//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief This is the parent TargetLowering class for hardware code gen /// targets. // //===----------------------------------------------------------------------===// #define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f #define AMDGPU_LN2_F 0.693147180559945309417232121458176568f #define AMDGPU_LN10_F 2.30258509299404568401799145468436421f #include "AMDGPUISelLowering.h" #include "AMDGPU.h" #include "AMDGPUCallLowering.h" #include "AMDGPUFrameLowering.h" #include "AMDGPUIntrinsicInfo.h" #include "AMDGPURegisterInfo.h" #include "AMDGPUSubtarget.h" #include "AMDGPUTargetMachine.h" #include "Utils/AMDGPUBaseInfo.h" #include "R600MachineFunctionInfo.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/Support/KnownBits.h" using namespace llvm; static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { MachineFunction &MF = State.getMachineFunction(); AMDGPUMachineFunction *MFI = MF.getInfo(); uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(), ArgFlags.getOrigAlign()); State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return true; } static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, const TargetRegisterClass *RC, unsigned NumRegs) { ArrayRef RegList = makeArrayRef(RC->begin(), NumRegs); unsigned RegResult = State.AllocateReg(RegList); if (RegResult == AMDGPU::NoRegister) return false; State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo)); return true; } static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { switch (LocVT.SimpleTy) { case MVT::i64: case MVT::f64: case MVT::v2i32: case MVT::v2f32: { // Up to SGPR0-SGPR39 return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, &AMDGPU::SGPR_64RegClass, 20); } default: return false; } } // Allocate up to VGPR31. // // TODO: Since there are no VGPR alignent requirements would it be better to // split into individual scalar registers? static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { switch (LocVT.SimpleTy) { case MVT::i64: case MVT::f64: case MVT::v2i32: case MVT::v2f32: { return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, &AMDGPU::VReg_64RegClass, 31); } case MVT::v4i32: case MVT::v4f32: case MVT::v2i64: case MVT::v2f64: { return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, &AMDGPU::VReg_128RegClass, 29); } case MVT::v8i32: case MVT::v8f32: { return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, &AMDGPU::VReg_256RegClass, 25); } case MVT::v16i32: case MVT::v16f32: { return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, &AMDGPU::VReg_512RegClass, 17); } default: return false; } } #include "AMDGPUGenCallingConv.inc" // Find a larger type to do a load / store of a vector with. EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { unsigned StoreSize = VT.getStoreSizeInBits(); if (StoreSize <= 32) return EVT::getIntegerVT(Ctx, StoreSize); assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); } unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { KnownBits Known; EVT VT = Op.getValueType(); DAG.computeKnownBits(Op, Known); return VT.getSizeInBits() - Known.countMinLeadingZeros(); } unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); // In order for this to be a signed 24-bit value, bit 23, must // be a sign bit. return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); } AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI) : TargetLowering(TM), Subtarget(&STI) { AMDGPUASI = AMDGPU::getAMDGPUAS(TM); // Lower floating point store/load to integer store/load to reduce the number // of patterns in tablegen. setOperationAction(ISD::LOAD, MVT::f32, Promote); AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); setOperationAction(ISD::LOAD, MVT::v2f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v4f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::v8f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); setOperationAction(ISD::LOAD, MVT::v16f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); setOperationAction(ISD::LOAD, MVT::i64, Promote); AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v2i64, Promote); AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::f64, Promote); AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v2f64, Promote); AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); // There are no 64-bit extloads. These should be done as a 32-bit extload and // an extension to 64-bit. for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); } for (MVT VT : MVT::integer_valuetypes()) { if (VT == MVT::i64) continue; setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); } for (MVT VT : MVT::integer_vector_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); } setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); setOperationAction(ISD::STORE, MVT::f32, Promote); AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); setOperationAction(ISD::STORE, MVT::v2f32, Promote); AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v4f32, Promote); AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); setOperationAction(ISD::STORE, MVT::v8f32, Promote); AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); setOperationAction(ISD::STORE, MVT::v16f32, Promote); AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); setOperationAction(ISD::STORE, MVT::i64, Promote); AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v2i64, Promote); AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); setOperationAction(ISD::STORE, MVT::f64, Promote); AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v2f64, Promote); AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); setTruncStoreAction(MVT::i64, MVT::i1, Expand); setTruncStoreAction(MVT::i64, MVT::i8, Expand); setTruncStoreAction(MVT::i64, MVT::i16, Expand); setTruncStoreAction(MVT::i64, MVT::i32, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); setOperationAction(ISD::Constant, MVT::i32, Legal); setOperationAction(ISD::Constant, MVT::i64, Legal); setOperationAction(ISD::ConstantFP, MVT::f32, Legal); setOperationAction(ISD::ConstantFP, MVT::f64, Legal); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BRIND, MVT::Other, Expand); // This is totally unsupported, just custom lower to produce an error. setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); // Library functions. These default to Expand, but we have instructions // for them. setOperationAction(ISD::FCEIL, MVT::f32, Legal); setOperationAction(ISD::FEXP2, MVT::f32, Legal); setOperationAction(ISD::FPOW, MVT::f32, Legal); setOperationAction(ISD::FLOG2, MVT::f32, Legal); setOperationAction(ISD::FABS, MVT::f32, Legal); setOperationAction(ISD::FFLOOR, MVT::f32, Legal); setOperationAction(ISD::FRINT, MVT::f32, Legal); setOperationAction(ISD::FTRUNC, MVT::f32, Legal); setOperationAction(ISD::FMINNUM, MVT::f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); setOperationAction(ISD::FROUND, MVT::f32, Custom); setOperationAction(ISD::FROUND, MVT::f64, Custom); setOperationAction(ISD::FLOG, MVT::f32, Custom); setOperationAction(ISD::FLOG10, MVT::f32, Custom); if (Subtarget->has16BitInsts()) { setOperationAction(ISD::FLOG, MVT::f16, Custom); setOperationAction(ISD::FLOG10, MVT::f16, Custom); } setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); setOperationAction(ISD::FREM, MVT::f32, Custom); setOperationAction(ISD::FREM, MVT::f64, Custom); // v_mad_f32 does not support denormals according to some sources. if (!Subtarget->hasFP32Denormals()) setOperationAction(ISD::FMAD, MVT::f32, Legal); // Expand to fneg + fadd. setOperationAction(ISD::FSUB, MVT::f64, Expand); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { setOperationAction(ISD::FCEIL, MVT::f64, Custom); setOperationAction(ISD::FTRUNC, MVT::f64, Custom); setOperationAction(ISD::FRINT, MVT::f64, Custom); setOperationAction(ISD::FFLOOR, MVT::f64, Custom); } if (!Subtarget->hasBFI()) { // fcopysign can be done in a single instruction with BFI. setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); } setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; for (MVT VT : ScalarIntVTs) { // These should use [SU]DIVREM, so set them to expand setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); // GPU does not have divrem function for signed or unsigned. setOperationAction(ISD::SDIVREM, VT, Custom); setOperationAction(ISD::UDIVREM, VT, Custom); // GPU does not have [S|U]MUL_LOHI functions as a single instruction. setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); } if (!Subtarget->hasBCNT(32)) setOperationAction(ISD::CTPOP, MVT::i32, Expand); if (!Subtarget->hasBCNT(64)) setOperationAction(ISD::CTPOP, MVT::i64, Expand); // The hardware supports 32-bit ROTR, but not ROTL. setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::ROTL, MVT::i64, Expand); setOperationAction(ISD::ROTR, MVT::i64, Expand); setOperationAction(ISD::MUL, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i64, Expand); setOperationAction(ISD::MULHS, MVT::i64, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); setOperationAction(ISD::SMIN, MVT::i32, Legal); setOperationAction(ISD::UMIN, MVT::i32, Legal); setOperationAction(ISD::SMAX, MVT::i32, Legal); setOperationAction(ISD::UMAX, MVT::i32, Legal); if (Subtarget->hasFFBH()) setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); if (Subtarget->hasFFBL()) setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); setOperationAction(ISD::CTTZ, MVT::i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); setOperationAction(ISD::CTLZ, MVT::i64, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); // We only really have 32-bit BFE instructions (and 16-bit on VI). // // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any // effort to match them now. We want this to be false for i64 cases when the // extraction isn't restricted to the upper or lower half. Ideally we would // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that // span the midpoint are probably relatively rare, so don't worry about them // for now. if (Subtarget->hasBFE()) setHasExtractBitsInsn(true); static const MVT::SimpleValueType VectorIntTypes[] = { MVT::v2i32, MVT::v4i32 }; for (MVT VT : VectorIntTypes) { // Expand the following operations for the current type by default. setOperationAction(ISD::ADD, VT, Expand); setOperationAction(ISD::AND, VT, Expand); setOperationAction(ISD::FP_TO_SINT, VT, Expand); setOperationAction(ISD::FP_TO_UINT, VT, Expand); setOperationAction(ISD::MUL, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::OR, VT, Expand); setOperationAction(ISD::SHL, VT, Expand); setOperationAction(ISD::SRA, VT, Expand); setOperationAction(ISD::SRL, VT, Expand); setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); setOperationAction(ISD::SUB, VT, Expand); setOperationAction(ISD::SINT_TO_FP, VT, Expand); setOperationAction(ISD::UINT_TO_FP, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Custom); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::ADDC, VT, Expand); setOperationAction(ISD::SUBC, VT, Expand); setOperationAction(ISD::ADDE, VT, Expand); setOperationAction(ISD::SUBE, VT, Expand); setOperationAction(ISD::SELECT, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::XOR, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); setOperationAction(ISD::SETCC, VT, Expand); } static const MVT::SimpleValueType FloatVectorTypes[] = { MVT::v2f32, MVT::v4f32 }; for (MVT VT : FloatVectorTypes) { setOperationAction(ISD::FABS, VT, Expand); setOperationAction(ISD::FMINNUM, VT, Expand); setOperationAction(ISD::FMAXNUM, VT, Expand); setOperationAction(ISD::FADD, VT, Expand); setOperationAction(ISD::FCEIL, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::FFLOOR, VT, Expand); setOperationAction(ISD::FTRUNC, VT, Expand); setOperationAction(ISD::FMUL, VT, Expand); setOperationAction(ISD::FMA, VT, Expand); setOperationAction(ISD::FRINT, VT, Expand); setOperationAction(ISD::FNEARBYINT, VT, Expand); setOperationAction(ISD::FSQRT, VT, Expand); setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FSUB, VT, Expand); setOperationAction(ISD::FNEG, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::FCOPYSIGN, VT, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); setOperationAction(ISD::SETCC, VT, Expand); } // This causes using an unrolled select operation rather than expansion with // bit operations. This is in general better, but the alternative using BFI // instructions may be better if the select sources are SGPRs. setOperationAction(ISD::SELECT, MVT::v2f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); setOperationAction(ISD::SELECT, MVT::v4f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); // There are no libcalls of any kind. for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) setLibcallName(static_cast(I), nullptr); setBooleanContents(ZeroOrNegativeOneBooleanContent); setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); setSchedulingPreference(Sched::RegPressure); setJumpIsExpensive(true); // FIXME: This is only partially true. If we have to do vector compares, any // SGPR pair can be a condition register. If we have a uniform condition, we // are better off doing SALU operations, where there is only one SCC. For now, // we don't have a way of knowing during instruction selection if a condition // will be uniform and we always use vector compares. Assume we are using // vector compares until that is fixed. setHasMultipleConditionRegisters(true); // SI at least has hardware support for floating point exceptions, but no way // of using or handling them is implemented. They are also optional in OpenCL // (Section 7.3) setHasFloatingPointExceptions(Subtarget->hasFPExceptions()); PredictableSelectIsExpensive = false; // We want to find all load dependencies for long chains of stores to enable // merging into very wide vectors. The problem is with vectors with > 4 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 // vectors are a legal type, even though we have to split the loads // usually. When we can more precisely specify load legality per address // space, we should be able to