//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a target specifier matcher for converting parsed // assembly operands in the MCInst structures. // // The input to the target specific matcher is a list of literal tokens and // operands. The target specific parser should generally eliminate any syntax // which is not relevant for matching; for example, comma tokens should have // already been consumed and eliminated by the parser. Most instructions will // end up with a single literal token (the instruction name) and some number of // operands. // // Some example inputs, for X86: // 'addl' (immediate ...) (register ...) // 'add' (immediate ...) (memory ...) // 'call' '*' %epc // // The assembly matcher is responsible for converting this input into a precise // machine instruction (i.e., an instruction with a well defined encoding). This // mapping has several properties which complicate matching: // // - It may be ambiguous; many architectures can legally encode particular // variants of an instruction in different ways (for example, using a smaller // encoding for small immediates). Such ambiguities should never be // arbitrarily resolved by the assembler, the assembler is always responsible // for choosing the "best" available instruction. // // - It may depend on the subtarget or the assembler context. Instructions // which are invalid for the current mode, but otherwise unambiguous (e.g., // an SSE instruction in a file being assembled for i486) should be accepted // and rejected by the assembler front end. However, if the proper encoding // for an instruction is dependent on the assembler context then the matcher // is responsible for selecting the correct machine instruction for the // current mode. // // The core matching algorithm attempts to exploit the regularity in most // instruction sets to quickly determine the set of possibly matching // instructions, and the simplify the generated code. Additionally, this helps // to ensure that the ambiguities are intentionally resolved by the user. // // The matching is divided into two distinct phases: // // 1. Classification: Each operand is mapped to the unique set which (a) // contains it, and (b) is the largest such subset for which a single // instruction could match all members. // // For register classes, we can generate these subgroups automatically. For // arbitrary operands, we expect the user to define the classes and their // relations to one another (for example, 8-bit signed immediates as a // subset of 32-bit immediates). // // By partitioning the operands in this way, we guarantee that for any // tuple of classes, any single instruction must match either all or none // of the sets of operands which could classify to that tuple. // // In addition, the subset relation amongst classes induces a partial order // on such tuples, which we use to resolve ambiguities. // // 2. The input can now be treated as a tuple of classes (static tokens are // simple singleton sets). Each such tuple should generally map to a single // instruction (we currently ignore cases where this isn't true, whee!!!), // which we can emit a simple matcher for. // //===----------------------------------------------------------------------===// #include "AsmMatcherEmitter.h" #include "CodeGenTarget.h" #include "Record.h" #include "StringMatcher.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; static cl::opt MatchPrefix("match-prefix", cl::init(""), cl::desc("Only match instructions with the given prefix")); namespace { class AsmMatcherInfo; struct SubtargetFeatureInfo; /// ClassInfo - Helper class for storing the information about a particular /// class of operands which can be matched. struct ClassInfo { enum ClassInfoKind { /// Invalid kind, for use as a sentinel value. Invalid = 0, /// The class for a particular token. Token, /// The (first) register class, subsequent register classes are /// RegisterClass0+1, and so on. RegisterClass0, /// The (first) user defined class, subsequent user defined classes are /// UserClass0+1, and so on. UserClass0 = 1<<16 }; /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + /// N) for the Nth user defined class. unsigned Kind; /// SuperClasses - The super classes of this class. Note that for simplicities /// sake user operands only record their immediate super class, while register /// operands include all superclasses. std::vector SuperClasses; /// Name - The full class name, suitable for use in an enum. std::string Name; /// ClassName - The unadorned generic name for this class (e.g., Token). std::string ClassName; /// ValueName - The name of the value this class represents; for a token this /// is the literal token string, for an operand it is the TableGen class (or /// empty if this is a derived class). std::string ValueName; /// PredicateMethod - The name of the operand method to test whether the /// operand matches this class; this is not valid for Token or register kinds. std::string PredicateMethod; /// RenderMethod - The name of the operand method to add this operand to an /// MCInst; this is not valid for Token or register kinds. std::string RenderMethod; /// For register classes, the records for all the registers in this class. std::set Registers; public: /// isRegisterClass() - Check if this is a register class. bool isRegisterClass() const { return Kind >= RegisterClass0 && Kind < UserClass0; } /// isUserClass() - Check if this is a user defined class. bool isUserClass() const { return Kind >= UserClass0; } /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes /// are related if they are in the same class hierarchy. bool isRelatedTo(const ClassInfo &RHS) const { // Tokens are only related to tokens. if (Kind == Token || RHS.Kind == Token) return Kind == Token && RHS.Kind == Token; // Registers classes are only related to registers classes, and only if // their intersection is non-empty. if (isRegisterClass() || RHS.isRegisterClass()) { if (!isRegisterClass() || !RHS.isRegisterClass()) return false; std::set Tmp; std::insert_iterator< std::set > II(Tmp, Tmp.begin()); std::set_intersection(Registers.begin(), Registers.end(), RHS.Registers.begin(), RHS.Registers.end(), II); return !Tmp.empty(); } // Otherwise we have two users operands; they are related if they are in the // same class hierarchy. // // FIXME: This is an oversimplification, they should only be related if they // intersect, however we don't have that information. assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); const ClassInfo *Root = this; while (!Root->SuperClasses.empty()) Root = Root->SuperClasses.front(); const ClassInfo *RHSRoot = &RHS; while (!RHSRoot->SuperClasses.empty()) RHSRoot = RHSRoot->SuperClasses.front(); return Root == RHSRoot; } /// isSubsetOf - Test whether this class is a subset of \arg RHS; bool isSubsetOf(const ClassInfo &RHS) const { // This is a subset of RHS if it is the same class... if (this == &RHS) return true; // ... or if any of its super classes are a subset of RHS. for (std::vector::const_iterator it = SuperClasses.begin(), ie = SuperClasses.end(); it != ie; ++it) if ((*it)->isSubsetOf(RHS)) return true; return false; } /// operator< - Compare two classes. bool operator<(const ClassInfo &RHS) const { if (this == &RHS) return false; // Unrelated classes can be ordered by kind. if (!isRelatedTo(RHS)) return Kind < RHS.Kind; switch (Kind) { case Invalid: assert(0 && "Invalid kind!"); case Token: // Tokens are comparable by value. // // FIXME: Compare by enum value. return ValueName < RHS.ValueName; default: // This class preceeds the RHS if it is