); MachineFunction *MF = MBB->getParent(); // drop all successors. while (!MBB->succ_empty()) MBB->removeSuccessor(MBB->succ_end()-1); // Avoid matching if this pointer gets reused. TriedMerging.erase(MBB); // Update call site info. for (const MachineInstr &MI : *MBB) if (MI.shouldUpdateCallSiteInfo()) MF->eraseCallSiteInfo(&MI); // Remove the block. MF->erase(MBB); EHScopeMembership.erase(MBB); if (MLI) MLI->removeBlock(MBB); } bool BranchFolder::OptimizeFunction(MachineFunction &MF, const TargetInstrInfo *tii, const TargetRegisterInfo *tri, MachineLoopInfo *mli, bool AfterPlacement) { if (!tii) return false; TriedMerging.clear(); MachineRegisterInfo &MRI = MF.getRegInfo(); AfterBlockPlacement = AfterPlacement; TII = tii; TRI = tri; MLI = mli; this->MRI = &MRI; UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); if (!UpdateLiveIns) MRI.invalidateLiveness(); bool MadeChange = false; // Recalculate EH scope membership. EHScopeMembership = getEHScopeMembership(MF); bool MadeChangeThisIteration = true; while (MadeChangeThisIteration) { MadeChangeThisIteration = TailMergeBlocks(MF); // No need to clean up if tail merging does not change anything after the // block placement. if (!AfterBlockPlacement || MadeChangeThisIteration) MadeChangeThisIteration |= OptimizeBranches(MF); if (EnableHoistCommonCode) MadeChangeThisIteration |= HoistCommonCode(MF); MadeChange |= MadeChangeThisIteration; } // See if any jump tables have become dead as the code generator // did its thing. MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); if (!JTI) return MadeChange; // Walk the function to find jump tables that are live. BitVector JTIsLive(JTI->getJumpTables().size()); for (const MachineBasicBlock &BB : MF) { for (const MachineInstr &I : BB) for (const MachineOperand &Op : I.operands()) { if (!Op.isJTI()) continue; // Remember that this JT is live. JTIsLive.set(Op.getIndex()); } } // Finally, remove dead jump tables. This happens when the // indirect jump was unreachable (and thus deleted). for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) if (!JTIsLive.test(i)) { JTI->RemoveJumpTable(i); MadeChange = true; } return MadeChange; } //===----------------------------------------------------------------------===// // Tail Merging of Blocks //===----------------------------------------------------------------------===// /// HashMachineInstr - Compute a hash value for MI and its operands. static unsigned HashMachineInstr(const MachineInstr &MI) { unsigned Hash = MI.getOpcode(); for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &Op = MI.getOperand(i); // Merge in bits from the operand if easy. We can't use MachineOperand's // hash_code here because it's not deterministic and we sort by hash value // later. unsigned OperandHash = 0; switch (Op.getType()) { case MachineOperand::MO_Register: OperandHash = Op.getReg(); break; case MachineOperand::MO_Immediate: OperandHash = Op.getImm(); break; case MachineOperand::MO_MachineBasicBlock: OperandHash = Op.getMBB()->getNumber(); break; case MachineOperand::MO_FrameIndex: case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_JumpTableIndex: OperandHash = Op.getIndex(); break; case MachineOperand::MO_GlobalAddress: case MachineOperand::MO_ExternalSymbol: // Global address / external symbol are too hard, don't bother, but do // pull in the offset. OperandHash = Op.getOffset(); break; default: break; } Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); } return Hash; } /// HashEndOfMBB - Hash the last instruction in the MBB. static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false); if (I == MBB.end()) return 0; return HashMachineInstr(*I); } /// Whether MI should be counted as an instruction when calculating common tail. static bool countsAsInstruction(const MachineInstr &MI) { return !(MI.isDebugInstr() || MI.isCFIInstruction()); } /// Iterate backwards from the given iterator \p I, towards the beginning of the /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator /// pointing to that MI. If no such MI is found, return the end iterator. static MachineBasicBlock::iterator skipBackwardPastNonInstructions(MachineBasicBlock::iterator I, MachineBasicBlock *MBB) { while (I != MBB->begin()) { --I; if (countsAsInstruction(*I)) return I; } return MBB->end(); } /// Given two machine basic blocks, return the number of instructions they /// actually have in common together at their end. If a common tail is found (at /// least by one instruction), then iterators for the first shared instruction /// in each block are returned as well. /// /// Non-instructions according to countsAsInstruction are ignored. static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, MachineBasicBlock::iterator &I1, MachineBasicBlock::iterator &I2) { MachineBasicBlock::iterator MBBI1 = MBB1->end(); MachineBasicBlock::iterator MBBI2 = MBB2->end(); unsigned TailLen = 0; while (true) { MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1); MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2); if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end()) break; if (!MBBI1->isIdenticalTo(*MBBI2) || // FIXME: This check is dubious. It's used to get around a problem where // people incorrectly expect inline asm directives to remain in the same // relative order. This is untenable because normal compiler // optimizations (like this one) may reorder and/or merge these // directives. MBBI1->isInlineAsm()) { break; } if (MBBI1->getFlag(MachineInstr::NoMerge) || MBBI2->getFlag(MachineInstr::NoMerge)) break; ++TailLen; I1 = MBBI1; I2 = MBBI2; } return TailLen; } void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, MachineBasicBlock &NewDest) { if (UpdateLiveIns) { // OldInst should always point to an instruction. MachineBasicBlock &OldMBB = *OldInst->getParent(); LiveRegs.clear(); LiveRegs.addLiveOuts(OldMBB); // Move backward to the place where will insert the jump. MachineBasicBlock::iterator I = OldMBB.end(); do { --I; LiveRegs.stepBackward(*I); } while (I != OldInst); // Merging the tails may have switched some undef operand to non-undef ones. // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the // register. for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { // We computed the liveins with computeLiveIn earlier and should only see // full registers: assert(P.LaneMask == LaneBitmask::getAll() && "Can only handle full register."); MCPhysReg Reg = P.PhysReg; if (!LiveRegs.available(*MRI, Reg)) continue; DebugLoc DL; BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); } } TII->ReplaceTailWithBranchTo(OldInst, &NewDest); ++NumTailMerge; } MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, MachineBasicBlock::iterator BBI1, const BasicBlock *BB) { if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) return nullptr; MachineFunction &MF = *CurMBB.getParent(); // Create the fall-through block. MachineFunction::iterator MBBI = CurMBB.getIterator(); MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); CurMBB.getParent()->insert(++MBBI, NewMBB); // Move all the successors of this block to the specified block. NewMBB->transferSuccessors(&CurMBB); // Add an edge from CurMBB to NewMBB for the fall-through. CurMBB.addSuccessor(NewMBB); // Splice the code over. NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); // NewMBB belongs to the same loop as CurMBB. if (MLI) if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); // NewMBB inherits CurMBB's block frequency. MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); if (UpdateLiveIns) computeAndAddLiveIns(LiveRegs, *NewMBB); // Add the new block to the EH scope. const auto &EHScopeI = EHScopeMembership.find(&CurMBB); if (EHScopeI != EHScopeMembership.end()) { auto n = EHScopeI->second; EHScopeMembership[NewMBB] = n; } return NewMBB; } /// EstimateRuntime - Make a rough estimate for how long it will take to run /// the specified code. static unsigned EstimateRuntime(MachineBasicBlock::iterator I, MachineBasicBlock::iterator E) { unsigned Time = 0; for (; I != E; ++I) { if (!countsAsInstruction(*I)) continue; if (I->isCall()) Time += 10; else if (I->mayLoadOrStore()) Time += 2; else ++Time; } return Time; } // CurMBB needs to add an unconditional branch to SuccMBB (we removed these // branches temporarily for tail merging). In the case where CurMBB ends // with a conditional branch to the next block, optimize by reversing the // test and conditionally branching to SuccMBB instead. static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, const TargetInstrInfo *TII) { MachineFunction *MF = CurMBB->getParent(); MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; DebugLoc dl = CurMBB->findBranchDebugLoc(); if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { MachineBasicBlock *NextBB = &*I; if (TBB == NextBB && !Cond.empty() && !FBB) { if (!TII->reverseBranchCondition(Cond)) { TII->removeBranch(*CurMBB); TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); return; } } } TII->insertBranch(*CurMBB, SuccBB, nullptr, SmallVector(), dl); } bool BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { if (getHash() < o.getHash()) return true; if (getHash() > o.getHash()) return false; if (getBlock()->getNumber() < o.getBlock()->getNumber()) return true; if (getBlock()->getNumber() > o.getBlock()->getNumber()) return false; // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing // an object with itself. #ifndef _GLIBCXX_DEBUG llvm_unreachable("Predecessor appears twice"); #else return false; #endif } /// CountTerminators - Count the number of terminators in the given /// block and set I to the position of the first non-terminator, if there /// is one, or MBB->end() otherwise. static unsigned CountTerminators(MachineBasicBlock *MBB, MachineBasicBlock::iterator &I) { I = MBB->end(); unsigned NumTerms = 0; while (true) { if (I == MBB->begin()) { I = MBB->end(); break; } --I; if (!I->isTerminator()) break; ++NumTerms; } return NumTerms; } /// A no successor, non-return block probably ends in unreachable and is cold. /// Also consider a block that ends in an indirect branch to be a return block, /// since many targets use plain indirect branches to return. static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { if (!MBB->succ_empty()) return false; if (MBB->empty()) return true; return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); } /// ProfitableToMerge - Check if two machine basic blocks have a common tail /// and decide if it would be profitable to merge those tails. Return the /// length of the common tail and iterators to the first common instruction /// in each block. /// MBB1, MBB2 The blocks to check /// MinCommonTailLength Minimum size of tail block to be merged. /// CommonTailLen Out parameter to record the size of the shared tail between /// MBB1 and MBB2 /// I1, I2 Iterator references that will be changed to point to the first /// instruction in the common tail shared by MBB1,MBB2 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form /// relative to SuccBB /// PredBB The layout predecessor of SuccBB, if any. /// EHScopeMembership map from block to EH scope #. /// AfterPlacement True if we are merging blocks after layout. Stricter /// thresholds apply to prevent undoing tail-duplication. static bool ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, unsigned MinCommonTailLength, unsigned &CommonTailLen, MachineBasicBlock::iterator &I1, MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, MachineBasicBlock *PredBB, DenseMap &EHScopeMembership, bool AfterPlacement, MBFIWrapper &MBBFreqInfo, ProfileSummaryInfo *PSI) { // It is never profitable to tail-merge blocks from two different EH scopes. if (!EHScopeMembership.empty()) { auto EHScope1 = EHScopeMembership.find(MBB1); assert(EHScope1 != EHScopeMembership.end()); auto EHScope2 = EHScopeMembership.find(MBB2); assert(EHScope2 != EHScopeMembership.end()); if (EHScope1->second != EHScope2->second) return false; } CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); if (CommonTailLen == 0) return false; LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) << " and " << printMBBReference(*MBB2) << " is " << CommonTailLen << '\n'); // Move the iterators to the beginning of the MBB if we only got debug // instructions before the tail. This is to avoid splitting a block when we // only got debug instructions before the tail (to be invariant on -g). if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1) I1 = MBB1->begin(); if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2) I2 = MBB2->begin(); bool FullBlockTail1 = I1 == MBB1->begin(); bool FullBlockTail2 = I2 == MBB2->begin(); // It's almost always profitable to merge any number of non-terminator // instructions with the block that falls through into the common successor. // This is true only for a single successor. For multiple successors, we are // trading a conditional branch for an unconditional one. // TODO: Re-visit successor size for non-layout tail merging. if ((MBB1 == PredBB || MBB2 == PredBB) && (!AfterPlacement || MBB1->succ_size() == 1)) { MachineBasicBlock::iterator I; unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); if (CommonTailLen > NumTerms) return true; } // If these are identical non-return blocks with no successors, merge them. // Such blocks are typically cold calls to noreturn functions like abort, and // are unlikely to become a fallthrough target after machine block placement. // Tail merging these blocks is unlikely to create additional unconditional // branches, and will reduce the size of this cold code. if (FullBlockTail1 && FullBlockTail2 && blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) return true; // If one of the blocks can be completely merged and happens to be in // a position where the other could fall through into it, merge any number // of instructions, because it can be done without a branch. // TODO: If the blocks are not adjacent, move one of them so that they are? if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2) return true; if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1) return true; // If both blocks are identical and end in a branch, merge them unless they // both have a fallthrough predecessor and successor. // We can only do this after block placement because it depends on whether // there are fallthroughs, and we don't know until after layout. if (AfterPlacement && FullBlockTail1 && FullBlockTail2) { auto BothFallThrough = [](MachineBasicBlock *MBB) { if (MBB->succ_size() != 0 && !MBB->canFallThrough()) return false; MachineFunction::iterator I(MBB); MachineFunction *MF = MBB->getParent(); return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); }; if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) return true; } // If both blocks have an unconditional branch temporarily stripped out, // count that as an additional common instruction for the following // heuristics. This heuristic is only accurate for single-succ blocks, so to // make sure that during layout merging and duplicating don't crash, we check // for that when