//===- HexagonSplitDouble.cpp ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "hsdr" #include "HexagonInstrInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DebugLoc.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include using namespace llvm; namespace llvm { FunctionPass *createHexagonSplitDoubleRegs(); void initializeHexagonSplitDoubleRegsPass(PassRegistry&); } // end namespace llvm static cl::opt MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1), cl::desc("Maximum number of split partitions")); static cl::opt MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true), cl::desc("Do not split loads or stores")); static cl::opt SplitAll("hsdr-split-all", cl::Hidden, cl::init(false), cl::desc("Split all partitions")); namespace { class HexagonSplitDoubleRegs : public MachineFunctionPass { public: static char ID; HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {} StringRef getPassName() const override { return "Hexagon Split Double Registers"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; private: static const TargetRegisterClass *const DoubleRC; const HexagonRegisterInfo *TRI = nullptr; const HexagonInstrInfo *TII = nullptr; const MachineLoopInfo *MLI; MachineRegisterInfo *MRI; using USet = std::set; using UUSetMap = std::map; using UUPair = std::pair; using UUPairMap = std::map; using LoopRegMap = std::map; bool isInduction(unsigned Reg, LoopRegMap &IRM) const; bool isVolatileInstr(const MachineInstr *MI) const; bool isFixedInstr(const MachineInstr *MI) const; void partitionRegisters(UUSetMap &P2Rs); int32_t profit(const MachineInstr *MI) const; int32_t profit(Register Reg) const; bool isProfitable(const USet &Part, LoopRegMap &IRM) const; void collectIndRegsForLoop(const MachineLoop *L, USet &Rs); void collectIndRegs(LoopRegMap &IRM); void createHalfInstr(unsigned Opc, MachineInstr *MI, const UUPairMap &PairMap, unsigned SubR); void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap); void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap); void splitCombine(MachineInstr *MI, const UUPairMap &PairMap); void splitExt(MachineInstr *MI, const UUPairMap &PairMap); void splitShift(MachineInstr *MI, const UUPairMap &PairMap); void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap); bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap); void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap); void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap); bool splitPartition(const USet &Part); static int Counter; static void dump_partition(raw_ostream&, const USet&, const TargetRegisterInfo&); }; } // end anonymous namespace char HexagonSplitDoubleRegs::ID; int HexagonSplitDoubleRegs::Counter = 0; const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC = &Hexagon::DoubleRegsRegClass; INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double", "Hexagon Split Double Registers", false, false) #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os, const USet &Part, const TargetRegisterInfo &TRI) { dbgs() << '{'; for (auto I : Part) dbgs() << ' ' << printReg(I, &TRI); dbgs() << " }"; } #endif bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const { for (auto I : IRM) { const USet &Rs = I.second; if (Rs.find(Reg) != Rs.end()) return true; } return false; } bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const { for (auto &MO : MI->memoperands()) if (MO->isVolatile() || MO->isAtomic()) return true; return false; } bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const { if (MI->mayLoadOrStore()) if (MemRefsFixed || isVolatileInstr(MI)) return true; if (MI->isDebugInstr()) return false; unsigned Opc = MI->getOpcode(); switch (Opc) { default: return true; case TargetOpcode::PHI: case TargetOpcode::COPY: break; case Hexagon::L2_loadrd_io: // Not handling stack stores (only reg-based addresses). if (MI->getOperand(1).isReg()) break; return true; case Hexagon::S2_storerd_io: // Not handling stack stores (only reg-based addresses). if (MI->getOperand(0).isReg()) break; return true; case Hexagon::L2_loadrd_pi: case Hexagon::S2_storerd_pi: case Hexagon::A2_tfrpi: case Hexagon::A2_combineii: case Hexagon::A4_combineir: case Hexagon::A4_combineii: case Hexagon::A4_combineri: case Hexagon::A2_combinew: case Hexagon::CONST64: case Hexagon::A2_sxtw: case Hexagon::A2_andp: case Hexagon::A2_orp: case Hexagon::A2_xorp: case Hexagon::S2_asl_i_p_or: case