a proper subset of the RHS. if (isSubsetOf(RHS)) return true; if (RHS.isSubsetOf(*this)) return false; // Otherwise, order by name to ensure we have a total ordering. return ValueName < RHS.ValueName; } } }; /// MatchableInfo - Helper class for storing the necessary information for an /// instruction or alias which is capable of being matched. struct MatchableInfo { struct AsmOperand { /// Token - This is the token that the operand came from. StringRef Token; /// The unique class instance this operand should match. ClassInfo *Class; /// The operand name this is, if anything. StringRef SrcOpName; explicit AsmOperand(StringRef T) : Token(T), Class(0) {} }; /// ResOperand - This represents a single operand in the result instruction /// generated by the match. In cases (like addressing modes) where a single /// assembler operand expands to multiple MCOperands, this represents the /// single assembler operand, not the MCOperand. struct ResOperand { enum { /// RenderAsmOperand - This represents an operand result that is /// generated by calling the render method on the assembly operand. The /// corresponding AsmOperand is specified by AsmOperandNum. RenderAsmOperand, /// TiedOperand - This represents a result operand that is a duplicate of /// a previous result operand. TiedOperand, /// ImmOperand - This represents an immediate value that is dumped into /// the operand. ImmOperand, /// RegOperand - This represents a fixed register that is dumped in. RegOperand } Kind; union { /// This is the operand # in the AsmOperands list that this should be /// copied from. unsigned AsmOperandNum; /// TiedOperandNum - This is the (earlier) result operand that should be /// copied from. unsigned TiedOperandNum; /// ImmVal - This is the immediate value added to the instruction. int64_t ImmVal; /// Register - This is the register record. Record *Register; }; /// OpInfo - This is the information about the instruction operand that is /// being populated. const CGIOperandList::OperandInfo *OpInfo; static ResOperand getRenderedOp(unsigned AsmOpNum, const CGIOperandList::OperandInfo *Op) { ResOperand X; X.Kind = RenderAsmOperand; X.AsmOperandNum = AsmOpNum; X.OpInfo = Op; return X; } static ResOperand getTiedOp(unsigned TiedOperandNum, const CGIOperandList::OperandInfo *Op) { ResOperand X; X.Kind = TiedOperand; X.TiedOperandNum = TiedOperandNum; X.OpInfo = Op; return X; } static ResOperand getImmOp(int64_t Val, const CGIOperandList::OperandInfo *Op) { ResOperand X; X.Kind = ImmOperand; X.ImmVal = Val; X.OpInfo = Op; return X; } static ResOperand getRegOp(Record *Reg, const CGIOperandList::OperandInfo *Op) { ResOperand X; X.Kind = RegOperand; X.Register = Reg; X.OpInfo = Op; return X; } }; /// TheDef - This is the definition of the instruction or InstAlias that this /// matchable came from. Record *const TheDef; /// DefRec - This is the definition that it came from. PointerUnion DefRec; const CodeGenInstruction *getResultInst() const { if (DefRec.is()) return DefRec.get(); return DefRec.get()->ResultInst; } /// ResOperands - This is the operand list that should be built for the result /// MCInst. std::vector ResOperands; /// AsmString - The assembly string for this instruction (with variants /// removed), e.g. "movsx $src, $dst". std::string AsmString; /// Mnemonic - This is the first token of the matched instruction, its /// mnemonic. StringRef Mnemonic; /// AsmOperands - The textual operands that this instruction matches, /// annotated with a class and where in the OperandList they were defined. /// This directly corresponds to the tokenized AsmString after the mnemonic is /// removed. SmallVector AsmOperands; /// Predicates - The required subtarget features to match this instruction. SmallVector RequiredFeatures; /// ConversionFnKind - The enum value which is passed to the generated /// ConvertToMCInst to convert parsed operands into an MCInst for this /// function. std::string ConversionFnKind; MatchableInfo(const CodeGenInstruction &CGI) : TheDef(CGI.TheDef), DefRec(&CGI), AsmString(CGI.AsmString) { } MatchableInfo(const CodeGenInstAlias *Alias) : TheDef(Alias->TheDef), DefRec(Alias), AsmString(Alias->AsmString) { } void Initialize(const AsmMatcherInfo &Info, SmallPtrSet &SingletonRegisters); /// Validate - Return true if this matchable is a valid thing to match against /// and perform a bunch of validity checking. bool Validate(StringRef CommentDelimiter, bool Hack) const; /// getSingletonRegisterForAsmOperand - If the specified token is a singleton /// register, return the Record for it, otherwise return null. Record *getSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info) const; int FindAsmOperandNamed(StringRef N) const { for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) if (N == AsmOperands[i].SrcOpName) return i; return -1; } void BuildInstructionResultOperands(); void BuildAliasResultOperands(); /// operator< - Compare two matchables. bool operator<(const MatchableInfo &RHS) const { // The primary comparator is the instruction mnemonic. if (Mnemonic != RHS.Mnemonic) return Mnemonic < RHS.Mnemonic; if (AsmOperands.size() != RHS.AsmOperands.size()) return AsmOperands.size() < RHS.AsmOperands.size(); // Compare lexicographically by operand. The matcher validates that other // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith(). for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) return true; if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) return false; } return false; } /// CouldMatchAmiguouslyWith - Check whether this matchable could /// ambiguously match the same set of operands as \arg RHS (without being a /// strictly superior match). bool CouldMatchAmiguouslyWith(const MatchableInfo &RHS) { // The primary comparator is the instruction mnemonic. if (Mnemonic != RHS.Mnemonic) return false; // The number of operands is unambiguous. if (AsmOperands.size() != RHS.AsmOperands.size()) return false; // Otherwise, make sure the ordering of the two instructions is unambiguous // by checking that either (a) a token or operand kind discriminates them, // or (b) the ordering among equivalent kinds is consistent. // Tokens and operand kinds are unambiguous (assuming a correct target // specific parser). for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || AsmOperands[i].Class->Kind == ClassInfo::Token) if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) return false; // Otherwise, this operand could commute if all operands are equivalent, or // there is a pair of operands that compare less than and a pair that // compare greater than. bool HasLT = false, HasGT = false; for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) HasLT = true; if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) HasGT = true; } return !(HasLT ^ HasGT); } void dump(); private: void TokenizeAsmString(const AsmMatcherInfo &Info); }; /// SubtargetFeatureInfo - Helper class for storing information on a subtarget /// feature which participates in instruction matching. struct SubtargetFeatureInfo { /// \brief The predicate record for this feature. Record *TheDef; /// \brief An unique index assigned to represent this feature. unsigned Index; SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {} /// \brief The name of the enumerated constant identifying this feature. std::string getEnumName() const { return "Feature_" + TheDef->getName(); } }; class AsmMatcherInfo { public: /// The tablegen AsmParser record. Record *AsmParser; /// Target - The target information. CodeGenTarget &Target; /// The AsmParser "RegisterPrefix" value. std::string RegisterPrefix; /// The classes which are needed for matching. std::vector Classes; /// The information on the matchables to match. std::vector Matchables; /// Map of Register records to their class information. std::map RegisterClasses; /// Map of Predicate records to their subtarget information. std::map SubtargetFeatures; private: /// Map of token to class information which has already been constructed. std::map TokenClasses; /// Map of RegisterClass records to their class information. std::map RegisterClassClasses; /// Map of AsmOperandClass records to their class information. std::map AsmOperandClasses; private: /// getTokenClass - Lookup or create the class for the given token. ClassInfo *getTokenClass(StringRef Token); /// getOperandClass - Lookup or create the class for the given operand. ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI); /// BuildRegisterClasses - Build the ClassInfo* instances for register /// classes. void BuildRegisterClasses(SmallPtrSet &SingletonRegisters); /// BuildOperandClasses - Build the ClassInfo* instances for user defined /// operand classes. void BuildOperandClasses(); void BuildInstructionOperandReference(MatchableInfo *II, StringRef OpName, MatchableInfo::AsmOperand &Op); void BuildAliasOperandReference(MatchableInfo *II, StringRef OpName, MatchableInfo::AsmOperand &Op); public: AsmMatcherInfo(Record *AsmParser, CodeGenTarget &Target); /// BuildInfo - Construct the various tables used during matching. void BuildInfo(); /// getSubtargetFeature - Lookup or create the subtarget feature info for the /// given operand. SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); std::map::const_iterator I = SubtargetFeatures.find(Def); return I == SubtargetFeatures.end() ? 0 : I->second; } }; } void MatchableInfo::dump() { errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { AsmOperand &Op = AsmOperands[i]; errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; errs() << '\"' << Op.Token << "\"\n"; } } void MatchableInfo::Initialize(const AsmMatcherInfo &Info, SmallPtrSet &SingletonRegisters) { // TODO: Eventually support asmparser for Variant != 0. AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, 0); TokenizeAsmString(Info); // Compute the require features. std::vector Predicates =TheDef->getValueAsListOfDefs("Predicates"); for (unsigned i = 0, e = Predicates.size(); i != e; ++i) if (SubtargetFeatureInfo *Feature = Info.getSubtargetFeature(Predicates[i])) RequiredFeatures.push_back(Feature); // Collect singleton registers, if used. for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { if (Record *Reg = getSingletonRegisterForAsmOperand(i, Info)) SingletonRegisters.insert(Reg); } } /// TokenizeAsmString - Tokenize a simplified assembly string. void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) { StringRef String = AsmString; unsigned Prev = 0; bool InTok = true; for (unsigned i = 0, e = String.size(); i != e; ++i) { switch (String[i]) { case '[': case ']': case '*': case '!': case ' ': case '\t': case ',': if (InTok) { AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); InTok = false; } if (!isspace(String[i]) && String[i] != ',') AsmOperands.push_back(AsmOperand(String.substr(i, 1))); Prev = i + 1; break; case '\\': if (InTok) { AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); InTok = false; } ++i; assert(i != String.size() && "Invalid quoted character"); AsmOperands.push_back(AsmOperand(String.substr(i, 1))); Prev = i + 1; break; case '$': { if (InTok) { AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); InTok = false; } // If this isn't "${", treat like a normal token. if (i + 1 == String.size() || String[i + 1] != '{') { Prev = i; break; } StringRef::iterator End = std::find(String.begin() + i, String.end(),'}'); assert(End != String.end() && "Missing brace in operand reference!"); size_t EndPos = End - String.begin(); AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1))); Prev = EndPos + 1; i = EndPos; break; } case '.': if (InTok) AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); Prev = i; InTok = true; break; default: InTok = true; } } if (InTok && Prev != String.size()) AsmOperands.push_back(AsmOperand(String.substr(Prev))); // The first token of the instruction is the mnemonic, which must be a // simple string, not a $foo variable or a singleton register. assert(!AsmOperands.empty() && "Instruction has no tokens?"); Mnemonic = AsmOperands[0].Token; if (Mnemonic[0] == '$' || getSingletonRegisterForAsmOperand(0, Info)) throw TGError(TheDef->getLoc(), "Invalid instruction mnemonic '" + Mnemonic.str() + "'!"); // Remove the first operand, it is tracked in the mnemonic field. AsmOperands.erase(AsmOperands.begin()); } bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const { // Reject matchables with no .s string. if (AsmString.empty()) throw TGError(TheDef->getLoc(), "instruction with empty asm string"); // Reject any matchables with a newline in them, they should be marked // isCodeGenOnly if they are pseudo instructions. if (AsmString.find('\n') != std::string::npos) throw TGError(TheDef->getLoc(), "multiline instruction is not valid for the asmparser, " "mark it isCodeGenOnly"); // Remove comments from the asm string. We know that the asmstring only // has one line. if (!CommentDelimiter.empty() && StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) throw TGError(TheDef->getLoc(), "asmstring for instruction has comment character in it, " "mark it isCodeGenOnly"); // Reject matchables with operand modifiers, these aren't something we can /// handle, the target should be refactored to use operands instead of /// modifiers. // // Also, check for instructions which reference the operand multiple times; // this implies a constraint we would not honor. std::set OperandNames; for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { StringRef Tok = AsmOperands[i].Token; if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) throw TGError(TheDef->getLoc(), "matchable with operand modifier '" + Tok.str() + "' not supported by asm matcher. Mark isCodeGenOnly!"); // Verify that any operand is only mentioned once. // We reject aliases and ignore instructions for now. if (Tok[0] == '$' && !OperandNames.insert(Tok).second) { if (!Hack) throw TGError(TheDef->getLoc(), "ERROR: matchable with tied operand '" + Tok.str() + "' can never be matched!"); // FIXME: Should reject these. The ARM backend hits this with $lane in a // bunch of instructions. It is unclear what the right answer is. DEBUG({ errs() << "warning: '" << TheDef->getName() << "': " << "ignoring instruction with tied operand '" << Tok.str() << "'\n"; }); return false; } } return true; } /// getSingletonRegisterForAsmOperand - If the specified token is a singleton /// register, return the register name, otherwise return a null StringRef. Record *MatchableInfo:: getSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info) const{ StringRef Tok = AsmOperands[i].Token; if (!Tok.startswith(Info.RegisterPrefix)) return 0; StringRef RegName = Tok.substr(Info.RegisterPrefix.size()); if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) return Reg->TheDef; // If there is no register prefix (i.e. "%" in "%eax"), then this may // be some random non-register token, just ignore it. if (Info.RegisterPrefix.empty()) return 0; // Otherwise, we have something invalid prefixed with the register prefix, // such as %foo. std::string Err = "unable to find register for '" + RegName.str() + "' (which matches register prefix)"; throw TGError(TheDef->getLoc(), Err); } static std::string getEnumNameForToken(StringRef