merging during layout. unsigned EffectiveTailLen = CommonTailLen; if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && (MBB1->succ_size() == 1 || !AfterPlacement) && !MBB1->back().isBarrier() && !MBB2->back().isBarrier()) ++EffectiveTailLen; // Check if the common tail is long enough to be worthwhile. if (EffectiveTailLen >= MinCommonTailLength) return true; // If we are optimizing for code size, 2 instructions in common is enough if // we don't have to split a block. At worst we will be introducing 1 new // branch instruction, which is likely to be smaller than the 2 // instructions that would be deleted in the merge. MachineFunction *MF = MBB1->getParent(); bool OptForSize = MF->getFunction().hasOptSize() || (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) && llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo)); return EffectiveTailLen >= 2 && OptForSize && (FullBlockTail1 || FullBlockTail2); } unsigned BranchFolder::ComputeSameTails(unsigned CurHash, unsigned MinCommonTailLength, MachineBasicBlock *SuccBB, MachineBasicBlock *PredBB) { unsigned maxCommonTailLength = 0U; SameTails.clear(); MachineBasicBlock::iterator TrialBBI1, TrialBBI2; MPIterator HighestMPIter = std::prev(MergePotentials.end()); for (MPIterator CurMPIter = std::prev(MergePotentials.end()), B = MergePotentials.begin(); CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { unsigned CommonTailLen; if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), MinCommonTailLength, CommonTailLen, TrialBBI1, TrialBBI2, SuccBB, PredBB, EHScopeMembership, AfterBlockPlacement, MBBFreqInfo, PSI)) { if (CommonTailLen > maxCommonTailLength) { SameTails.clear(); maxCommonTailLength = CommonTailLen; HighestMPIter = CurMPIter; SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); } if (HighestMPIter == CurMPIter && CommonTailLen == maxCommonTailLength) SameTails.push_back(SameTailElt(I, TrialBBI2)); } if (I == B) break; } } return maxCommonTailLength; } void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, MachineBasicBlock *SuccBB, MachineBasicBlock *PredBB) { MPIterator CurMPIter, B; for (CurMPIter = std::prev(MergePotentials.end()), B = MergePotentials.begin(); CurMPIter->getHash() == CurHash; --CurMPIter) { // Put the unconditional branch back, if we need one. MachineBasicBlock *CurMBB = CurMPIter->getBlock(); if (SuccBB && CurMBB != PredBB) FixTail(CurMBB, SuccBB, TII); if (CurMPIter == B) break; } if (CurMPIter->getHash() != CurHash) CurMPIter++; MergePotentials.erase(CurMPIter, MergePotentials.end()); } bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, MachineBasicBlock *SuccBB, unsigned maxCommonTailLength, unsigned &commonTailIndex) { commonTailIndex = 0; unsigned TimeEstimate = ~0U; for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { // Use PredBB if possible; that doesn't require a new branch. if (SameTails[i].getBlock() == PredBB) { commonTailIndex = i; break; } // Otherwise, make a (fairly bogus) choice based on estimate of // how long it will take the various blocks to execute. unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), SameTails[i].getTailStartPos()); if (t <= TimeEstimate) { TimeEstimate = t; commonTailIndex = i; } } MachineBasicBlock::iterator BBI = SameTails[commonTailIndex].getTailStartPos(); MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " << maxCommonTailLength); // If the split block unconditionally falls-thru to SuccBB, it will be // merged. In control flow terms it should then take SuccBB's name. e.g. If // SuccBB is an inner loop, the common tail is still part of the inner loop. const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? SuccBB->getBasicBlock() : MBB->getBasicBlock(); MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); if (!newMBB) { LLVM_DEBUG(dbgs() << "... failed!"); return false; } SameTails[commonTailIndex].setBlock(newMBB); SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); // If we split PredBB, newMBB is the new predecessor. if (PredBB == MBB) PredBB = newMBB; return true; } static void mergeOperations(MachineBasicBlock::iterator MBBIStartPos, MachineBasicBlock &MBBCommon) { MachineBasicBlock *MBB = MBBIStartPos->getParent(); // Note CommonTailLen does not necessarily matches the size of // the common BB nor all its instructions because of debug // instructions differences. unsigned CommonTailLen = 0; for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) ++CommonTailLen; MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); while (CommonTailLen--) { assert(MBBI != MBBIE && "Reached BB end within common tail length!"); (void)MBBIE; if (!countsAsInstruction(*MBBI)) { ++MBBI; continue; } while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) ++MBBICommon; assert(MBBICommon != MBBIECommon && "Reached BB end within common tail length!"); assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); // Merge MMOs from memory operations in the common block. if (MBBICommon->mayLoadOrStore()) MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); // Drop undef flags if they aren't present in all merged instructions. for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { MachineOperand &MO = MBBICommon->getOperand(I); if (MO.isReg() && MO.isUndef()) { const MachineOperand &OtherMO = MBBI->getOperand(I); if (!OtherMO.isUndef()) MO.setIsUndef(false); } } ++MBBI; ++MBBICommon; } } void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); std::vector NextCommonInsts(SameTails.size()); for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { if (i != commonTailIndex) { NextCommonInsts[i] = SameTails[i].getTailStartPos(); mergeOperations(SameTails[i].getTailStartPos(), *MBB); } else { assert(SameTails[i].getTailStartPos() == MBB->begin() && "MBB is not a common tail only block"); } } for (auto &MI : *MBB) { if (!countsAsInstruction(MI)) continue; DebugLoc DL = MI.getDebugLoc(); for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { if (i == commonTailIndex) continue; auto &Pos = NextCommonInsts[i]; assert(Pos != SameTails[i].getBlock()->end() && "Reached BB end within common tail"); while (!countsAsInstruction(*Pos)) { ++Pos; assert(Pos != SameTails[i].getBlock()->end() && "Reached BB end within common tail"); } assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); NextCommonInsts[i] = ++Pos; } MI.setDebugLoc(DL); } if (UpdateLiveIns) { LivePhysRegs NewLiveIns(*TRI); computeLiveIns(NewLiveIns, *MBB); LiveRegs.init(*TRI); // The flag merging may lead to some register uses no longer using the // flag, add IMPLICIT_DEFs in the predecessors as necessary. for (MachineBasicBlock *Pred : MBB->predecessors()) { LiveRegs.clear(); LiveRegs.addLiveOuts(*Pred); MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); for (Register Reg : NewLiveIns) { if (!LiveRegs.available(*MRI, Reg)) continue; DebugLoc DL; BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); } } MBB->clearLiveIns(); addLiveIns(*MBB, NewLiveIns); } } // See if any of the blocks in MergePotentials (which all have SuccBB as a // successor, or all have no successor if it is null) can be tail-merged. // If there is a successor, any blocks in MergePotentials that are not // tail-merged and are not immediately before Succ must have an unconditional // branch to Succ added (but the predecessor/successor lists need no // adjustment). The lone predecessor of Succ that falls through into Succ, // if any, is given in PredBB. // MinCommonTailLength - Except for the special cases below, tail-merge if // there are at least this many instructions in common. bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, MachineBasicBlock *PredBB, unsigned MinCommonTailLength) { bool MadeChange = false; LLVM_DEBUG( dbgs() << "\nTryTailMergeBlocks: "; for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() << printMBBReference(*MergePotentials[i].getBlock()) << (i == e - 1 ? "" : ", "); dbgs() << "\n"; if (SuccBB) { dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; if (PredBB) dbgs() << " which has fall-through from " << printMBBReference(*PredBB) << "\n"; } dbgs() << "Looking for common tails of at least " << MinCommonTailLength << " instruction" << (MinCommonTailLength == 1 ? "" : "s") << '\n';); // Sort by hash value so that blocks with identical end sequences sort // together. array_pod_sort(MergePotentials.begin(), MergePotentials.end()); // Walk through equivalence sets looking for actual exact matches. while (MergePotentials.size() > 1) { unsigned CurHash = MergePotentials.back().getHash(); // Build SameTails, identifying the set of blocks with this hash code // and with the maximum number of instructions in common. unsigned maxCommonTailLength = ComputeSameTails(CurHash, MinCommonTailLength, SuccBB, PredBB); // If we didn't find any pair that has at least MinCommonTailLength // instructions in common, remove all blocks with this hash code and retry. if (SameTails.empty()) { RemoveBlocksWithHash(CurHash, SuccBB, PredBB); continue; } // If one of the blocks is the entire common tail (and is not the entry // block/an EH pad, which we can't jump to), we can treat all blocks with // this same tail at once. Use PredBB if that is one of the possibilities, // as that will not introduce any extra branches. MachineBasicBlock *EntryBB = &MergePotentials.front().getBlock()->getParent()->front(); unsigned commonTailIndex = SameTails.size(); // If there are two blocks, check to see if one can be made to fall through // into the other. if (SameTails.size() == 2 && SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad()) commonTailIndex = 1; else if (SameTails.size() == 2 && SameTails[1].getBlock()->isLayoutSuccessor( SameTails[0].getBlock()) && SameTails[0].tailIsWholeBlock() && !SameTails[0].getBlock()->isEHPad()) commonTailIndex = 0; else { // Otherwise just pick one, favoring the fall-through predecessor if // there is one. for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { MachineBasicBlock *MBB = SameTails[i].getBlock(); if ((MBB == EntryBB || MBB->isEHPad()) && SameTails[i].tailIsWholeBlock()) continue; if (MBB == PredBB) { commonTailIndex = i; break; } if (SameTails[i].tailIsWholeBlock()) commonTailIndex = i; } } if (commonTailIndex == SameTails.size() || (SameTails[commonTailIndex].getBlock() == PredBB && !SameTails[commonTailIndex].tailIsWholeBlock())) { // None of the blocks consist entirely of the common tail. // Split a block so that one does. if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, maxCommonTailLength, commonTailIndex)) { RemoveBlocksWithHash(CurHash, SuccBB, PredBB); continue; } } MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); // Recompute common tail MBB's edge weights and block frequency. setCommonTailEdgeWeights(*MBB); // Merge debug locations, MMOs and undef flags across identical instructions // for common tail. mergeCommonTails(commonTailIndex); // MBB is common tail. Adjust all other BB's to jump to this one. // Traversal must be forwards so erases work. LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) << " for "); for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { if (commonTailIndex == i) continue; LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) << (i == e - 1 ? "" : ", ")); // Hack the end off BB i, making it jump to BB commonTailIndex instead. replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); // BB i is no longer a predecessor of SuccBB; remove it from the worklist. MergePotentials.erase(SameTails[i].getMPIter()); } LLVM_DEBUG(dbgs() << "\n"); // We leave commonTailIndex in the worklist in case there are other blocks // that match it with a smaller number of instructions. MadeChange = true; } return MadeChange; } bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { bool MadeChange = false; if (!EnableTailMerge) return MadeChange; // First find blocks with no successors. // Block placement may create new tail merging opportunities for these blocks. MergePotentials.clear(); for (MachineBasicBlock &MBB : MF) { if (MergePotentials.size() == TailMergeThreshold) break; if (!TriedMerging.count(&MBB) && MBB.succ_empty()) MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); } // If this is a large problem, avoid visiting the same basic blocks // multiple times. if (MergePotentials.size() == TailMergeThreshold) for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) TriedMerging.insert(MergePotentials[i].getBlock()); // See if we can do any tail merging on those. if (MergePotentials.size() >= 2) MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); // Look at blocks (IBB) with multiple predecessors (PBB). // We change each predecessor to a canonical form, by // (1) temporarily removing any unconditional branch from the predecessor // to IBB, and // (2) alter conditional branches so they branch to the other block // not IBB; this may require adding back an unconditional branch to IBB // later, where there wasn't one coming in. E.g. // Bcc IBB // fallthrough to QBB // here becomes // Bncc QBB // with a conceptual B to IBB after that, which never actually exists. // With those changes, we see whether the predecessors' tails match, // and merge them if so. We change things out of canonical form and // back to the way they were later in the process. (OptimizeBranches // would undo some of this, but we can't use it, because we'd get into // a compile-time infinite loop repeatedly doing and undoing the same // transformations.) for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); I != E; ++I) { if (I->pred_size() < 2) continue; SmallPtrSet UniquePreds; MachineBasicBlock *IBB = &*I; MachineBasicBlock *PredBB = &*std::prev(I); MergePotentials.clear(); MachineLoop *ML; // Bail if merging after placement and IBB is the loop header because // -- If merging predecessors that belong to the same loop as IBB, the // common tail of merged predecessors may become the loop top if block // placement is called again and the predecessors may branch to this common // tail and require more branches. This can be relaxed if // MachineBlockPlacement::findBestLoopTop is more flexible. // --If merging predecessors that do not belong to the same loop as IBB, the // loop info of IBB's loop and the other loops may be affected. Calling the // block placement again may make big change to the layout and eliminate the // reason to do tail merging here. if (AfterBlockPlacement && MLI) { ML = MLI->getLoopFor(IBB); if (ML && IBB == ML->getHeader()) continue; } for (MachineBasicBlock *PBB : I->predecessors()) { if (MergePotentials.size() == TailMergeThreshold) break; if (TriedMerging.count(PBB)) continue; // Skip blocks that loop to themselves, can't tail merge these. if (PBB == IBB) continue; // Visit each predecessor only once. if (!UniquePreds.insert(PBB).second) continue; // Skip blocks which may jump to a landing pad or jump from an asm blob. // Can't tail merge these. if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr()) continue; // After block placement, only consider predecessors that belong to the // same loop as IBB. The reason is the same as above when skipping