Hexagon::S2_asl_i_p: case Hexagon::S2_asr_i_p: case Hexagon::S2_lsr_i_p: break; } for (auto &Op : MI->operands()) { if (!Op.isReg()) continue; Register R = Op.getReg(); if (!R.isVirtual()) return true; } return false; } void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) { using UUMap = std::map; using UVect = std::vector; unsigned NumRegs = MRI->getNumVirtRegs(); BitVector DoubleRegs(NumRegs); for (unsigned i = 0; i < NumRegs; ++i) { unsigned R = Register::index2VirtReg(i); if (MRI->getRegClass(R) == DoubleRC) DoubleRegs.set(i); } BitVector FixedRegs(NumRegs); for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { unsigned R = Register::index2VirtReg(x); MachineInstr *DefI = MRI->getVRegDef(R); // In some cases a register may exist, but never be defined or used. // It should never appear anywhere, but mark it as "fixed", just to be // safe. if (!DefI || isFixedInstr(DefI)) FixedRegs.set(x); } UUSetMap AssocMap; for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { if (FixedRegs[x]) continue; unsigned R = Register::index2VirtReg(x); LLVM_DEBUG(dbgs() << printReg(R, TRI) << " ~~"); USet &Asc = AssocMap[R]; for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end(); U != Z; ++U) { MachineOperand &Op = *U; MachineInstr *UseI = Op.getParent(); if (isFixedInstr(UseI)) continue; for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) { MachineOperand &MO = UseI->getOperand(i); // Skip non-registers or registers with subregisters. if (&MO == &Op || !MO.isReg() || MO.getSubReg()) continue; Register T = MO.getReg(); if (!T.isVirtual()) { FixedRegs.set(x); continue; } if (MRI->getRegClass(T) != DoubleRC) continue; unsigned u = Register::virtReg2Index(T); if (FixedRegs[u]) continue; LLVM_DEBUG(dbgs() << ' ' << printReg(T, TRI)); Asc.insert(T); // Make it symmetric. AssocMap[T].insert(R); } } LLVM_DEBUG(dbgs() << '\n'); } UUMap R2P; unsigned NextP = 1; USet Visited; for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { unsigned R = Register::index2VirtReg(x); if (Visited.count(R)) continue; // Create a new partition for R. unsigned ThisP = FixedRegs[x] ? 0 : NextP++; UVect WorkQ; WorkQ.push_back(R); for (unsigned i = 0; i < WorkQ.size(); ++i) { unsigned T = WorkQ[i]; if (Visited.count(T)) continue; R2P[T] = ThisP; Visited.insert(T); // Add all registers associated with T. USet &Asc = AssocMap[T]; append_range(WorkQ, Asc); } } for (auto I : R2P) P2Rs[I.second].insert(I.first); } static inline int32_t profitImm(unsigned Imm) { int32_t P = 0; if (Imm == 0 || Imm == 0xFFFFFFFF) P += 10; return P; } int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const { unsigned ImmX = 0; unsigned Opc = MI->getOpcode(); switch (Opc) { case TargetOpcode::PHI: for (const auto &Op : MI->operands()) if (!Op.getSubReg()) return 0; return 10; case TargetOpcode::COPY: if (MI->getOperand(1).getSubReg() != 0) return 10; return 0; case Hexagon::L2_loadrd_io: case Hexagon::S2_storerd_io: return -1; case Hexagon::L2_loadrd_pi: case Hexagon::S2_storerd_pi: return 2; case Hexagon::A2_tfrpi: case Hexagon::CONST64: { uint64_t D = MI->getOperand(1).getImm(); unsigned Lo = D & 0xFFFFFFFFULL; unsigned Hi = D >> 32; return profitImm(Lo) + profitImm(Hi); } case Hexagon::A2_combineii: case Hexagon::A4_combineii: { const MachineOperand &Op1 = MI->getOperand(1); const MachineOperand &Op2 = MI->getOperand(2); int32_t Prof1 = Op1.isImm() ? profitImm(Op1.getImm()) : 0; int32_t Prof2 = Op2.isImm() ? profitImm(Op2.getImm()) : 0; return Prof1 + Prof2; } case Hexagon::A4_combineri: ImmX++; // Fall through into A4_combineir. LLVM_FALLTHROUGH; case Hexagon::A4_combineir: { ImmX++; const MachineOperand &OpX = MI->getOperand(ImmX); if (OpX.isImm()) { int64_t V = OpX.getImm(); if (V == 0 || V == -1) return 10; } // Fall through into A2_combinew. LLVM_FALLTHROUGH; } case Hexagon::A2_combinew: return 2; case Hexagon::A2_sxtw: return 3; case Hexagon::A2_andp: case Hexagon::A2_orp: case Hexagon::A2_xorp: { Register Rs = MI->getOperand(1).getReg(); Register Rt = MI->getOperand(2).getReg(); return profit(Rs) + profit(Rt); } case Hexagon::S2_asl_i_p_or: { unsigned S = MI->getOperand(3).getImm(); if (S == 0 || S == 32) return 10; return -1; } case Hexagon::S2_asl_i_p: case Hexagon::S2_asr_i_p: case Hexagon::S2_lsr_i_p: unsigned S = MI->getOperand(2).getImm(); if (S == 0 || S == 32) return 10; if (S == 16) return 5; if (S == 48) return 7; return -10; } return 