Str) { std::string Res; for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { switch (*it) { case '*': Res += "_STAR_"; break; case '%': Res += "_PCT_"; break; case ':': Res += "_COLON_"; break; default: if (isalnum(*it)) Res += *it; else Res += "_" + utostr((unsigned) *it) + "_"; } } return Res; } ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { ClassInfo *&Entry = TokenClasses[Token]; if (!Entry) { Entry = new ClassInfo(); Entry->Kind = ClassInfo::Token; Entry->ClassName = "Token"; Entry->Name = "MCK_" + getEnumNameForToken(Token); Entry->ValueName = Token; Entry->PredicateMethod = ""; Entry->RenderMethod = ""; Classes.push_back(Entry); } return Entry; } ClassInfo * AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI) { if (OI.Rec->isSubClassOf("RegisterClass")) { if (ClassInfo *CI = RegisterClassClasses[OI.Rec]) return CI; throw TGError(OI.Rec->getLoc(), "register class has no class info!"); } assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!"); Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass"); if (ClassInfo *CI = AsmOperandClasses[MatchClass]) return CI; throw TGError(OI.Rec->getLoc(), "operand has no match class!"); } void AsmMatcherInfo:: BuildRegisterClasses(SmallPtrSet &SingletonRegisters) { const std::vector &Registers = Target.getRegisters(); const std::vector &RegClassList = Target.getRegisterClasses(); // The register sets used for matching. std::set< std::set > RegisterSets; // Gather the defined sets. for (std::vector::const_iterator it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) RegisterSets.insert(std::set(it->Elements.begin(), it->Elements.end())); // Add any required singleton sets. for (SmallPtrSet::iterator it = SingletonRegisters.begin(), ie = SingletonRegisters.end(); it != ie; ++it) { Record *Rec = *it; RegisterSets.insert(std::set(&Rec, &Rec + 1)); } // Introduce derived sets where necessary (when a register does not determine // a unique register set class), and build the mapping of registers to the set // they should classify to. std::map > RegisterMap; for (std::vector::const_iterator it = Registers.begin(), ie = Registers.end(); it != ie; ++it) { const CodeGenRegister &CGR = *it; // Compute the intersection of all sets containing this register. std::set ContainingSet; for (std::set< std::set >::iterator it = RegisterSets.begin(), ie = RegisterSets.end(); it != ie; ++it) { if (!it->count(CGR.TheDef)) continue; if (ContainingSet.empty()) { ContainingSet = *it; continue; } std::set Tmp; std::swap(Tmp, ContainingSet); std::insert_iterator< std::set > II(ContainingSet, ContainingSet.begin()); std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II); } if (!ContainingSet.empty()) { RegisterSets.insert(ContainingSet); RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); } } // Construct the register classes. std::map, ClassInfo*> RegisterSetClasses; unsigned Index = 0; for (std::set< std::set >::iterator it = RegisterSets.begin(), ie = RegisterSets.end(); it != ie; ++it, ++Index) { ClassInfo *CI = new ClassInfo(); CI->Kind = ClassInfo::RegisterClass0 + Index; CI->ClassName = "Reg" + utostr(Index); CI->Name = "MCK_Reg" + utostr(Index); CI->ValueName = ""; CI->PredicateMethod = ""; // unused CI->RenderMethod = "addRegOperands"; CI->Registers = *it; Classes.push_back(CI); RegisterSetClasses.insert(std::make_pair(*it, CI)); } // Find the superclasses; we could compute only the subgroup lattice edges, // but there isn't really a point. for (std::set< std::set >::iterator it = RegisterSets.begin(), ie = RegisterSets.end(); it != ie; ++it) { ClassInfo *CI = RegisterSetClasses[*it]; for (std::set< std::set >::iterator it2 = RegisterSets.begin(), ie2 = RegisterSets.end(); it2 != ie2; ++it2) if (*it != *it2 && std::includes(it2->begin(), it2->end(), it->begin(), it->end())) CI->SuperClasses.push_back(RegisterSetClasses[*it2]); } // Name the register classes which correspond to a user defined RegisterClass. for (std::vector::const_iterator it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) { ClassInfo *CI = RegisterSetClasses[std::set(it->Elements.begin(), it->Elements.end())]; if (CI->ValueName.empty()) { CI->ClassName = it->getName(); CI->Name = "MCK_" + it->getName(); CI->ValueName = it->getName(); } else CI->ValueName = CI->ValueName + "," + it->getName(); RegisterClassClasses.insert(std::make_pair(it->TheDef, CI)); } // Populate the map for individual registers. for (std::map >::iterator it = RegisterMap.begin(), ie = RegisterMap.end(); it != ie; ++it) RegisterClasses[it->first] = RegisterSetClasses[it->second]; // Name the register classes which correspond to singleton registers. for (SmallPtrSet::iterator it = SingletonRegisters.begin(), ie = SingletonRegisters.end(); it != ie; ++it) { Record *Rec = *it; ClassInfo *CI = RegisterClasses[Rec]; assert(CI && "Missing singleton register class info!"); if (CI->ValueName.empty()) { CI->ClassName = Rec->getName(); CI->Name = "MCK_" + Rec->getName(); CI->ValueName = Rec->getName(); } else CI->ValueName = CI->ValueName + "," + Rec->getName(); } } void AsmMatcherInfo::BuildOperandClasses() { std::vector AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass"); // Pre-populate AsmOperandClasses map. for (std::vector::iterator it = AsmOperands.begin(), ie = AsmOperands.end(); it != ie; ++it) AsmOperandClasses[*it] = new ClassInfo(); unsigned Index = 0; for (std::vector::iterator it = AsmOperands.begin(), ie = AsmOperands.end(); it != ie; ++it, ++Index) { ClassInfo *CI = AsmOperandClasses[*it]; CI->Kind = ClassInfo::UserClass0 + Index; ListInit *Supers = (*it)->getValueAsListInit("SuperClasses"); for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) { DefInit *DI = dynamic_cast(Supers->getElement(i)); if (!DI) { PrintError((*it)->getLoc(), "Invalid super class reference!"); continue; } ClassInfo *SC = AsmOperandClasses[DI->getDef()]; if (!SC) PrintError((*it)->getLoc(), "Invalid super class reference!"); else CI->SuperClasses.push_back(SC); } CI->ClassName = (*it)->getValueAsString("Name"); CI->Name = "MCK_" + CI->ClassName; CI->ValueName = (*it)->getName(); // Get or construct the predicate method name. Init *PMName = (*it)->getValueInit("PredicateMethod"); if (StringInit *SI = dynamic_cast(PMName)) { CI->PredicateMethod = SI->getValue(); } else { assert(dynamic_cast(PMName) && "Unexpected PredicateMethod field!"); CI->PredicateMethod = "is" + CI->ClassName; } // Get or construct the render method name. Init *RMName = (*it)->getValueInit("RenderMethod"); if (StringInit *SI = dynamic_cast(RMName)) { CI->RenderMethod = SI->getValue(); } else { assert(dynamic_cast(RMName) && "Unexpected RenderMethod field!"); CI->RenderMethod = "add" + CI->ClassName + "Operands"; } AsmOperandClasses[*it] = CI; Classes.push_back(CI); } } AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, CodeGenTarget &target) : AsmParser(asmParser), Target(target), RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix")) { } void AsmMatcherInfo::BuildInfo() { // Build information about all of the AssemblerPredicates. std::vector AllPredicates = Records.getAllDerivedDefinitions("Predicate"); for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) { Record *Pred = AllPredicates[i]; // Ignore predicates that are not intended for the assembler. if (!Pred->getValueAsBit("AssemblerMatcherPredicate")) continue; if (Pred->getName().empty()) throw TGError(Pred->getLoc(), "Predicate has no name!"); unsigned FeatureNo = SubtargetFeatures.size(); SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo); assert(FeatureNo < 32 && "Too many subtarget features!"); } StringRef