loop // header. if (AfterBlockPlacement && MLI) if (ML != MLI->getLoopFor(PBB)) continue; MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { // Failing case: IBB is the target of a cbr, and we cannot reverse the // branch. SmallVector NewCond(Cond); if (!Cond.empty() && TBB == IBB) { if (TII->reverseBranchCondition(NewCond)) continue; // This is the QBB case described above if (!FBB) { auto Next = ++PBB->getIterator(); if (Next != MF.end()) FBB = &*Next; } } // Remove the unconditional branch at the end, if any. if (TBB && (Cond.empty() || FBB)) { DebugLoc dl = PBB->findBranchDebugLoc(); TII->removeBranch(*PBB); if (!Cond.empty()) // reinsert conditional branch only, for now TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, NewCond, dl); } MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); } } // If this is a large problem, avoid visiting the same basic blocks multiple // times. if (MergePotentials.size() == TailMergeThreshold) for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) TriedMerging.insert(MergePotentials[i].getBlock()); if (MergePotentials.size() >= 2) MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); // Reinsert an unconditional branch if needed. The 1 below can occur as a // result of removing blocks in TryTailMergeBlocks. PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks if (MergePotentials.size() == 1 && MergePotentials.begin()->getBlock() != PredBB) FixTail(MergePotentials.begin()->getBlock(), IBB, TII); } return MadeChange; } void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { SmallVector EdgeFreqLs(TailMBB.succ_size()); BlockFrequency AccumulatedMBBFreq; // Aggregate edge frequency of successor edge j: // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), // where bb is a basic block that is in SameTails. for (const auto &Src : SameTails) { const MachineBasicBlock *SrcMBB = Src.getBlock(); BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); AccumulatedMBBFreq += BlockFreq; // It is not necessary to recompute edge weights if TailBB has less than two // successors. if (TailMBB.succ_size() <= 1) continue; auto EdgeFreq = EdgeFreqLs.begin(); for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); SuccI != SuccE; ++SuccI, ++EdgeFreq) *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); } MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); if (TailMBB.succ_size() <= 1) return; auto SumEdgeFreq = std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) .getFrequency(); auto EdgeFreq = EdgeFreqLs.begin(); if (SumEdgeFreq > 0) { for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); SuccI != SuccE; ++SuccI, ++EdgeFreq) { auto Prob = BranchProbability::getBranchProbability( EdgeFreq->getFrequency(), SumEdgeFreq); TailMBB.setSuccProbability(SuccI, Prob); } } } //===----------------------------------------------------------------------===// // Branch Optimization //===----------------------------------------------------------------------===// bool BranchFolder::OptimizeBranches(MachineFunction &MF) { bool MadeChange = false; // Make sure blocks are numbered in order MF.RenumberBlocks(); // Renumbering blocks alters EH scope membership, recalculate it. EHScopeMembership = getEHScopeMembership(MF); for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); I != E; ) { MachineBasicBlock *MBB = &*I++; MadeChange |= OptimizeBlock(MBB); // If it is dead, remove it. if (MBB->pred_empty()) { RemoveDeadBlock(MBB); MadeChange = true; ++NumDeadBlocks; } } return MadeChange; } // Blocks should be considered empty if they contain only debug info; // else the debug info would affect codegen. static bool IsEmptyBlock(MachineBasicBlock *MBB) { return MBB->getFirstNonDebugInstr(true) == MBB->end(); } // Blocks with only debug info and branches should be considered the same // as blocks with only branches. static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); assert(I != MBB->end() && "empty block!"); return I->isBranch(); } /// IsBetterFallthrough - Return true if it would be clearly better to /// fall-through to MBB1 than to fall through into MBB2. This has to return /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will /// result in infinite loops. static bool IsBetterFallthrough(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2) { assert(MBB1 && MBB2 && "Unknown MachineBasicBlock"); // Right now, we use a simple heuristic. If MBB2 ends with a call, and // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to // optimize branches that branch to either a return block or an assert block // into a fallthrough to the return. MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) return false; // If there is a clear successor ordering we make sure that one block // will fall through to the next if (MBB1->isSuccessor(MBB2)) return true; if (MBB2->isSuccessor(MBB1)) return false; return MBB2I->isCall() && !MBB1I->isCall(); } /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch /// instructions on the block. static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); if (I != MBB.end() && I->isBranch()) return I->getDebugLoc(); return DebugLoc(); } static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, MachineBasicBlock &MBB, MachineBasicBlock &PredMBB) { auto InsertBefore = PredMBB.getFirstTerminator(); for (MachineInstr &MI : MBB.instrs()) if (MI.isDebugInstr()) { TII->duplicate(PredMBB, InsertBefore, MI); LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " << MI); } } static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, MachineBasicBlock &MBB, MachineBasicBlock &SuccMBB) { auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); for (MachineInstr &MI : MBB.instrs()) if (MI.isDebugInstr()) { TII->duplicate(SuccMBB, InsertBefore, MI); LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " << MI); } } // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such // a basic block is removed we would lose the debug information unless we have // copied the information to a predecessor/successor. // // TODO: This function only handles some simple cases. An alternative would be // to run a heavier analysis, such as the LiveDebugValues pass, before we do // branch folding. static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, MachineBasicBlock &MBB) { assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); // If this MBB is the only predecessor of a successor it is legal to copy // DBG_VALUE instructions to the beginning of the successor. for (MachineBasicBlock *SuccBB : MBB.successors()) if (SuccBB->pred_size() == 1) copyDebugInfoToSuccessor(TII, MBB, *SuccBB); // If this MBB is the only successor of a predecessor it is legal to copy the // DBG_VALUE instructions to the end of the predecessor (just before the // terminators, assuming that the terminator isn't affecting the DBG_VALUE). for (MachineBasicBlock *PredBB : MBB.predecessors()) if (PredBB->succ_size() == 1) copyDebugInfoToPredecessor(TII, MBB, *PredBB); } bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { bool MadeChange = false; MachineFunction &MF = *MBB->getParent(); ReoptimizeBlock: MachineFunction::iterator FallThrough = MBB->getIterator(); ++FallThrough; // Make sure MBB and FallThrough belong to the same EH scope. bool SameEHScope = true; if (!EHScopeMembership.empty() && FallThrough != MF.end()) { auto MBBEHScope = EHScopeMembership.find(MBB); assert(MBBEHScope != EHScopeMembership.end()); auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); assert(FallThroughEHScope != EHScopeMembership.end()); SameEHScope = MBBEHScope->second == FallThroughEHScope->second; } // Analyze the branch in the current block. As a side-effect, this may cause // the block to become empty. MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; SmallVector CurCond; bool CurUnAnalyzable = TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); // If this block is empty, make everyone use its fall-through, not the block // explicitly. Landing pads should not do this since the landing-pad table // points to this block. Blocks with their addresses taken shouldn't be // optimized away. if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && SameEHScope) { salvageDebugInfoFromEmptyBlock(TII, *MBB); // Dead block? Leave for cleanup later. if (MBB->pred_empty()) return MadeChange; if (FallThrough == MF.end()) { // TODO: Simplify preds to not branch here if possible! } else if (FallThrough->isEHPad()) { // Don't rewrite to a landing pad fallthough. That could lead to the case // where a BB jumps to more than one landing pad. // TODO: Is it ever worth rewriting predecessors which don't already // jump to a landing pad, and so can safely jump to the fallthrough? } else if (MBB->isSuccessor(&*FallThrough)) { // Rewrite all predecessors of the old block to go to the fallthrough // instead. while (!MBB->pred_empty()) { MachineBasicBlock *Pred = *(MBB->pred_end()-1); Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); } // If MBB was the target of a jump table, update jump tables to go to the // fallthrough instead. if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); MadeChange = true; } return MadeChange; } // Check to see if we can simplify the terminator of the block before this // one. MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; SmallVector PriorCond; bool PriorUnAnalyzable = TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); if (!PriorUnAnalyzable) { // If the previous branch is conditional and both conditions go to the same // destination, remove the branch, replacing it with an unconditional one or // a fall-through. if (PriorTBB && PriorTBB == PriorFBB) { DebugLoc dl = getBranchDebugLoc(PrevBB); TII->removeBranch(PrevBB); PriorCond.clear(); if (PriorTBB != MBB) TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); MadeChange = true; ++NumBranchOpts; goto ReoptimizeBlock; } // If the previous block unconditionally falls through to this block and // this block has no other predecessors, move the contents of this block // into the prior block. This doesn't usually happen when SimplifyCFG // has been used, but it can happen if tail merging splits a fall-through // predecessor of a block. // This has to check PrevBB->succ_size() because EH edges are ignored by // analyzeBranch. if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && PrevBB.succ_size() == 1 && !MBB->hasAddressTaken() && !MBB->isEHPad()) { LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB << "From MBB: " << *MBB); // Remove redundant DBG_VALUEs first. if (!PrevBB.empty()) { MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); --PrevBBIter; MachineBasicBlock::iterator MBBIter = MBB->begin(); // Check if DBG_VALUE at the end of PrevBB is identical to the // DBG_VALUE at the beginning of MBB. while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { if (!MBBIter->isIdenticalTo(*PrevBBIter)) break; MachineInstr &DuplicateDbg = *MBBIter; ++MBBIter; -- PrevBBIter; DuplicateDbg.eraseFromParent(); } } PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); PrevBB.removeSuccessor(PrevBB.succ_begin()); assert(PrevBB.succ_empty()); PrevBB.transferSuccessors(MBB); MadeChange = true; return MadeChange; } // If the previous branch *only* branches to *this* block (conditional or // not) remove the branch. if (PriorTBB == MBB && !PriorFBB) { TII->removeBranch(PrevBB); MadeChange = true; ++NumBranchOpts; goto ReoptimizeBlock; } // If the prior block branches somewhere else on the condition and here if // the condition is false, remove the uncond second branch. if (PriorFBB == MBB) { DebugLoc dl = getBranchDebugLoc(PrevBB); TII->removeBranch(PrevBB); TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); MadeChange = true; ++NumBranchOpts; goto ReoptimizeBlock; } // If the prior block branches here on true and somewhere else on false, and // if the branch condition is reversible, reverse the branch to create a // fall-through. if (PriorTBB == MBB) { SmallVector NewPriorCond(PriorCond); if (!TII->reverseBranchCondition(NewPriorCond)) { DebugLoc dl = getBranchDebugLoc(PrevBB); TII->removeBranch(PrevBB); TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); MadeChange = true; ++NumBranchOpts; goto ReoptimizeBlock; } } // If this block has no successors (e.g. it is a return block or ends with // a call to a no-return function like abort or __cxa_throw) and if the pred // falls through into this block, and if it would otherwise fall through // into the block after this, move this block to the end of the function. // // We consider it more likely that execution will stay in the function (e.g. // due to loops) than it is to exit it. This asserts in loops etc, moving // the assert condition out of the loop body. if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && MachineFunction::iterator(PriorTBB) == FallThrough && !MBB->canFallThrough()) { bool DoTransform = true; // We have to be careful that the succs of PredBB aren't both no-successor // blocks. If neither have successors and if PredBB is the second from // last block in the function, we'd just keep swapping the two blocks for // last. Only do the swap if one is clearly better to fall through than // the other. if (FallThrough == --MF.end() && !IsBetterFallthrough(PriorTBB, MBB)) DoTransform = false; if (DoTransform) { // Reverse the branch so we will fall through on the previous true cond. SmallVector NewPriorCond(PriorCond); if (!TII->reverseBranchCondition(NewPriorCond)) { LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB << "To make fallthrough to: " << *PriorTBB << "\n"); DebugLoc dl = getBranchDebugLoc(PrevBB); TII->removeBranch(PrevBB); TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); // Move this block to the end of the function. MBB->moveAfter(&MF.back()); MadeChange = true; ++NumBranchOpts; return MadeChange; } } } } bool OptForSize = MF.getFunction().hasOptSize() || llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo); if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) { // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch // direction, thereby defeating careful block placement and regressing // performance. Therefore, only consider this for optsize functions. MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); if (TII->isUnconditionalTailCall(TailCall)) { MachineBasicBlock *Pred = *MBB->pred_begin(); MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; SmallVector PredCond; bool PredAnalyzable = !