0; } int32_t HexagonSplitDoubleRegs::profit(Register Reg) const { assert(Reg.isVirtual()); const MachineInstr *DefI = MRI->getVRegDef(Reg); switch (DefI->getOpcode()) { case Hexagon::A2_tfrpi: case Hexagon::CONST64: case Hexagon::A2_combineii: case Hexagon::A4_combineii: case Hexagon::A4_combineri: case Hexagon::A4_combineir: case Hexagon::A2_combinew: return profit(DefI); default: break; } return 0; } bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM) const { unsigned FixedNum = 0, LoopPhiNum = 0; int32_t TotalP = 0; for (unsigned DR : Part) { MachineInstr *DefI = MRI->getVRegDef(DR); int32_t P = profit(DefI); if (P == std::numeric_limits::min()) return false; TotalP += P; // Reduce the profitability of splitting induction registers. if (isInduction(DR, IRM)) TotalP -= 30; for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); U != W; ++U) { MachineInstr *UseI = U->getParent(); if (isFixedInstr(UseI)) { FixedNum++; // Calculate the cost of generating REG_SEQUENCE instructions. for (auto &Op : UseI->operands()) { if (Op.isReg() && Part.count(Op.getReg())) if (Op.getSubReg()) TotalP -= 2; } continue; } // If a register from this partition is used in a fixed instruction, // and there is also a register in this partition that is used in // a loop phi node, then decrease the splitting profit as this can // confuse the modulo scheduler. if (UseI->isPHI()) { const MachineBasicBlock *PB = UseI->getParent(); const MachineLoop *L = MLI->getLoopFor(PB); if (L && L->getHeader() == PB) LoopPhiNum++; } // Splittable instruction. int32_t P = profit(UseI); if (P == std::numeric_limits::min()) return false; TotalP += P; } } if (FixedNum > 0 && LoopPhiNum > 0) TotalP -= 20*LoopPhiNum; LLVM_DEBUG(dbgs() << "Partition profit: " << TotalP << '\n'); if (SplitAll) return true; return TotalP > 0; } void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L, USet &Rs) { const MachineBasicBlock *HB = L->getHeader(); const MachineBasicBlock *LB = L->getLoopLatch(); if (!HB || !LB) return; // Examine the latch branch. Expect it to be a conditional branch to // the header (either "br-cond header" or "br-cond exit; br header"). MachineBasicBlock *TB = nullptr, *FB = nullptr; MachineBasicBlock *TmpLB = const_cast(LB); SmallVector Cond; bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false); // Only analyzable conditional branches. HII::analyzeBranch will put // the branch opcode as the first element of Cond, and the predicate // operand as the second. if (BadLB || Cond.size() != 2) return; // Only simple jump-conditional (with or without negation). if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm())) return; // Must go to the header. if (TB != HB && FB != HB) return; assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch"); // Expect a predicate register. Register PR = Cond[1].getReg(); assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass); // Get the registers on which the loop controlling compare instruction // depends. Register CmpR1, CmpR2; const MachineInstr *CmpI = MRI->getVRegDef(PR); while (CmpI->getOpcode() == Hexagon::C2_not) CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg()); int Mask = 0, Val = 0; bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val); if (!OkCI) return; // Eliminate non-double input registers. if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC) CmpR1 = 0; if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC) CmpR2 = 0; if (!CmpR1 && !CmpR2) return; // Now examine the top of the loop: the phi nodes that could poten- // tially define loop induction registers. The registers defined by // such a phi node would be used in a 64-bit add, which then would // be used in the loop compare instruction. // Get the set of all double registers defined by phi nodes in the // loop header. using UVect = std::vector; UVect DP; for (auto &MI : *HB) { if (!MI.isPHI()) break; const MachineOperand &MD = MI.getOperand(0); Register R = MD.getReg(); if (MRI->getRegClass(R) == DoubleRC) DP.push_back(R); } if (DP.empty()) return; auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool { for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end(); I != E; ++I) { const MachineInstr *UseI = I->getParent(); if (UseI->getOpcode() != Hexagon::A2_addp) continue; // Get the output from the add. If it is one of the inputs to the // loop-controlling compare instruction, then R is likely