CommentDelimiter = AsmParser->getValueAsString("CommentDelimiter"); // Parse the instructions; we need to do this first so that we can gather the // singleton register classes. SmallPtrSet SingletonRegisters; for (CodeGenTarget::inst_iterator I = Target.inst_begin(), E = Target.inst_end(); I != E; ++I) { const CodeGenInstruction &CGI = **I; // If the tblgen -match-prefix option is specified (for tblgen hackers), // filter the set of instructions we consider. if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix)) continue; // Ignore "codegen only" instructions. if (CGI.TheDef->getValueAsBit("isCodeGenOnly")) continue; // Validate the operand list to ensure we can handle this instruction. for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { const CGIOperandList::OperandInfo &OI = CGI.Operands[i]; // Validate tied operands. if (OI.getTiedRegister() != -1) { // If we have a tied operand that consists of multiple MCOperands, reject // it. We reject aliases and ignore instructions for now. if (OI.MINumOperands != 1) { // FIXME: Should reject these. The ARM backend hits this with $lane // in a bunch of instructions. It is unclear what the right answer is. DEBUG({ errs() << "warning: '" << CGI.TheDef->getName() << "': " << "ignoring instruction with multi-operand tied operand '" << OI.Name << "'\n"; }); continue; } } } OwningPtr II(new MatchableInfo(CGI)); II->Initialize(*this, SingletonRegisters); // Ignore instructions which shouldn't be matched and diagnose invalid // instruction definitions with an error. if (!II->Validate(CommentDelimiter, true)) continue; // Ignore "Int_*" and "*_Int" instructions, which are internal aliases. // // FIXME: This is a total hack. if (StringRef(II->TheDef->getName()).startswith("Int_") || StringRef(II->TheDef->getName()).endswith("_Int")) continue; Matchables.push_back(II.take()); } // Parse all of the InstAlias definitions and stick them in the list of // matchables. std::vector AllInstAliases = Records.getAllDerivedDefinitions("InstAlias"); for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target); OwningPtr II(new MatchableInfo(Alias)); II->Initialize(*this, SingletonRegisters); // Validate the alias definitions. II->Validate(CommentDelimiter, false); Matchables.push_back(II.take()); } // Build info for the register classes. BuildRegisterClasses(SingletonRegisters); // Build info for the user defined assembly operand classes. BuildOperandClasses(); // Build the information about matchables, now that we have fully formed // classes. for (std::vector::iterator it = Matchables.begin(), ie = Matchables.end(); it != ie; ++it) { MatchableInfo *II = *it; // Parse the tokens after the mnemonic. for (unsigned i = 0, e = II->AsmOperands.size(); i != e; ++i) { MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; StringRef Token = Op.Token; // Check for singleton registers. if (Record *RegRecord = II->getSingletonRegisterForAsmOperand(i, *this)) { Op.Class = RegisterClasses[RegRecord]; assert(Op.Class && Op.Class->Registers.size() == 1 && "Unexpected class for singleton register"); continue; } // Check for simple tokens. if (Token[0] != '$') { Op.Class = getTokenClass(Token); continue; } if (Token.size() > 1 && isdigit(Token[1])) { Op.Class = getTokenClass(Token); continue; } // Otherwise this is an operand reference. StringRef OperandName; if (Token[1] == '{') OperandName = Token.substr(2, Token.size() - 3); else OperandName = Token.substr(1); if (II->DefRec.is()) BuildInstructionOperandReference(II, OperandName, Op); else BuildAliasOperandReference(II, OperandName, Op); } if (II->DefRec.is()) II->BuildInstructionResultOperands(); else II->BuildAliasResultOperands(); } // Reorder classes so that classes preceed super classes. std::sort(Classes.begin(), Classes.end(), less_ptr()); } /// BuildInstructionOperandReference - The specified operand is a reference to a /// named operand such as $src. Resolve the Class and OperandInfo pointers. void AsmMatcherInfo:: BuildInstructionOperandReference(MatchableInfo *II, StringRef OperandName, MatchableInfo::AsmOperand &Op) { const CodeGenInstruction &CGI = *II->DefRec.get(); const CGIOperandList &Operands = CGI.Operands; // Map this token to an operand. unsigned Idx; if (!Operands.hasOperandNamed(OperandName, Idx)) throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" + OperandName.str() + "'"); // Set up the operand class. Op.Class = getOperandClass(Operands[Idx]); // If the named operand is tied, canonicalize it to the untied operand. // For example, something like: // (outs GPR:$dst), (ins GPR:$src) // with an asmstring of // "inc $src" // we want to canonicalize to: // "inc $dst" // so that we know how to provide the $dst operand when filling in the result. int OITied = Operands[Idx].getTiedRegister(); if (OITied != -1) { // The tied operand index is an MIOperand index, find the operand that // contains it. for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i].MIOperandNo == unsigned(OITied)) { OperandName = Operands[i].Name; break; } } } Op.SrcOpName = OperandName; } /// BuildAliasOperandReference - When parsing an operand reference out of the /// matching string (e.g. "movsx $src, $dst"), determine what the class of the /// operand reference is by looking it up in the result pattern definition. void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II, StringRef OperandName, MatchableInfo::AsmOperand &Op) { const CodeGenInstAlias &CGA = *II->DefRec.get(); // Set up the operand class. for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) if (CGA.ResultOperands[i].isRecord() && CGA.ResultOperands[i].getName() == OperandName) { // It's safe to go with the first one we find, because CodeGenInstAlias // validates that all operands with the same name have the same record. unsigned ResultIdx =CGA.getResultInstOperandIndexForResultOperandIndex(i); Op.Class = getOperandClass(CGA.ResultInst->Operands[ResultIdx]); Op.SrcOpName = OperandName; return; } throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" + OperandName.str() + "'"); } void MatchableInfo::BuildInstructionResultOperands() { const CodeGenInstruction *ResultInst = getResultInst(); // Loop over all operands of the result instruction, determining how to // populate them. for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i]; // If this is a tied operand, just copy from the previously handled operand. int TiedOp = OpInfo.getTiedRegister(); if (TiedOp != -1) { ResOperands.push_back(ResOperand::getTiedOp(TiedOp, &OpInfo)); continue; } // Find out what operand from the asmparser that this MCInst operand comes // from. int SrcOperand = FindAsmOperandNamed(OpInfo.Name); if (!OpInfo.Name.empty() && SrcOperand != -1) { ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, &OpInfo)); continue; } throw TGError(TheDef->getLoc(), "Instruction '" + TheDef->getName() + "' has operand '" + OpInfo.Name + "' that doesn't appear in asm string!"); } } void MatchableInfo::BuildAliasResultOperands() { const CodeGenInstAlias &CGA = *DefRec.get(); const CodeGenInstruction *ResultInst = getResultInst(); // Loop over all operands of the result instruction, determining how to // populate them. unsigned AliasOpNo = 0; for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i]; // If this is a tied operand, just copy from the previously handled operand. int TiedOp = OpInfo.getTiedRegister(); if (TiedOp != -1) { ResOperands.push_back(ResOperand::getTiedOp(TiedOp, &OpInfo)); continue; } // Find out what operand from the asmparser that this MCInst operand comes // from. switch (CGA.ResultOperands[AliasOpNo].Kind) { case