//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a value numbering pass that value numbers load and call // instructions. To do this, it finds lexically identical load instructions, // and uses alias analysis to determine which loads are guaranteed to produce // the same value. To value number call instructions, it looks for calls to // functions that do not write to memory which do not have intervening // instructions that clobber the memory that is read from. // // This pass builds off of another value numbering pass to implement value // numbering for non-load and non-call instructions. It uses Alias Analysis so // that it can disambiguate the load instructions. The more powerful these base // analyses are, the more powerful the resultant value numbering will be. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoadValueNumbering.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Type.h" #include "llvm/Analysis/ValueNumbering.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Target/TargetData.h" #include #include using namespace llvm; namespace { // FIXME: This should not be a FunctionPass. struct VISIBILITY_HIDDEN LoadVN : public FunctionPass, public ValueNumbering { static char ID; // Class identification, replacement for typeinfo LoadVN() : FunctionPass((intptr_t)&ID) {} /// Pass Implementation stuff. This doesn't do any analysis. /// bool runOnFunction(Function &) { return false; } /// getAnalysisUsage - Does not modify anything. It uses Value Numbering /// and Alias Analysis. /// virtual void getAnalysisUsage(AnalysisUsage &AU) const; /// getEqualNumberNodes - Return nodes with the same value number as the /// specified Value. This fills in the argument vector with any equal /// values. /// virtual void getEqualNumberNodes(Value *V1, std::vector &RetVals) const; /// deleteValue - This method should be called whenever an LLVM Value is /// deleted from the program, for example when an instruction is found to be /// redundant and is eliminated. /// virtual void deleteValue(Value *V) { getAnalysis().deleteValue(V); } /// copyValue - This method should be used whenever a preexisting value in /// the program is copied or cloned, introducing a new value. Note that /// analysis implementations should tolerate clients that use this method to /// introduce the same value multiple times: if the analysis already knows /// about a value, it should ignore the request. /// virtual void copyValue(Value *From, Value *To) { getAnalysis().copyValue(From, To); } /// getCallEqualNumberNodes - Given a call instruction, find other calls /// that have the same value number. void getCallEqualNumberNodes(CallInst *CI, std::vector &RetVals) const; }; } char LoadVN::ID = 0; // Register this pass... static RegisterPass X("load-vn", "Load Value Numbering", false, true); // Declare that we implement the ValueNumbering interface static RegisterAnalysisGroup Y(X); FunctionPass *llvm::createLoadValueNumberingPass() { return new LoadVN(); } /// getAnalysisUsage - Does not modify anything. It uses Value Numbering and /// Alias Analysis. /// void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); AU.addRequired(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); } static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom, Value *Ptr, unsigned Size, AliasAnalysis &AA, std::set &Visited, std::map &TransparentBlocks){ // If we have already checked out this path, or if we reached our destination, // stop searching, returning success. if (CurBlock == Dom || !Visited.insert(CurBlock).second) return true; // Check whether this block is known transparent or not. std::map::iterator TBI = TransparentBlocks.lower_bound(CurBlock); if (TBI == TransparentBlocks.end() || TBI->first != CurBlock) { // If this basic block can modify the memory location, then the path is not // transparent! if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) { TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false)); return false; } TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true)); } else if (!TBI->second) // This block is known non-transparent, so that path can't be either. return false; // The current block is known to be transparent. The entire path is // transparent if all of the predecessors paths to the parent is also // transparent to the memory location. for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock); PI != E; ++PI) if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited, TransparentBlocks)) return false; return true; } /// getCallEqualNumberNodes - Given a call instruction, find other calls that /// have the same value number. void LoadVN::getCallEqualNumberNodes(CallInst *CI, std::vector &RetVals) const { Function *CF = CI->getCalledFunction(); if (CF == 0) return; // Indirect call. AliasAnalysis &AA = getAnalysis(); AliasAnalysis::ModRefBehavior MRB = AA.getModRefBehavior(CI); if (MRB != AliasAnalysis::DoesNotAccessMemory && MRB != AliasAnalysis::OnlyReadsMemory) return; // Nothing we can do for now. // Scan all of the arguments of the function, looking for one that is not // global. In particular, we would prefer to have an argument or instruction // operand to chase the def-use chains of. Value *Op = CF; for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end(); i != e; ++i) if (isa(*i) || isa(*i)) { Op = *i; break; } // Identify all lexically identical calls in this function. std::vector IdenticalCalls; Function *CIFunc = CI->getParent()->getParent(); for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E; ++UI) if (CallInst *C = dyn_cast(*UI)) if (C->getNumOperands() == CI->getNumOperands() && C->getOperand(0) == CI->getOperand(0) && C->getParent()->getParent() == CIFunc && C != CI) { bool AllOperandsEqual = true; for (User::op_iterator i = CI->op_begin() + 1, j = C->op_begin() + 1, e = CI->op_end(); i != e; ++i, ++j) if (*j != *i) { AllOperandsEqual = false; break; } if (AllOperandsEqual) IdenticalCalls.push_back(C); } if (IdenticalCalls.empty()) return; // Eliminate duplicates, which could occur if we chose a value that is passed // into a call site multiple times. std::sort(IdenticalCalls.begin(), IdenticalCalls.end()); IdenticalCalls.erase(std::unique(IdenticalCalls.begin(),IdenticalCalls.end()), IdenticalCalls.end()); // If the call reads memory, we must make sure that there are no stores // between the calls in question. // // FIXME: This should use mod/ref information. What we really care about it // whether an intervening instruction could modify memory that is read, not // ANY memory. // if (MRB == AliasAnalysis::OnlyReadsMemory) { DominatorTree &DT = getAnalysis(); BasicBlock *CIBB = CI->getParent(); for (unsigned i = 0; i != IdenticalCalls.size(); ++i) { CallInst *C = IdenticalCalls[i]; bool CantEqual = false; if (DT.dominates(CIBB, C->getParent())) { // FIXME: we currently only handle the case where both calls are in the // same basic block. if (CIBB != C->getParent()) { CantEqual = true; } else { Instruction *First = CI, *Second = C; if (!DT.dominates(CI, C)) std::swap(First, Second); // Scan the instructions between the calls, checking for stores or // calls to dangerous functions. BasicBlock::iterator I = First; for (++First; I != BasicBlock::iterator(Second); ++I) { if (isa(I)) { // FIXME: We could use mod/ref information to make this much // better! CantEqual = true; break; } else if (CallInst *CI = dyn_cast(I)) { if (!AA.onlyReadsMemory(CI)) { CantEqual = true; break; } } else if (I->mayWriteToMemory()) { CantEqual = true; break; } } } } else if (DT.dominates(C->getParent(), CIBB)) { // FIXME: We could implement this, but we don't for now. CantEqual = true; } else { // FIXME: if one doesn't dominate the other, we can't tell yet. CantEqual = true; } if (CantEqual) { // This call does not produce the same value as the one in the query. std::swap(IdenticalCalls[i--], IdenticalCalls.back()); IdenticalCalls.pop_back(); } } } // Any calls that are identical and not destroyed will produce equal values! for (unsigned i = 0, e = IdenticalCalls.size(); i != e; ++i) RetVals.push_back(IdenticalCalls[i]); } // getEqualNumberNodes - Return nodes with the same value number as the // specified Value. This fills in the argument vector with any equal values. // void LoadVN::getEqualNumberNodes(Value *V, std::vector &RetVals) const { // If the alias analysis has any must alias information to share with us, we // can definitely use it. if (isa(V->getType())) getAnalysis().getMustAliases(V, RetVals); if (!isa(V)) { if (CallInst *CI = dyn_cast(V)) getCallEqualNumberNodes(CI, RetVals); // Not a load instruction? Just chain to the base value numbering // implementation to satisfy the request... assert(&getAnalysis() != (ValueNumbering*)this && "getAnalysis() returned this!"); return getAnalysis().getEqualNumberNodes(V, RetVals); } // Volatile loads cannot be replaced with the value of other loads. LoadInst *LI = cast(V); if (LI->isVolatile()) return getAnalysis().getEqualNumberNodes(V, RetVals); Value *LoadPtr = LI->getOperand(0); BasicBlock *LoadBB = LI->getParent(); Function *F = LoadBB->getParent(); // Find out how many bytes of memory are loaded by the load instruction... unsigned LoadSize = getAnalysis().getTypeStoreSize(LI->getType()); AliasAnalysis &AA = getAnalysis(); // Figure out if the load is invalidated from the entry of the block it is in // until the actual instruction. This scans the block backwards from LI. If // we see any candidate load or store instructions, then we know that the // candidates have the same value # as LI. bool LoadInvalidatedInBBBefore = false; for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) { --I; if (I == LoadPtr) { // If we run into an allocation of the value being loaded, then the // contents are not initialized. if (isa(I)) RetVals.push_back(UndefValue::get(LI->getType())); // Otherwise, since this is the definition of what we are loading, this // loaded value cannot occur before this block. LoadInvalidatedInBBBefore = true; break; } else if (LoadInst *LI = dyn_cast(I)) { // If this instruction is a candidate load before LI, we know there are no // invalidating instructions between it and LI, so they have the same // value number. if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) RetVals.push_back(I); } if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) { // If the invalidating instruction is a store, and its in our candidate // set, then we can do store-load forwarding: the load has the same value // # as the stored value. if (StoreInst *SI = dyn_cast(I)) if (SI->getOperand(1) == LoadPtr) RetVals.push_back(I->getOperand(0)); LoadInvalidatedInBBBefore = true; break; } } // Figure out if the load is invalidated between the load and the exit of the // block it is defined in. While we are scanning the current basic block, if // we see any candidate loads, then we know they have the same value # as LI. // bool LoadInvalidatedInBBAfter = false; { BasicBlock::iterator I = LI; for (++I; I != LoadBB->end(); ++I) { // If this instruction is a load, then this instruction returns the same // value as LI. if (isa(I) && cast(I)->getOperand(0) == LoadPtr) RetVals.push_back(I); if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) { LoadInvalidatedInBBAfter = true; break; } } } // If the pointer is clobbered on entry and on exit to the function, there is // no need to do any global analysis at