//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the TargetInstrInfoImpl class, it just provides default // implementations of various methods. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; // commuteInstruction - The default implementation of this method just exchanges // the two operands returned by findCommutedOpIndices. MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI, bool NewMI) const { const TargetInstrDesc &TID = MI->getDesc(); bool HasDef = TID.getNumDefs(); if (HasDef && !MI->getOperand(0).isReg()) // No idea how to commute this instruction. Target should implement its own. return 0; unsigned Idx1, Idx2; if (!findCommutedOpIndices(MI, Idx1, Idx2)) { std::string msg; raw_string_ostream Msg(msg); Msg << "Don't know how to commute: " << *MI; llvm_report_error(Msg.str()); } assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && "This only knows how to commute register operands so far"); unsigned Reg1 = MI->getOperand(Idx1).getReg(); unsigned Reg2 = MI->getOperand(Idx2).getReg(); bool Reg1IsKill = MI->getOperand(Idx1).isKill(); bool Reg2IsKill = MI->getOperand(Idx2).isKill(); bool ChangeReg0 = false; if (HasDef && MI->getOperand(0).getReg() == Reg1) { // Must be two address instruction! assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) && "Expecting a two-address instruction!"); Reg2IsKill = false; ChangeReg0 = true; } if (NewMI) { // Create a new instruction. unsigned Reg0 = HasDef ? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0; bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false; MachineFunction &MF = *MI->getParent()->getParent(); if (HasDef) return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) .addReg(Reg2, getKillRegState(Reg2IsKill)) .addReg(Reg1, getKillRegState(Reg2IsKill)); else return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) .addReg(Reg2, getKillRegState(Reg2IsKill)) .addReg(Reg1, getKillRegState(Reg2IsKill)); } if (ChangeReg0) MI->getOperand(0).setReg(Reg2); MI->getOperand(Idx2).setReg(Reg1); MI->getOperand(Idx1).setReg(Reg2); MI->getOperand(Idx2).setIsKill(Reg1IsKill); MI->getOperand(Idx1).setIsKill(Reg2IsKill); return MI; } /// findCommutedOpIndices - If specified MI is commutable, return the two /// operand indices that would swap value. Return true if the instruction /// is not in a form which this routine understands. bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { const TargetInstrDesc &TID = MI->getDesc(); if (!TID.isCommutable()) return false; // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this // is not true, then the target must implement this. SrcOpIdx1 = TID.getNumDefs(); SrcOpIdx2 = SrcOpIdx1 + 1; if (!MI->getOperand(SrcOpIdx1).isReg() || !MI->getOperand(SrcOpIdx2).isReg()) // No idea. return false; return true; } bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI, const SmallVectorImpl &Pred) const { bool MadeChange = false; const TargetInstrDesc &TID = MI->getDesc(); if (!TID.isPredicable()) return false; for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { if (TID.OpInfo[i].isPredicate()) { MachineOperand &MO = MI->getOperand(i); if (MO.isReg()) { MO.setReg(Pred[j].getReg()); MadeChange = true; } else if (MO.isImm()) { MO.setImm(Pred[j].getImm()); MadeChange = true; } else if (MO.isMBB()) { MO.setMBB(Pred[j].getMBB()); MadeChange = true; } ++j; } } return MadeChange; } void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig, const TargetRegisterInfo *TRI) const { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); MachineOperand &MO = MI->getOperand(0); if (TargetRegisterInfo::isVirtualRegister(DestReg)) { MO.setReg(DestReg); MO.setSubReg(SubIdx); } else if (SubIdx) { MO.setReg(TRI->getSubReg(DestReg, SubIdx)); } else { MO.setReg(DestReg); } MBB.insert(I, MI); } bool TargetInstrInfoImpl::isIdentical(const MachineInstr *MI, const MachineInstr *Other, const MachineRegisterInfo *MRI) const { if (MI->getOpcode() != Other->getOpcode() || MI->getNumOperands() != Other->getNumOperands()) return false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); const MachineOperand &OMO = Other->getOperand(i); if (MO.isReg() && MO.isDef()) { assert(OMO.isReg() && OMO.isDef()); unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (Reg != OMO.getReg()) return false; } else if (MRI->getRegClass(MO.getReg()) != MRI->getRegClass(OMO.getReg())) return false; continue; } if (!MO.isIdenticalTo(OMO)) return false; } return true; } unsigned TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const { unsigned FnSize = 0; for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end(); MBBI != E; ++MBBI) { const MachineBasicBlock &MBB = *MBBI; for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end(); I != E; ++I) FnSize += GetInstSizeInBytes(I); } return FnSize; } /// foldMemoryOperand - Attempt to fold a load or store of the specified stack /// slot into the specified machine instruction for the specified operand(s). /// If this is possible, a new instruction is returned with the specified /// operand folded, otherwise NULL is returned. The client is responsible for /// removing the old instruction and adding the new one in the instruction /// stream. MachineInstr* TargetInstrInfo::foldMemoryOperand(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, int FrameIndex) const { unsigned Flags = 0; for (unsigned i = 0, e = Ops.size(); i != e; ++i) if (MI->getOperand(Ops[i]).isDef()) Flags |= MachineMemOperand::MOStore; else Flags |= MachineMemOperand::MOLoad; // Ask the target to do the actual folding. MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex); if (!NewMI) return 0; assert((!(Flags & MachineMemOperand::MOStore) || NewMI->getDesc().mayStore()) && "Folded a def to a non-store!"); assert((!(Flags & MachineMemOperand::MOLoad) || NewMI->getDesc().mayLoad()) && "Folded a use to a non-load!"); const MachineFrameInfo &MFI = *MF.getFrameInfo(); assert(MFI.getObjectOffset(FrameIndex) != -1); MachineMemOperand *MMO = MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIndex), Flags, /*Offset=*/0, MFI.getObjectSize(FrameIndex), MFI.getObjectAlignment(FrameIndex)); NewMI->addMemOperand(MF, MMO); return NewMI; } /// foldMemoryOperand - Same as the previous version except it allows folding /// of any load and store from / to any address, not just from a specific /// stack slot. MachineInstr* TargetInstrInfo::foldMemoryOperand(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, MachineInstr* LoadMI) const { assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!"); #ifndef NDEBUG for (unsigned i = 0, e = Ops.size(); i != e; ++i) assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); #endif // Ask the target to do the actual folding. MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); if (!NewMI) return 0; // Copy the memoperands from the load to the folded instruction. NewMI->setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end()); return NewMI; } bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(const MachineInstr * MI, AliasAnalysis * AA) const { const MachineFunction &MF = *MI->getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetMachine &TM = MF.getTarget(); const TargetInstrInfo &TII = *TM.getInstrInfo(); const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); // A load from a fixed stack slot can be rematerialized. This may be // redundant with subsequent checks, but it's target-independent, // simple, and a common case. int FrameIdx = 0; if (TII.isLoadFromStackSlot(MI, FrameIdx) && MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) return true; const TargetInstrDesc &TID = MI->getDesc(); // Avoid instructions obviously unsafe for remat. if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable() || TID.mayStore()) return false; // Avoid instructions which load from potentially varying memory. if (TID.mayLoad() && !MI->isInvariantLoad(AA)) return false; // If any of the registers accessed are non-constant, conservatively assume // the instruction is not rematerializable. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; // Check for a well-behaved physical register. if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!MRI.def_empty(Reg)) return false; BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0); if (AllocatableRegs.test(Reg)) return false; // Check for a def among the register's aliases too. for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; if (!MRI.def_empty(AliasReg)) return false; if (AllocatableRegs.test(AliasReg)) return false; } } else { // A physreg def. We can't remat it. return false; } continue; } // Only allow one virtual-register def, and that in the first operand. if (MO.isDef() != (i == 0)) return false; // For the def, it should be the only def of that register. if (MO.isDef() && (next(MRI.def_begin(Reg)) != MRI.def_end() || MRI.isLiveIn(Reg))) return false; // Don't allow any virtual-register uses. Rematting an instruction with // virtual register uses would length the live ranges of the uses, which // is not necessarily a good idea, certainly not "trivial". if (MO.isUse()) return false; } // Everything checked out. return true; }