CodeGenInstAlias::ResultOperand::K_Record: { StringRef Name = CGA.ResultOperands[AliasOpNo++].getName(); int SrcOperand = FindAsmOperandNamed(Name); if (SrcOperand != -1) { ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, &OpInfo)); continue; } throw TGError(TheDef->getLoc(), "Instruction '" + TheDef->getName() + "' has operand '" + OpInfo.Name + "' that doesn't appear in asm string!"); } case CodeGenInstAlias::ResultOperand::K_Imm: { int64_t ImmVal = CGA.ResultOperands[AliasOpNo++].getImm(); ResOperands.push_back(ResOperand::getImmOp(ImmVal, &OpInfo)); continue; } case CodeGenInstAlias::ResultOperand::K_Reg: { Record *Reg = CGA.ResultOperands[AliasOpNo++].getRegister(); ResOperands.push_back(ResOperand::getRegOp(Reg, &OpInfo)); continue; } } } } static void EmitConvertToMCInst(CodeGenTarget &Target, std::vector &Infos, raw_ostream &OS) { // Write the convert function to a separate stream, so we can drop it after // the enum. std::string ConvertFnBody; raw_string_ostream CvtOS(ConvertFnBody); // Function we have already generated. std::set GeneratedFns; // Start the unified conversion function. CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, " << "unsigned Opcode,\n" << " const SmallVectorImpl &Operands) {\n"; CvtOS << " Inst.setOpcode(Opcode);\n"; CvtOS << " switch (Kind) {\n"; CvtOS << " default:\n"; // Start the enum, which we will generate inline. OS << "// Unified function for converting operands to MCInst instances.\n\n"; OS << "enum ConversionKind {\n"; // TargetOperandClass - This is the target's operand class, like X86Operand. std::string TargetOperandClass = Target.getName() + "Operand"; for (std::vector::const_iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { MatchableInfo &II = **it; // Build the conversion function signature. std::string Signature = "Convert"; std::string CaseBody; raw_string_ostream CaseOS(CaseBody); // Compute the convert enum and the case body. for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) { const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i]; // Generate code to populate each result operand. switch (OpInfo.Kind) { case MatchableInfo::ResOperand::RenderAsmOperand: { // This comes from something we parsed. MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum]; // Registers are always converted the same, don't duplicate the // conversion function based on them. Signature += "__"; if (Op.Class->isRegisterClass()) Signature += "Reg"; else Signature += Op.Class->ClassName; Signature += utostr(OpInfo.OpInfo->MINumOperands); Signature += "_" + itostr(OpInfo.AsmOperandNum); CaseOS << " ((" << TargetOperandClass << "*)Operands[" << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod << "(Inst, " << OpInfo.OpInfo->MINumOperands << ");\n"; break; } case MatchableInfo::ResOperand::TiedOperand: { // If this operand is tied to a previous one, just copy the MCInst // operand from the earlier one.We can only tie single MCOperand values. //assert(OpInfo.OpInfo->MINumOperands == 1 && "Not a singular MCOperand"); unsigned TiedOp = OpInfo.TiedOperandNum; assert(i > TiedOp && "Tied operand preceeds its target!"); CaseOS << " Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n"; Signature += "__Tie" + utostr(TiedOp); break; } case MatchableInfo::ResOperand::ImmOperand: { int64_t Val = OpInfo.ImmVal; CaseOS << " Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"; Signature += "__imm" + itostr(Val); break; } case MatchableInfo::ResOperand::RegOperand: { std::string N = getQualifiedName(OpInfo.Register); CaseOS << " Inst.addOperand(MCOperand::CreateReg(" << N << "));\n"; Signature += "__reg" + OpInfo.Register->getName(); } } } II.ConversionFnKind = Signature; // Check if we have already generated this signature. if (!GeneratedFns.insert(Signature).second) continue; // If not, emit it now. Add to the enum list. OS << " " << Signature << ",\n"; CvtOS << " case " << Signature << ":\n"; CvtOS << CaseOS.str(); CvtOS << " return;\n"; } // Finish the convert function. CvtOS << " }\n"; CvtOS << "}\n\n"; // Finish the enum, and drop the convert function after it. OS << " NumConversionVariants\n"; OS << "};\n\n"; OS << CvtOS.str(); } /// EmitMatchClassEnumeration - Emit the enumeration for match class kinds. static void EmitMatchClassEnumeration(CodeGenTarget &Target, std::vector &Infos, raw_ostream &OS) { OS << "namespace {\n\n"; OS << "/// MatchClassKind - The kinds of classes which participate in\n" << "/// instruction matching.\n"; OS << "enum MatchClassKind {\n"; OS << " InvalidMatchClass = 0,\n"; for (std::vector::iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { ClassInfo &CI = **it; OS << " " << CI.Name << ", // "; if (CI.Kind == ClassInfo::Token) { OS << "'" << CI.ValueName << "'\n"; } else if (CI.isRegisterClass()) { if (!CI.ValueName.empty()) OS << "register class '" << CI.ValueName << "'\n"; else OS << "derived register class\n"; } else { OS << "user defined class '" << CI.ValueName << "'\n"; } } OS << " NumMatchClassKinds\n"; OS << "};\n\n"; OS << "}\n\n"; } /// EmitClassifyOperand - Emit the function to classify an operand. static void EmitClassifyOperand(AsmMatcherInfo &Info, raw_ostream &OS) { OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n" << " " << Info.Target.getName() << "Operand &Operand = *(" << Info.Target.getName() << "Operand*)GOp;\n"; // Classify tokens. OS << " if (Operand.isToken())\n"; OS << " return MatchTokenString(Operand.getToken());\n\n"; // Classify registers. // // FIXME: Don't hardcode isReg, getReg. OS << " if (Operand.isReg()) {\n"; OS << " switch (Operand.getReg()) {\n"; OS << " default: return InvalidMatchClass;\n"; for (std::map::iterator it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end(); it != ie; ++it) OS << " case " << Info.Target.getName() << "::" << it->first->getName() << ": return " << it->second->Name << ";\n"; OS << " }\n"; OS << " }\n\n"; // Classify user defined operands. for (std::vector::iterator it = Info.Classes.begin(), ie = Info.Classes.end(); it != ie; ++it) { ClassInfo &CI = **it; if (!CI.isUserClass()) continue; OS << " // '" << CI.ClassName << "' class"; if (!CI.SuperClasses.empty()) { OS << ", subclass of "; for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) { if (i) OS << ", "; OS << "'" << CI.SuperClasses[i]->ClassName << "'"; assert(CI < *CI.SuperClasses[i] && "Invalid class relation!"); } } OS << "\n"; OS << " if (Operand." << CI.PredicateMethod << "()) {\n"; // Validate subclass relationships. if (!CI.SuperClasses.empty()) { for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) OS << " assert(Operand." << CI.SuperClasses[i]->PredicateMethod << "() && \"Invalid class relationship!