an induc- // tion register. Register T = UseI->getOperand(0).getReg(); if (T == CmpR1 || T == CmpR2) return false; } return true; }; UVect::iterator End = llvm::remove_if(DP, NoIndOp); Rs.insert(DP.begin(), End); Rs.insert(CmpR1); Rs.insert(CmpR2); LLVM_DEBUG({ dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: "; dump_partition(dbgs(), Rs, *TRI); dbgs() << '\n'; }); } void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) { using LoopVector = std::vector; LoopVector WorkQ; append_range(WorkQ, *MLI); for (unsigned i = 0; i < WorkQ.size(); ++i) append_range(WorkQ, *WorkQ[i]); USet Rs; for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) { MachineLoop *L = WorkQ[i]; Rs.clear(); collectIndRegsForLoop(L, Rs); if (!Rs.empty()) IRM.insert(std::make_pair(L, Rs)); } } void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI, const UUPairMap &PairMap, unsigned SubR) { MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc)); for (auto &Op : MI->operands()) { if (!Op.isReg()) { NewI->addOperand(Op); continue; } // For register operands, set the subregister. Register R = Op.getReg(); unsigned SR = Op.getSubReg(); bool isVirtReg = R.isVirtual(); bool isKill = Op.isKill(); if (isVirtReg && MRI->getRegClass(R) == DoubleRC) { isKill = false; UUPairMap::const_iterator F = PairMap.find(R); if (F == PairMap.end()) { SR = SubR; } else { const UUPair &P = F->second; R = (SubR == Hexagon::isub_lo) ? P.first : P.second; SR = 0; } } auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill, Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(), Op.isInternalRead()); NewI->addOperand(CO); } } void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI, const UUPairMap &PairMap) { bool Load = MI->mayLoad(); unsigned OrigOpc = MI->getOpcode(); bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi || OrigOpc == Hexagon::S2_storerd_pi); MachineInstr *LowI, *HighI; MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); // Index of the base-address-register operand. unsigned AdrX = PostInc ? (Load ? 2 : 1) : (Load ? 1 : 0); MachineOperand &AdrOp = MI->getOperand(AdrX); unsigned RSA = getRegState(AdrOp); MachineOperand &ValOp = Load ? MI->getOperand(0) : (PostInc ? MI->getOperand(3) : MI->getOperand(2)); UUPairMap::const_iterator F = PairMap.find(ValOp.getReg()); assert(F != PairMap.end()); if (Load) { const UUPair &P = F->second; int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm(); LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first) .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) .addImm(Off); HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second) .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) .addImm(Off+4); } else { const UUPair &P = F->second; int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm(); LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) .addImm(Off) .addReg(P.first); HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) .addImm(Off+4) .addReg(P.second); } if (PostInc) { // Create the increment of the address register. int64_t Inc = Load ? MI->getOperand(3).getImm() : MI->getOperand(2).getImm(); MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0); const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg()); Register NewR = MRI->createVirtualRegister(RC); assert(!UpdOp.getSubReg() && "Def operand with subreg"); BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR) .addReg(AdrOp.getReg(), RSA) .addImm(Inc); MRI->replaceRegWith(UpdOp.getReg(), NewR); // The original instruction will be deleted later. } // Generate a new pair of memory-operands. MachineFunction &MF = *B.getParent(); for (auto &MO : MI->memoperands()) { const MachinePointerInfo &Ptr = MO->getPointerInfo(); MachineMemOperand::Flags F = MO->getFlags(); Align A = MO->getAlign(); auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4 /*size*/, A); LowI->addMemOperand(MF, Tmp1); auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4 /*size*/, std::min(A, Align(4))); HighI->addMemOperand(MF, Tmp2); } } void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI, const UUPairMap &PairMap) { MachineOperand &Op0 = MI->getOperand(0); MachineOperand &Op1 = MI->getOperand(1); assert(Op0.isReg() && Op1.isImm()); uint64_t V = Op1.getImm(); MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); assert(F != PairMap.end()); const UUPair &P = F->second; // The operand to A2_tfrsi can only have 