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && PredTBB != PredFBB) { // The predecessor has a conditional branch to this block which consists // of only a tail call. Try to fold the tail call into the conditional // branch. if (TII->canMakeTailCallConditional(PredCond, TailCall)) { // TODO: It would be nice if analyzeBranch() could provide a pointer // to the branch instruction so replaceBranchWithTailCall() doesn't // have to search for it. TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); ++NumTailCalls; Pred->removeSuccessor(MBB); MadeChange = true; return MadeChange; } } // If the predecessor is falling through to this block, we could reverse // the branch condition and fold the tail call into that. However, after // that we might have to re-arrange the CFG to fall through to the other // block and there is a high risk of regressing code size rather than // improving it. } } if (!CurUnAnalyzable) { // If this is a two-way branch, and the FBB branches to this block, reverse // the condition so the single-basic-block loop is faster. Instead of: // Loop: xxx; jcc Out; jmp Loop // we want: // Loop: xxx; jncc Loop; jmp Out if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { SmallVector NewCond(CurCond); if (!TII->reverseBranchCondition(NewCond)) { DebugLoc dl = getBranchDebugLoc(*MBB); TII->removeBranch(*MBB); TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); MadeChange = true; ++NumBranchOpts; goto ReoptimizeBlock; } } // If this branch is the only thing in its block, see if we can forward // other blocks across it. if (CurTBB && CurCond.empty() && !CurFBB && IsBranchOnlyBlock(MBB) && CurTBB != MBB && !MBB->hasAddressTaken() && !MBB->isEHPad()) { DebugLoc dl = getBranchDebugLoc(*MBB); // This block may contain just an unconditional branch. Because there can // be 'non-branch terminators' in the block, try removing the branch and // then seeing if the block is empty. TII->removeBranch(*MBB); // If the only things remaining in the block are debug info, remove these // as well, so this will behave the same as an empty block in non-debug // mode. if (IsEmptyBlock(MBB)) { // Make the block empty, losing the debug info (we could probably // improve this in some cases.) MBB->erase(MBB->begin(), MBB->end()); } // If this block is just an unconditional branch to CurTBB, we can // usually completely eliminate the block. The only case we cannot // completely eliminate the block is when the block before this one // falls through into MBB and we can't understand the prior block's branch // condition. if (MBB->empty()) { bool PredHasNoFallThrough = !PrevBB.canFallThrough(); if (PredHasNoFallThrough || !PriorUnAnalyzable || !PrevBB.isSuccessor(MBB)) { // If the prior block falls through into us, turn it into an // explicit branch to us to make updates simpler. if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && PriorTBB != MBB && PriorFBB != MBB) { if (!PriorTBB) { assert(PriorCond.empty() && !PriorFBB && "Bad branch analysis"); PriorTBB = MBB; } else { assert(!PriorFBB && "Machine CFG out of date!"); PriorFBB = MBB; } DebugLoc pdl = getBranchDebugLoc(PrevBB); TII->removeBranch(PrevBB); TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); } // Iterate through all the predecessors, revectoring each in-turn. size_t PI = 0; bool DidChange = false; bool HasBranchToSelf = false; while(PI != MBB->pred_size()) { MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); if (PMBB == MBB) { // If this block has an uncond branch to itself, leave it. ++PI; HasBranchToSelf = true; } else { DidChange = true; PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); // If this change resulted in PMBB ending in a conditional // branch where both conditions go to the same destination, // change this to an unconditional branch. MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; SmallVector NewCurCond; bool NewCurUnAnalyzable = TII->analyzeBranch( *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { DebugLoc pdl = getBranchDebugLoc(*PMBB); TII->removeBranch(*PMBB); NewCurCond.clear(); TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); MadeChange = true; ++NumBranchOpts; } } } // Change any jumptables to go to the new MBB. if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); if (DidChange) { ++NumBranchOpts; MadeChange = true; if (!HasBranchToSelf) return MadeChange; } } } // Add the branch back if the block is more than just an uncond branch. TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); } } // If the prior block doesn't fall through into this block, and if this // block doesn't fall through into some other block, see if we can find a // place to move this block where a fall-through will happen. if (!PrevBB.canFallThrough()) { // Now we know that there was no fall-through into this block, check to // see if it has a fall-through into its successor. bool CurFallsThru = MBB->canFallThrough(); if (!MBB->isEHPad()) { // Check all the predecessors of this block. If one of them has no fall // throughs, and analyzeBranch thinks it _could_ fallthrough to this // block, move this block right after it. for (MachineBasicBlock *PredBB : MBB->predecessors()) { // Analyze the branch at the end of the pred. MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; SmallVector PredCond; if (PredBB != MBB && !PredBB->canFallThrough() && !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && (PredTBB == MBB || PredFBB == MBB) && (!CurFallsThru || !CurTBB || !CurFBB) && (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { // If the current block doesn't fall through, just move it. // If the current block can fall through and does not end with a // conditional branch, we need to append an unconditional jump to // the (current) next block. To avoid a possible compile-time // infinite loop, move blocks only backward in this case. // Also, if there are already 2 branches here, we cannot add a third; // this means we have the case // Bcc next // B elsewhere // next: if (CurFallsThru) { MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); CurCond.clear(); TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); } MBB->moveAfter(PredBB); MadeChange = true; goto ReoptimizeBlock; } } } if (!CurFallsThru) { // Check analyzable branch-successors to see if we can move this block // before one. if (!CurUnAnalyzable) { for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) { if (!SuccBB) continue; // Analyze the branch at the end of the block before the succ. MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); // If this block doesn't already fall-through to that successor, and // if the succ doesn't already have a block that can fall through into // it, we can arrange for the fallthrough to happen. if (SuccBB != MBB && &*SuccPrev != MBB && !SuccPrev->canFallThrough()) { MBB->moveBefore(SuccBB); MadeChange = true; goto ReoptimizeBlock; } } } // Okay, there is no really great place to put this block. If, however, // the block before this one would be a fall-through if this block were // removed, move this block to the end of the function. There is no real // advantage in "falling through" to an EH block, so we don't want to // perform this transformation for that case. // // Also, Windows EH introduced the possibility of an arbitrary number of // successors to a given block. The analyzeBranch call does not consider // exception handling and so we can get in a state where a block // containing a call is followed by multiple EH blocks that would be // rotated infinitely at the end of the function if the transformation // below were performed for EH "FallThrough" blocks. Therefore, even if // that appears not to be happening anymore, we should assume that it is // possible and not remove the "!FallThrough()->isEHPad" condition below. MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; SmallVector PrevCond; if (FallThrough != MF.end() && !FallThrough->isEHPad() && !