\");\n"; } OS << " return " << CI.Name << ";\n"; OS << " }\n\n"; } OS << " return InvalidMatchClass;\n"; OS << "}\n\n"; } /// EmitIsSubclass - Emit the subclass predicate function. static void EmitIsSubclass(CodeGenTarget &Target, std::vector &Infos, raw_ostream &OS) { OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n"; OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n"; OS << " if (A == B)\n"; OS << " return true;\n\n"; OS << " switch (A) {\n"; OS << " default:\n"; OS << " return false;\n"; for (std::vector::iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { ClassInfo &A = **it; if (A.Kind != ClassInfo::Token) { std::vector SuperClasses; for (std::vector::iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { ClassInfo &B = **it; if (&A != &B && A.isSubsetOf(B)) SuperClasses.push_back(B.Name); } if (SuperClasses.empty()) continue; OS << "\n case " << A.Name << ":\n"; if (SuperClasses.size() == 1) { OS << " return B == " << SuperClasses.back() << ";\n"; continue; } OS << " switch (B) {\n"; OS << " default: return false;\n"; for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i) OS << " case " << SuperClasses[i] << ": return true;\n"; OS << " }\n"; } } OS << " }\n"; OS << "}\n\n"; } /// EmitMatchTokenString - Emit the function to match a token string to the /// appropriate match class value. static void EmitMatchTokenString(CodeGenTarget &Target, std::vector &Infos, raw_ostream &OS) { // Construct the match list. std::vector Matches; for (std::vector::iterator it = Infos.begin(), ie = Infos.end(); it != ie; ++it) { ClassInfo &CI = **it; if (CI.Kind == ClassInfo::Token) Matches.push_back(StringMatcher::StringPair(CI.ValueName, "return " + CI.Name + ";")); } OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n"; StringMatcher("Name", Matches, OS).Emit(); OS << " return InvalidMatchClass;\n"; OS << "}\n\n"; } /// EmitMatchRegisterName - Emit the function to match a string to the target /// specific register enum. static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, raw_ostream &OS) { // Construct the match list. std::vector Matches; for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) { const CodeGenRegister &Reg = Target.getRegisters()[i]; if (Reg.TheDef->getValueAsString("AsmName").empty()) continue; Matches.push_back(StringMatcher::StringPair( Reg.TheDef->getValueAsString("AsmName"), "return " + utostr(i + 1) + ";")); } OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; StringMatcher("Name", Matches, OS).Emit(); OS << " return 0;\n"; OS << "}\n\n"; } /// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag /// definitions. static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info, raw_ostream &OS) { OS << "// Flags for subtarget features that participate in " << "instruction matching.\n"; OS << "enum SubtargetFeatureFlag {\n"; for (std::map::const_iterator it = Info.SubtargetFeatures.begin(), ie = Info.SubtargetFeatures.end(); it != ie; ++it) { SubtargetFeatureInfo &SFI = *it->second; OS << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n"; } OS << " Feature_None = 0\n"; OS << "};\n\n"; } /// EmitComputeAvailableFeatures - Emit the function to compute the list of /// available features given a subtarget. static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info, raw_ostream &OS) { std::string ClassName = Info.AsmParser->getValueAsString("AsmParserClassName"); OS << "unsigned " << Info.Target.getName() << ClassName << "::\n" << "ComputeAvailableFeatures(const " << Info.Target.getName() << "Subtarget *Subtarget) const {\n"; OS << " unsigned Features = 0;\n"; for (std::map::const_iterator it = Info.SubtargetFeatures.begin(), ie = Info.SubtargetFeatures.end(); it != ie; ++it) { SubtargetFeatureInfo &SFI = *it->second; OS << " if (" << SFI.TheDef->getValueAsString("CondString") << ")\n"; OS << " Features |= " << SFI.getEnumName() << ";\n"; } OS << " return Features;\n"; OS << "}\n\n"; } static std::string GetAliasRequiredFeatures(Record *R, const AsmMatcherInfo &Info) { std::vector ReqFeatures = R->getValueAsListOfDefs("Predicates"); std::string Result; unsigned NumFeatures = 0; for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); if (F == 0) throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + "' is not marked as an AssemblerPredicate!"); if (NumFeatures) Result += '|'; Result += F->getEnumName(); ++NumFeatures; } if (NumFeatures > 1) Result = '(' + Result + ')'; return Result; } /// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions, /// emit a function for them and return true, otherwise return false. static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) { std::vector Aliases = Records.getAllDerivedDefinitions("MnemonicAlias"); if (Aliases.empty()) return false; OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, " "unsigned Features) {\n"; // Keep track of all the aliases from a mnemonic. Use an std::map so that the // iteration order of the map is stable. std::map > AliasesFromMnemonic; for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { Record *R = Aliases[i]; AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); } // Process each alias a "from" mnemonic at a time, building the code executed // by the string remapper. std::vector Cases; for (std::map >::iterator I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end(); I != E; ++I) { const std::vector &ToVec = I->second; // Loop through each alias and emit code that handles each case. If there // are two instructions without predicates, emit an error. If there is one, // emit it last. std::string MatchCode; int AliasWithNoPredicate = -1; for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { Record *R = ToVec[i]; std::string FeatureMask = GetAliasRequiredFeatures(R, Info); // If this unconditionally matches, remember it for later and diagnose // duplicates. if (FeatureMask.empty()) { if (AliasWithNoPredicate != -1) { // We can't have two aliases from the same mnemonic with no predicate. PrintError(ToVec[AliasWithNoPredicate]->getLoc(), "two MnemonicAliases with the same 'from' mnemonic!"); throw TGError(R->getLoc(), "this is the other MnemonicAlias."); } AliasWithNoPredicate = i; continue; } if (!MatchCode.empty()) MatchCode += "else "; MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n"; } if (AliasWithNoPredicate != -1) { Record *R = ToVec[AliasWithNoPredicate]; if (!MatchCode.empty()) MatchCode += "else\n "; MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n"; } MatchCode += "return;"; Cases.push_back(std::make_pair(I->first, MatchCode)); } StringMatcher("Mnemonic", Cases, OS).Emit(); OS << "}\n"; return true; } void AsmMatcherEmitter::run(raw_ostream &OS) { CodeGenTarget Target; Record *AsmParser = Target.getAsmParser(); std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); // Compute the information on the instructions to match. AsmMatcherInfo Info(AsmParser, Target); Info.BuildInfo(); // Sort the instruction table using the partial order on classes. We use // stable_sort to ensure that ambiguous instructions are still // deterministically ordered. std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), less_ptr()); DEBUG_WITH_TYPE("instruction_info", { for (std::vector::iterator it = Info.Matchables.begin(), ie = Info.Matchables.end(); it != ie; ++it) (*it)->dump(); }); // Check for ambiguous matchables. DEBUG_WITH_TYPE("ambiguous_instrs", { unsigned NumAmbiguous = 0; for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) { for (unsigned j = i + 1; j != e; ++j) { MatchableInfo &A = *Info.Matchables[i]; MatchableInfo &B = *Info.Matchables[j]; if (A.CouldMatchAmiguouslyWith(B)) { errs() << "warning: ambiguous matchables:\n"; A.dump(); errs() << "\nis incomparable with:\n"; B.dump(); errs() << "\n\n"; ++NumAmbiguous; } } } if (NumAmbiguous) errs() << "warning: " << NumAmbiguous << " ambiguous matchables!\n"; }); // Write the output. EmitSourceFileHeader("Assembly Matcher Source Fragment", OS); // Information for the class declaration. OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; OS << "#undef GET_ASSEMBLER_HEADER\n"; OS << " // This should be included into the middle of the declaration of \n"; OS << " // your subclasses implementation of TargetAsmParser.