all. if (LoadInvalidatedInBBBefore && LoadInvalidatedInBBAfter) return; // Now that we know the value is not neccesarily killed on entry or exit to // the BB, find out how many load and store instructions (to this location) // live in each BB in the function. // std::map CandidateLoads; std::set CandidateStores; for (Value::use_iterator UI = LoadPtr->use_begin(), UE = LoadPtr->use_end(); UI != UE; ++UI) if (LoadInst *Cand = dyn_cast(*UI)) {// Is a load of source? if (Cand->getParent()->getParent() == F && // In the same function? // Not in LI's block? Cand->getParent() != LoadBB && !Cand->isVolatile()) ++CandidateLoads[Cand->getParent()]; // Got one. } else if (StoreInst *Cand = dyn_cast(*UI)) { if (Cand->getParent()->getParent() == F && !Cand->isVolatile() && Cand->getOperand(1) == LoadPtr) // It's a store THROUGH the ptr. CandidateStores.insert(Cand->getParent()); } // Get dominators. DominatorTree &DT = getAnalysis(); // TransparentBlocks - For each basic block the load/store is alive across, // figure out if the pointer is invalidated or not. If it is invalidated, the // boolean is set to false, if it's not it is set to true. If we don't know // yet, the entry is not in the map. std::map TransparentBlocks; // Loop over all of the basic blocks that also load the value. If the value // is live across the CFG from the source to destination blocks, and if the // value is not invalidated in either the source or destination blocks, add it // to the equivalence sets. for (std::map::iterator I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) { bool CantEqual = false; // Right now we only can handle cases where one load dominates the other. // FIXME: generalize this! BasicBlock *BB1 = I->first, *BB2 = LoadBB; if (DT.dominates(BB1, BB2)) { // The other load dominates LI. If the loaded value is killed entering // the LoadBB block, we know the load is not live. if (LoadInvalidatedInBBBefore) CantEqual = true; } else if (DT.dominates(BB2, BB1)) { std::swap(BB1, BB2); // Canonicalize // LI dominates the other load. If the loaded value is killed exiting // the LoadBB block, we know the load is not live. if (LoadInvalidatedInBBAfter) CantEqual = true; } else { // None of these loads can VN the same. CantEqual = true; } if (!CantEqual) { // Ok, at this point, we know that BB1 dominates BB2, and that there is // nothing in the LI block that kills the loaded value. Check to see if // the value is live across the CFG. std::set Visited; for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI) if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA, Visited, TransparentBlocks)) { // None of these loads can VN the same. CantEqual = true; break; } } // If the loads can equal so far, scan the basic block that contains the // loads under consideration to see if they are invalidated in the block. // For any loads that are not invalidated, add them to the equivalence // set! if (!CantEqual) { unsigned NumLoads = I->second; if (BB1 == LoadBB) { // If LI dominates the block in question, check to see if any of the // loads in this block are invalidated before they are reached. for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) { if (LoadInst *LI = dyn_cast(BBI)) { if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) { // The load is in the set! RetVals.push_back(BBI); if (--NumLoads == 0) break; // Found last load to check. } } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) { // If there is a modifying instruction, nothing below it will value // # the same. break; } } } else { // If the block dominates LI, make sure that the loads in the block are // not invalidated before the block ends. BasicBlock::iterator BBI = I->first->end(); while (1) { --BBI; if (LoadInst *LI = dyn_cast(BBI)) { if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) { // The load is the same as this load! RetVals.push_back(BBI); if (--NumLoads == 0) break; // Found all of the laods. } } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) { // If there is a modifying instruction, nothing above it will value // # the same. break; } } } } } // Handle candidate stores. If the loaded location is clobbered on entrance // to the LoadBB, no store outside of the LoadBB can value number equal, so // quick exit. if (LoadInvalidatedInBBBefore) return; // Stores in the load-bb are handled above. CandidateStores.erase(LoadBB); for (std::set::iterator I = CandidateStores.begin(), E = CandidateStores.end(); I != E; ++I) if (DT.dominates(*I, LoadBB)) { BasicBlock *StoreBB = *I; // Check to see if the path from the store to the load is transparent // w.r.t. the memory location. bool CantEqual = false; std::set Visited; for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; ++PI) if (!isPathTransparentTo(*PI, StoreBB, LoadPtr, LoadSize, AA, Visited, TransparentBlocks)) { // None of these stores can VN the same. CantEqual = true; break; } Visited.clear(); if (!CantEqual) { // Okay, the path from the store block to the load block is clear, and // we know that there are no invalidating instructions from the start // of the load block to the load itself. Now we just scan the store // block. BasicBlock::iterator BBI = StoreBB->end(); while (1) { assert(BBI != StoreBB->begin() && "There is a store in this block of the pointer, but the store" " doesn't mod the address being stored to?? Must be a bug in" " the alias analysis implementation!"); --BBI; if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) { // If the invalidating instruction is one of the candidates, // then it provides the value the load loads. if (StoreInst *SI = dyn_cast(BBI)) if (SI->getOperand(1) == LoadPtr) RetVals.push_back(SI->getOperand(0)); break; } } } } }