32 significant bits. Immediate // values in MachineOperand are stored as 64-bit integers, and so the // value -1 may be represented either as 64-bit -1, or 4294967295. Both // will have the 32 higher bits truncated in the end, but -1 will remain // as -1, while the latter may appear to be a large unsigned value // requiring a constant extender. The casting to int32_t will select the // former representation. (The same reasoning applies to all 32-bit // values.) BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) .addImm(int32_t(V & 0xFFFFFFFFULL)); BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) .addImm(int32_t(V >> 32)); } void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI, const UUPairMap &PairMap) { MachineOperand &Op0 = MI->getOperand(0); MachineOperand &Op1 = MI->getOperand(1); MachineOperand &Op2 = MI->getOperand(2); assert(Op0.isReg()); MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); assert(F != PairMap.end()); const UUPair &P = F->second; if (!Op1.isReg()) { BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) .add(Op1); } else { BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second) .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg()); } if (!Op2.isReg()) { BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) .add(Op2); } else { BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg()); } } void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI, const UUPairMap &PairMap) { MachineOperand &Op0 = MI->getOperand(0); MachineOperand &Op1 = MI->getOperand(1); assert(Op0.isReg() && Op1.isReg()); MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); assert(F != PairMap.end()); const UUPair &P = F->second; unsigned RS = getRegState(Op1); BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg()); BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second) .addReg(Op1.getReg(), RS, Op1.getSubReg()) .addImm(31); } void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI, const UUPairMap &PairMap) { using namespace Hexagon; MachineOperand &Op0 = MI->getOperand(0); MachineOperand &Op1 = MI->getOperand(1); MachineOperand &Op2 = MI->getOperand(2); assert(Op0.isReg() && Op1.isReg() && Op2.isImm()); int64_t Sh64 = Op2.getImm(); assert(Sh64 >= 0 && Sh64 < 64); unsigned S = Sh64; UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); assert(F != PairMap.end()); const UUPair &P = F->second; Register LoR = P.first; Register HiR = P.second; unsigned Opc = MI->getOpcode(); bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p); bool Left = !Right; bool Signed = (Opc == S2_asr_i_p); MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); unsigned RS = getRegState(Op1); unsigned ShiftOpc = Left ? S2_asl_i_r : (Signed ? S2_asr_i_r : S2_lsr_i_r); unsigned LoSR = isub_lo; unsigned HiSR = isub_hi; if (S == 0) { // No shift, subregister copy. BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR) .addReg(Op1.getReg(), RS, HiSR); } else if (S < 32) { const TargetRegisterClass *IntRC = &IntRegsRegClass; Register TmpR = MRI->createVirtualRegister(IntRC); // Expansion: // Shift left: DR = shl R, #s // LoR = shl R.lo, #s // TmpR = extractu R.lo, #s, #32-s // HiR = or (TmpR, asl(R.hi, #s)) // Shift right: DR = shr R, #s // HiR = shr R.hi, #s // TmpR = shr R.lo, #s // LoR = insert TmpR, R.hi, #s, #32-s // Shift left: // LoR = shl R.lo, #s // Shift right: // TmpR = shr R.lo, #s // Make a special case for A2_aslh and A2_asrh (they are predicable as // opposed to S2_asl_i_r/S2_asr_i_r). if (S == 16 && Left) BuildMI(B, MI, DL, TII->get(A2_aslh), LoR) .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); else if (S == 16 && Signed) BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR) .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); else BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR)) .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) .addImm(S); if (Left) { // TmpR = extractu R.lo, #s, #32-s BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR) .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) .addImm(S) .addImm(32-S); // HiR = or (TmpR, asl(R.hi, #s)) BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) .addReg(TmpR) .addReg(Op1.getReg(), RS, HiSR) .addImm(S); } else { // HiR = shr R.hi, #s BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR) .