\n"; OS << " unsigned ComputeAvailableFeatures(const " << Target.getName() << "Subtarget *Subtarget) const;\n"; OS << " enum MatchResultTy {\n"; OS << " Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n"; OS << " Match_MissingFeature\n"; OS << " };\n"; OS << " MatchResultTy MatchInstructionImpl(const " << "SmallVectorImpl" << " &Operands, MCInst &Inst, unsigned &ErrorInfo);\n\n"; OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; OS << "\n#ifdef GET_REGISTER_MATCHER\n"; OS << "#undef GET_REGISTER_MATCHER\n\n"; // Emit the subtarget feature enumeration. EmitSubtargetFeatureFlagEnumeration(Info, OS); // Emit the function to match a register name to number. EmitMatchRegisterName(Target, AsmParser, OS); OS << "#endif // GET_REGISTER_MATCHER\n\n"; OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; // Generate the function that remaps for mnemonic aliases. bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info); // Generate the unified function to convert operands into an MCInst. EmitConvertToMCInst(Target, Info.Matchables, OS); // Emit the enumeration for classes which participate in matching. EmitMatchClassEnumeration(Target, Info.Classes, OS); // Emit the routine to match token strings to their match class. EmitMatchTokenString(Target, Info.Classes, OS); // Emit the routine to classify an operand. EmitClassifyOperand(Info, OS); // Emit the subclass predicate routine. EmitIsSubclass(Target, Info.Classes, OS); // Emit the available features compute function. EmitComputeAvailableFeatures(Info, OS); size_t MaxNumOperands = 0; for (std::vector::const_iterator it = Info.Matchables.begin(), ie = Info.Matchables.end(); it != ie; ++it) MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size()); // Emit the static match table; unused classes get initalized to 0 which is // guaranteed to be InvalidMatchClass. // // FIXME: We can reduce the size of this table very easily. First, we change // it so that store the kinds in separate bit-fields for each index, which // only needs to be the max width used for classes at that index (we also need // to reject based on this during classification). If we then make sure to // order the match kinds appropriately (putting mnemonics last), then we // should only end up using a few bits for each class, especially the ones // following the mnemonic. OS << "namespace {\n"; OS << " struct MatchEntry {\n"; OS << " unsigned Opcode;\n"; OS << " const char *Mnemonic;\n"; OS << " ConversionKind ConvertFn;\n"; OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n"; OS << " unsigned RequiredFeatures;\n"; OS << " };\n\n"; OS << "// Predicate for searching for an opcode.\n"; OS << " struct LessOpcode {\n"; OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; OS << " return StringRef(LHS.Mnemonic) < RHS;\n"; OS << " }\n"; OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; OS << " return LHS < StringRef(RHS.Mnemonic);\n"; OS << " }\n"; OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; OS << " return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n"; OS << " }\n"; OS << " };\n"; OS << "} // end anonymous namespace.\n\n"; OS << "static const MatchEntry MatchTable[" << Info.Matchables.size() << "] = {\n"; for (std::vector::const_iterator it = Info.Matchables.begin(), ie = Info.Matchables.end(); it != ie; ++it) { MatchableInfo &II = **it; OS << " { " << Target.getName() << "::" << II.getResultInst()->TheDef->getName() << ", \"" << II.Mnemonic << "\"" << ", " << II.ConversionFnKind << ", { "; for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) { MatchableInfo::AsmOperand &Op = II.AsmOperands[i]; if (i) OS << ", "; OS << Op.Class->Name; } OS << " }, "; // Write the required features mask. if (!II.RequiredFeatures.empty()) { for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { if (i) OS << "|"; OS << II.RequiredFeatures[i]->getEnumName(); } } else OS << "0"; OS << "},\n"; } OS << "};\n\n"; // Finally, build the match function. OS << Target.getName() << ClassName << "::MatchResultTy " << Target.getName() << ClassName << "::\n" << "MatchInstructionImpl(const SmallVectorImpl" << " &Operands,\n"; OS << " MCInst &Inst, unsigned &ErrorInfo) {\n"; // Emit code to get the available features. OS << " // Get the current feature set.\n"; OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n"; OS << " // Get the instruction mnemonic, which is the first token.\n"; OS << " StringRef Mnemonic = ((" << Target.getName() << "Operand*)Operands[0])->getToken();\n\n"; if (HasMnemonicAliases) { OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; OS << " ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n"; } // Emit code to compute the class list for this operand vector. OS << " // Eliminate obvious mismatches.\n"; OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n"; OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n"; OS << " return Match_InvalidOperand;\n"; OS << " }\n\n"; OS << " // Compute the class list for this operand vector.\n"; OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n"; OS << " for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n"; OS << " Classes[i-1] = ClassifyOperand(Operands[i]);\n\n"; OS << " // Check for invalid operands before matching.\n"; OS << " if (Classes[i-1] == InvalidMatchClass) {\n"; OS << " ErrorInfo = i;\n"; OS << " return Match_InvalidOperand;\n"; OS << " }\n"; OS << " }\n\n"; OS << " // Mark unused classes.\n"; OS << " for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; " << "i != e; ++i)\n"; OS << " Classes[i] = InvalidMatchClass;\n\n"; OS << " // Some state to try to produce better error messages.\n"; OS << " bool HadMatchOtherThanFeatures = false;\n\n"; OS << " // Set ErrorInfo to the operand that mismatches if it is \n"; OS << " // wrong for all instances of the instruction.\n"; OS << " ErrorInfo = ~0U;\n"; // Emit code to search the table. OS << " // Search the table.\n"; OS << " std::pair MnemonicRange =\n"; OS << " std::equal_range(MatchTable, MatchTable+" << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n"; OS << " // Return a more specific error code if no mnemonics match.\n"; OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; OS << " return Match_MnemonicFail;\n\n"; OS << " for (const MatchEntry *it = MnemonicRange.first, " << "*ie = MnemonicRange.second;\n"; OS << " it != ie; ++it) {\n"; OS << " // equal_range guarantees that instruction mnemonic matches.\n"; OS << " assert(Mnemonic == it->Mnemonic);\n"; // Emit check that the subclasses match. OS << " bool OperandsValid = true;\n"; OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n"; OS << " if (IsSubclass(Classes[i], it->Classes[i]))\n"; OS << " continue;\n"; OS << " // If this operand is broken for all of the instances of this\n"; OS << " // mnemonic, keep track of it so we can report loc info.\n"; OS << " if (it == MnemonicRange.first || ErrorInfo == i+1)\n"; OS << " ErrorInfo = i+1;\n"; OS << " else\n"; OS << " ErrorInfo = ~0U;"; OS << " // Otherwise, just reject this instance of the mnemonic.\n"; OS << " OperandsValid = false;\n"; OS << " break;\n"; OS << " }\n\n"; OS << " if (!OperandsValid) continue;\n"; // Emit check that the required features are available. OS << " if ((AvailableFeatures & it->RequiredFeatures) " << "!= it->RequiredFeatures) {\n"; OS << " HadMatchOtherThanFeatures = true;\n"; OS << " continue;\n"; OS << " }\n"; OS << "\n"; OS << " ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; // Call the post-processing function, if used. std::string InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); if (!InsnCleanupFn.empty()) OS << " " << InsnCleanupFn << "(Inst);\n"; OS << " return Match_Success;\n"; OS << " }\n\n"; OS << " // Okay, we had no match. Try to return a useful error code.\n"; OS << " if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n"; OS << " return Match_InvalidOperand;\n"; OS << "}\n\n"; OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; }