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && PrevBB.isSuccessor(&*FallThrough)) { MBB->moveAfter(&MF.back()); MadeChange = true; return MadeChange; } } } return MadeChange; } //===----------------------------------------------------------------------===// // Hoist Common Code //===----------------------------------------------------------------------===// bool BranchFolder::HoistCommonCode(MachineFunction &MF) { bool MadeChange = false; for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { MachineBasicBlock *MBB = &*I++; MadeChange |= HoistCommonCodeInSuccs(MBB); } return MadeChange; } /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given /// its 'true' successor. static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, MachineBasicBlock *TrueBB) { for (MachineBasicBlock *SuccBB : BB->successors()) if (SuccBB != TrueBB) return SuccBB; return nullptr; } template static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI, Container &Set) { if (Reg.isPhysical()) { for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) Set.insert(*AI); } else { Set.insert(Reg); } } /// findHoistingInsertPosAndDeps - Find the location to move common instructions /// in successors to. The location is usually just before the terminator, /// however if the terminator is a conditional branch and its previous /// instruction is the flag setting instruction, the previous instruction is /// the preferred location. This function also gathers uses and defs of the /// instructions from the insertion point to the end of the block. The data is /// used by HoistCommonCodeInSuccs to ensure safety. static MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, SmallSet &Uses, SmallSet &Defs) { MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); if (!TII->isUnpredicatedTerminator(*Loc)) return MBB->end(); for (const MachineOperand &MO : Loc->operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (MO.isUse()) { addRegAndItsAliases(Reg, TRI, Uses); } else { if (!MO.isDead()) // Don't try to hoist code in the rare case the terminator defines a // register that is later used. return MBB->end(); // If the terminator defines a register, make sure we don't hoist // the instruction whose def might be clobbered by the terminator. addRegAndItsAliases(Reg, TRI, Defs); } } if (Uses.empty()) return Loc; // If the terminator is the only instruction in the block and Uses is not // empty (or we would have returned above), we can still safely hoist // instructions just before the terminator as long as the Defs/Uses are not // violated (which is checked in HoistCommonCodeInSuccs). if (Loc == MBB->begin()) return Loc; // The terminator is probably a conditional branch, try not to separate the // branch from condition setting instruction. MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin()); bool IsDef = false; for (const MachineOperand &MO : PI->operands()) { // If PI has a regmask operand, it is probably a call. Separate away. if (MO.isRegMask()) return Loc; if (!MO.isReg() || MO.isUse()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (Uses.count(Reg)) { IsDef = true; break; } } if (!IsDef) // The condition setting instruction is not just before the conditional // branch. return Loc; // Be conservative, don't insert instruction above something that may have // side-effects. And since it's potentially bad to separate flag setting // instruction from the conditional branch, just abort the optimization // completely. // Also avoid moving code above predicated instruction since it's hard to // reason about register liveness with predicated instruction. bool DontMoveAcrossStore = true; if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) return MBB->end(); // Find out what registers are live. Note this routine is ignoring other live // registers which are only used by instructions in successor blocks. for (const MachineOperand &MO : PI->operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (MO.isUse()) { addRegAndItsAliases(Reg, TRI, Uses); } else { if (Uses.erase(Reg)) { if (Register::isPhysicalRegister(Reg)) { for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) Uses.erase(*SubRegs); // Use sub-registers to be conservative } } addRegAndItsAliases(Reg, TRI, Defs); } } return PI; } bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) return false; if (!FBB) FBB = findFalseBlock(MBB, TBB); if (!FBB) // Malformed bcc? True and false blocks are the same? return false; // Restrict the optimization to cases where MBB is the only predecessor, // it is an obvious win. if (TBB->pred_size() > 1 || FBB->pred_size() > 1) return false; // Find a suitable position to hoist the common instructions to. Also figure // out which registers are used or defined by instructions from the insertion // point to the end of the block. SmallSet Uses, Defs; MachineBasicBlock::iterator Loc = findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); if (Loc == MBB->end()) return false; bool HasDups = false; SmallSet ActiveDefsSet, AllDefsSet; MachineBasicBlock::iterator TIB = TBB->begin(); MachineBasicBlock::iterator FIB = FBB->begin(); MachineBasicBlock::iterator TIE = TBB->end(); MachineBasicBlock::iterator FIE = FBB->end(); while (TIB != TIE && FIB != FIE) { // Skip dbg_value instructions. These do not count. TIB = skipDebugInstructionsForward(TIB, TIE, false); FIB = skipDebugInstructionsForward(FIB, FIE, false); if (TIB == TIE || FIB == FIE) break; if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) break; if (TII->isPredicated(*TIB)) // Hard to reason about register liveness with predicated instruction. break; bool IsSafe = true; for (MachineOperand &MO : TIB->operands()) { // Don't attempt to hoist instructions with register masks. if (MO.isRegMask()) { IsSafe = false; break; } if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (MO.isDef()) { if (Uses.count(Reg)) { // Avoid clobbering a register that's used by the instruction at // the point of insertion. IsSafe = false; break; } if (Defs.count(Reg) && !MO.isDead()) { // Don't hoist the instruction if the def would be clobber by the // instruction at the point insertion. FIXME: This is overly // conservative. It should be possible to hoist the instructions // in BB2 in the following example: // BB1: // r1, eflag = op1 r2, r3 // brcc eflag // // BB2: // r1 = op2, ... // = op3, killed r1 IsSafe = false; break; } } else if (!ActiveDefsSet.count(Reg)) { if (Defs.count(Reg)) { // Use is defined by the instruction at the point of insertion. IsSafe = false; break; } if (MO.isKill() && Uses.count(Reg)) // Kills a register that's read by the instruction at the point of // insertion. Remove the kill marker. MO.setIsKill(false); } } if (!IsSafe) break; bool DontMoveAcrossStore = true; if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) break; // Remove kills from ActiveDefsSet, these registers had short live ranges. for (const MachineOperand &MO : TIB->operands()) { if (!MO.isReg() || !MO.isUse() || !MO.isKill()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (!AllDefsSet.count(Reg)) { continue; } if (Reg.isPhysical()) { for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) ActiveDefsSet.erase(*AI); } else { ActiveDefsSet.erase(Reg); } } // Track local defs so we can update liveins. for (const MachineOperand &MO : TIB->operands()) { if (!MO.isReg() || !MO.isDef() || MO.isDead()) continue; Register Reg = MO.getReg(); if (!Reg || Reg.isVirtual()) continue; addRegAndItsAliases(Reg, TRI, ActiveDefsSet); addRegAndItsAliases(Reg, TRI, AllDefsSet); } HasDups = true; ++TIB; ++FIB; } if (!HasDups) return false; MBB->splice(Loc, TBB, TBB->begin(), TIB); FBB->erase(FBB->begin(), FIB); if (UpdateLiveIns) { recomputeLiveIns(*TBB); recomputeLiveIns(*FBB); } ++NumHoist; return true; }