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR) .addImm(S); // LoR = insert TmpR, R.hi, #s, #32-s BuildMI(B, MI, DL, TII->get(S2_insert), LoR) .addReg(TmpR) .addReg(Op1.getReg(), RS, HiSR) .addImm(S) .addImm(32-S); } } else if (S == 32) { BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR)) .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)); if (!Signed) BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) .addImm(0); else // Must be right shift. BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) .addReg(Op1.getReg(), RS, HiSR) .addImm(31); } else if (S < 64) { S -= 32; if (S == 16 && Left) BuildMI(B, MI, DL, TII->get(A2_aslh), HiR) .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); else if (S == 16 && Signed) BuildMI(B, MI, DL, TII->get(A2_asrh), LoR) .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR); else BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR)) .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)) .addImm(S); if (Signed) BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) .addReg(Op1.getReg(), RS, HiSR) .addImm(31); else BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) .addImm(0); } } void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI, const UUPairMap &PairMap) { using namespace Hexagon; MachineOperand &Op0 = MI->getOperand(0); MachineOperand &Op1 = MI->getOperand(1); MachineOperand &Op2 = MI->getOperand(2); MachineOperand &Op3 = MI->getOperand(3); assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm()); int64_t Sh64 = Op3.getImm(); assert(Sh64 >= 0 && Sh64 < 64); unsigned S = Sh64; UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); assert(F != PairMap.end()); const UUPair &P = F->second; unsigned LoR = P.first; unsigned HiR = P.second; MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); unsigned RS1 = getRegState(Op1); unsigned RS2 = getRegState(Op2); const TargetRegisterClass *IntRC = &IntRegsRegClass; unsigned LoSR = isub_lo; unsigned HiSR = isub_hi; // Op0 = S2_asl_i_p_or Op1, Op2, Op3 // means: Op0 = or (Op1, asl(Op2, Op3)) // Expansion of // DR = or (R1, asl(R2, #s)) // // LoR = or (R1.lo, asl(R2.lo, #s)) // Tmp1 = extractu R2.lo, #s, #32-s // Tmp2 = or R1.hi, Tmp1 // HiR = or (Tmp2, asl(R2.hi, #s)) if (S == 0) { // DR = or (R1, asl(R2, #0)) // -> or (R1, R2) // i.e. LoR = or R1.lo, R2.lo // HiR = or R1.hi, R2.hi BuildMI(B, MI, DL, TII->get(A2_or), LoR) .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR); BuildMI(B, MI, DL, TII->get(A2_or), HiR) .addReg(Op1.getReg(), RS1, HiSR) .addReg(Op2.getReg(), RS2, HiSR); } else if (S < 32) { BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR) .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) .addImm(S); Register TmpR1 = MRI->createVirtualRegister(IntRC); BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1) .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) .addImm(S) .addImm(32-S); Register TmpR2 = MRI->createVirtualRegister(IntRC); BuildMI(B, MI, DL, TII->get(A2_or), TmpR2) .addReg(Op1.getReg(), RS1, HiSR) .addReg(TmpR1); BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) .addReg(TmpR2) .addReg(Op2.getReg(), RS2, HiSR) .addImm(S); } else if (S == 32) { // DR = or (R1, asl(R2, #32)) // -> or R1, R2.lo // LoR = R1.lo // HiR = or R1.hi, R2.lo BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); BuildMI(B, MI, DL, TII->get(A2_or), HiR) .addReg(Op1.getReg(), RS1, HiSR) .addReg(Op2.getReg(), RS2, LoSR); } else if (S < 64) { // DR = or (R1, asl(R2, #s)) // // LoR = R1:lo // HiR = or (R1:hi, asl(R2:lo, #s-32)) S -= 32; BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) .addReg(Op1.getReg(), RS1, HiSR) .addReg(Op2.getReg(), RS2, LoSR) .addImm(S); } } bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI, const UUPairMap &PairMap) { using namespace Hexagon; LLVM_DEBUG(dbgs() << "Splitting: " << *MI); bool Split = false; unsigned Opc = MI->getOpcode(); switch (Opc) { case TargetOpcode::PHI: case TargetOpcode::COPY: { Register DstR = MI->getOperand(0).getReg(); if (MRI->getRegClass(DstR) == DoubleRC) { createHalfInstr(Opc, MI, PairMap, isub_lo); createHalfInstr(Opc, MI, PairMap, isub_hi); Split = true; } break; } case A2_andp: createHalfInstr(A2_and, MI, PairMap, isub_lo); createHalfInstr(A2_and, MI, PairMap, isub_hi); Split = true; break; case A2_orp: createHalfInstr(A2_or, MI, PairMap, isub_lo); createHalfInstr(A2_or, MI, PairMap, isub_hi); Split = true; break; case A2_xorp: createHalfInstr(A2_xor, MI, PairMap, isub_lo); createHalfInstr(A2_xor, MI, PairMap, isub_hi); Split = true; break; case L2_loadrd_io: case L2_loadrd_pi: case S2_storerd_io: case S2_storerd_pi: splitMemRef(MI, PairMap); Split = true; break; case A2_tfrpi: case CONST64: splitImmediate(MI, PairMap); Split = true; break; case A2_combineii: case A4_combineir: case A4_combineii: case A4_combineri: case A2_combinew: splitCombine(MI, PairMap); Split = true; break; case A2_sxtw: splitExt(MI, PairMap); Split = true; break; case S2_asl_i_p: case S2_asr_i_p: case S2_lsr_i_p: splitShift(MI, PairMap); Split = true; break; case S2_asl_i_p_or: splitAslOr(MI, PairMap); Split = true; break; default: llvm_unreachable("Instruction not splitable"); return false; } return Split; } void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap) { for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isUse() || !Op.getSubReg()) continue; Register R = Op.getReg(); UUPairMap::const_iterator F = PairMap.find(R); if (F == PairMap.end()) continue; const UUPair &P = F->second; switch (Op.getSubReg()) { case Hexagon::isub_lo: Op.setReg(P.first); break; case Hexagon::isub_hi: Op.setReg(P.second); break; } Op.setSubReg(0); } } void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap) { MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isUse()) continue; Register R = Op.getReg(); if (!R.isVirtual()) continue; if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg()) continue; UUPairMap::const_iterator F = PairMap.find(R); if (F == PairMap.end()) continue; const UUPair &Pr = F->second; Register NewDR = MRI->createVirtualRegister(DoubleRC); BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR) .addReg(Pr.first) .addImm(Hexagon::isub_lo) .addReg(Pr.second) .addImm(Hexagon::isub_hi); Op.setReg(NewDR); } } bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) { using MISet = std::set; const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; bool Changed = false; LLVM_DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI); dbgs() << '\n'); UUPairMap PairMap; MISet SplitIns; for (unsigned DR : Part) { MachineInstr *DefI = MRI->getVRegDef(DR); SplitIns.insert(DefI); // Collect all instructions, including fixed ones. We won't split them, // but we need to visit them again to insert the REG_SEQUENCE instructions. for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); U != W; ++U) SplitIns.insert(U->getParent()); Register LoR = MRI->createVirtualRegister(IntRC); Register HiR = MRI->createVirtualRegister(IntRC); LLVM_DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> " << printReg(HiR, TRI) << ':' << printReg(LoR, TRI) << '\n'); PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR))); } MISet Erase; for (auto MI : SplitIns) { if (isFixedInstr(MI)) { collapseRegPairs(MI, PairMap); } else { bool Done = splitInstr(MI, PairMap); if (Done) Erase.insert(MI); Changed |= Done; } } for (unsigned DR : Part) { // Before erasing "double" instructions, revisit all uses of the double // registers in this partition, and replace all uses of them with subre- // gisters, with the corresponding single registers. MISet Uses; for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); U != W; ++U) Uses.insert(U->getParent()); for (auto M : Uses) replaceSubregUses(M, PairMap); } for (auto MI : Erase) { MachineBasicBlock *B = MI->getParent(); B->erase(MI); } return Changed; } bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; LLVM_DEBUG(dbgs() << "Splitting double registers in function: " << MF.getName() << '\n'); auto &ST = MF.getSubtarget(); TRI = ST.getRegisterInfo(); TII = ST.getInstrInfo(); MRI = &MF.getRegInfo(); MLI = &getAnalysis(); UUSetMap P2Rs; LoopRegMap IRM; collectIndRegs(IRM); partitionRegisters(P2Rs); LLVM_DEBUG({ dbgs() << "Register partitioning: (partition #0 is fixed)\n"; for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { dbgs() << '#' << I->first << " -> "; dump_partition(dbgs(), I->second, *TRI); dbgs() << '\n'; } }); bool Changed = false; int Limit = MaxHSDR; for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { if (I->first == 0) continue; if (Limit >= 0 && Counter >= Limit) break; USet &Part = I->second; LLVM_DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n'); if (!isProfitable(Part, IRM)) continue; Counter++; Changed |= splitPartition(Part); } return Changed; } FunctionPass *llvm::createHexagonSplitDoubleRegs() { return new HexagonSplitDoubleRegs(); }