make FindBetterChain/MergeConsecutiveStores // smarter so that they can figure out what to do in 2 iterations without all // N > 4 stores on the same chain. GatherAllAliasesMaxDepth = 16; // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry // about these during lowering. MaxStoresPerMemcpy = 0xffffffff; MaxStoresPerMemmove = 0xffffffff; MaxStoresPerMemset = 0xffffffff; setTargetDAGCombine(ISD::BITCAST); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::MULHU); setTargetDAGCombine(ISD::MULHS); setTargetDAGCombine(ISD::SELECT); setTargetDAGCombine(ISD::SELECT_CC); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::FADD); setTargetDAGCombine(ISD::FSUB); setTargetDAGCombine(ISD::FNEG); setTargetDAGCombine(ISD::FABS); setTargetDAGCombine(ISD::AssertZext); setTargetDAGCombine(ISD::AssertSext); } //===----------------------------------------------------------------------===// // Target Information //===----------------------------------------------------------------------===// LLVM_READNONE static bool fnegFoldsIntoOp(unsigned Opc) { switch (Opc) { case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FMA: case ISD::FMAD: case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::FSIN: case ISD::FTRUNC: case ISD::FRINT: case ISD::FNEARBYINT: case AMDGPUISD::RCP: case AMDGPUISD::RCP_LEGACY: case AMDGPUISD::SIN_HW: case AMDGPUISD::FMUL_LEGACY: case AMDGPUISD::FMIN_LEGACY: case AMDGPUISD::FMAX_LEGACY: return true; default: return false; } } /// \p returns true if the operation will definitely need to use a 64-bit /// encoding, and thus will use a VOP3 encoding regardless of the source /// modifiers. LLVM_READONLY static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { return N->getNumOperands() > 2 || VT == MVT::f64; } // Most FP instructions support source modifiers, but this could be refined // slightly. LLVM_READONLY static bool hasSourceMods(const SDNode *N) { if (isa(N)) return false; switch (N->getOpcode()) { case ISD::CopyToReg: case ISD::SELECT: case ISD::FDIV: case ISD::FREM: case ISD::INLINEASM: case AMDGPUISD::INTERP_P1: case AMDGPUISD::INTERP_P2: case AMDGPUISD::DIV_SCALE: // TODO: Should really be looking at the users of the bitcast. These are // problematic because bitcasts are used to legalize all stores to integer // types. case ISD::BITCAST: return false; default: return true; } } bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold) { // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus // it is truly free to use a source modifier in all cases. If there are // multiple users but for each one will necessitate using VOP3, there will be // a code size increase. Try to avoid increasing code size unless we know it // will save on the instruction count. unsigned NumMayIncreaseSize = 0; MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); // XXX - Should this limit number of uses to check? for (const SDNode *U : N->uses()) { if (!hasSourceMods(U)) return false; if (!opMustUseVOP3Encoding(U, VT)) { if (++NumMayIncreaseSize > CostThreshold) return false; } } return true; } MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { return MVT::i32; } bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { return true; } // The backend supports 32 and 64 bit floating point immediates. // FIXME: Why are we reporting vectors of FP immediates as legal? bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { EVT ScalarVT = VT.getScalarType(); return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); } // We don't want to shrink f64 / f32 constants. bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { EVT ScalarVT = VT.getScalarType(); return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); } bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, ISD::LoadExtType, EVT NewVT) const { unsigned NewSize = NewVT.getStoreSizeInBits(); // If we are reducing to a 32-bit load, this is always better. if (NewSize == 32) return true; EVT OldVT = N->getValueType(0); unsigned OldSize = OldVT.getStoreSizeInBits(); // Don't produce extloads from sub 32-bit types. SI doesn't have scalar // extloads, so doing one requires using a buffer_load. In cases where we // still couldn't use a scalar load, using the wider load shouldn't really // hurt anything. // If the old size already had to be an extload, there's no harm in continuing // to reduce the width. return (OldSize < 32); } bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy) const { assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); if (LoadTy.getScalarType() == MVT::i32) return false; unsigned LScalarSize = LoadTy.getScalarSizeInBits(); unsigned CastScalarSize = CastTy.getScalarSizeInBits(); return (LScalarSize < CastScalarSize) || (CastScalarSize >= 32); } // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also // profitable with the expansion for 64-bit since it's generally good to // speculate things. // FIXME: These should really have the size as a parameter. bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { return true; } bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { return true; } bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { switch (N->getOpcode()) { default: return false; case ISD::EntryToken: case ISD::TokenFactor: return true; case ISD::INTRINSIC_WO_CHAIN: { unsigned IntrID = cast(N->getOperand(0))->getZExtValue(); switch (IntrID) { default: return false; case Intrinsic::amdgcn_readfirstlane: case Intrinsic::amdgcn_readlane: return true; } } break; case ISD::LOAD: { const LoadSDNode * L = dyn_cast(N); if (L->getMemOperand()->getAddrSpace() == Subtarget->getAMDGPUAS().CONSTANT_ADDRESS_32BIT) return true; return false; } break; } } bool AMDGPUTargetLowering::isSDNodeSourceOfDivergence(const SDNode * N, FunctionLoweringInfo * FLI, DivergenceAnalysis * DA) const { switch (N->getOpcode()) { case ISD::Register: case ISD::CopyFromReg: { const RegisterSDNode *R = nullptr; if (N->getOpcode() == ISD::Register) { R = dyn_cast(N); } else { R = dyn_cast(N->getOperand(1)); } if (R) { const MachineFunction * MF = FLI->MF; const SISubtarget &ST = MF->getSubtarget(); const MachineRegisterInfo &MRI = MF->getRegInfo(); const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo(); unsigned Reg = R->getReg(); if (TRI.isPhysicalRegister(Reg)) return TRI.isVGPR(MRI, Reg); if (MRI.isLiveIn(Reg)) { // workitem.id.x workitem.id.y workitem.id.z if ((MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_X) || (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Y) || (MRI.getLiveInPhysReg(Reg) == AMDGPU::T0_Z)|| (MRI.getLiveInPhysReg(Reg) == AMDGPU::VGPR0) || (MRI.getLiveInPhysReg(Reg) == AMDGPU::VGPR1) || (MRI.getLiveInPhysReg(Reg) == AMDGPU::VGPR2)) return true; // Formal arguments of non-entry functions // are conservatively considered divergent else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv())) return true; } return !DA || DA->isDivergent(FLI->getValueFromVirtualReg(Reg)); } } break; case ISD::LOAD: { const LoadSDNode *L = dyn_cast(N); if (L->getMemOperand()->getAddrSpace() == Subtarget->getAMDGPUAS().PRIVATE_ADDRESS) return true; } break; case ISD::CALLSEQ_END: return true; break; case ISD::INTRINSIC_WO_CHAIN: { } return AMDGPU::isIntrinsicSourceOfDivergence( cast(N->getOperand(0))->getZExtValue()); case ISD::INTRINSIC_W_CHAIN: return AMDGPU::isIntrinsicSourceOfDivergence( cast(N->getOperand(1))->getZExtValue()); } return false; } //===---------------------------------------------------------------------===// // Target Properties //===---------------------------------------------------------------------===// bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { assert(VT.isFloatingPoint()); // Packed operations do not have a fabs modifier. return VT == MVT::f32 || VT == MVT::f64 || (Subtarget->has16BitInsts() && VT == MVT::f16); } bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { assert(VT.isFloatingPoint()); return VT == MVT::f32 || VT == MVT::f64 || (Subtarget->has16BitInsts() && VT == MVT::f16) || (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); } bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem, unsigned AS) const { return true; } bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { // There are few operations which truly have vector input operands. Any vector // operation is going to involve operations on each component, and a // build_vector will be a copy per element, so it always makes sense to use a // build_vector input in place of the extracted element to avoid a copy into a // super register. // // We should probably only do this if all users are extracts only, but this // should be the common case. return true; } bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { // Truncate is just accessing a subregister. unsigned SrcSize = Source.getSizeInBits(); unsigned DestSize = Dest.getSizeInBits(); return DestSize < SrcSize && DestSize % 32 == 0 ; } bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { // Truncate is just accessing a subregister. unsigned SrcSize = Source->getScalarSizeInBits(); unsigned DestSize = Dest->getScalarSizeInBits(); if (DestSize== 16 && Subtarget->has16BitInsts()) return SrcSize >= 32; return DestSize < SrcSize && DestSize % 32 == 0; } bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { unsigned SrcSize = Src->getScalarSizeInBits(); unsigned DestSize = Dest->getScalarSizeInBits(); if (SrcSize == 16 && Subtarget->has16BitInsts()) return DestSize >= 32; return SrcSize == 32 && DestSize == 64; } bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { // Any register load of a 64-bit value really requires 2 32-bit moves. For all // practical purposes, the extra mov 0 to load a 64-bit is free. As used, // this will enable reducing 64-bit operations the 32-bit, which is always // good. if (Src == MVT::i16) return Dest == MVT::i32 ||Dest == MVT::i64 ; return Src == MVT::i32 && Dest == MVT::i64; } bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { return isZExtFree(Val.getValueType(), VT2); } // v_mad_mix* support a conversion from f16 to f32. // // There is only one special case when denormals are enabled we don't currently, // where this is OK to use. bool AMDGPUTargetLowering::isFPExtFoldable(unsigned Opcode, EVT DestVT, EVT SrcVT) const { return Opcode == ISD::FMAD && Subtarget->hasMadMixInsts() && DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() && SrcVT.getScalarType() == MVT::f16; } bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { // There aren't really 64-bit registers, but pairs of 32-bit ones and only a // limited number of native 64-bit operations. Shrinking an operation to fit // in a single 32-bit register should always be helpful. As currently used, // this is much less general than the name suggests, and is only used in // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is // not profitable, and may actually be harmful. return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; } //===---------------------------------------------------------------------===// // TargetLowering Callbacks //===---------------------------------------------------------------------===// CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) { switch (CC) { case CallingConv::AMDGPU_KERNEL: case CallingConv::SPIR_KERNEL: return CC_AMDGPU_Kernel; case CallingConv::AMDGPU_VS: case CallingConv::AMDGPU_GS: case CallingConv::AMDGPU_PS: case CallingConv::AMDGPU_CS: case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_ES: case CallingConv::AMDGPU_LS: return CC_AMDGPU; case CallingConv::C: case CallingConv::Fast: case CallingConv::Cold: return CC_AMDGPU_Func; default: report_fatal_error("Unsupported calling convention."); } } CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, bool IsVarArg) { switch (CC) { case CallingConv::AMDGPU_KERNEL: case CallingConv::SPIR_KERNEL: return CC_AMDGPU_Kernel; case CallingConv::AMDGPU_VS: case CallingConv::AMDGPU_GS: case CallingConv::AMDGPU_PS: case CallingConv::AMDGPU_CS: case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_ES: case CallingConv::AMDGPU_LS: return RetCC_SI_Shader; case CallingConv::C: case CallingConv::Fast: case CallingConv::Cold: return RetCC_AMDGPU_Func; default: report_fatal_error("Unsupported calling convention."); } } /// The SelectionDAGBuilder will automatically promote function arguments /// with illegal types. However, this does not work for the AMDGPU targets /// since the function arguments are stored in memory as these illegal types. /// In order to handle this properly we need to get the original types sizes /// from the LLVM IR Function and fixup the ISD:InputArg values before /// passing them to AnalyzeFormalArguments() /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting /// input values across multiple registers. Each item in the Ins array /// represents a single value that will be stored in registers. Ins[x].VT is /// the value type of the value that will be stored in the register, so /// whatever SDNode we lower the argument to needs to be this type. /// /// In order to correctly lower the arguments we need to know the size of each /// argument. Since Ins[x].VT gives us the size of the register that will /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type /// for the orignal function argument so that we can deduce the correct memory /// type to use for Ins[x]. In most cases the correct memory type will be /// Ins[x].ArgVT. However, this will not always be the case. If, for example, /// we have a kernel argument of type v8i8, this argument will be split into /// 8 parts and each part will be represented by its own item in the Ins array. /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of /// the argument before it was split. From this, we deduce that the memory type /// for each individual part is i8. We pass the memory type as LocVT to the /// calling convention analysis function and the register type (Ins[x].VT) as /// the ValVT. void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State, const SmallVectorImpl &Ins) const { for (unsigned i = 0, e = Ins.size(); i != e; ++i) { const ISD::InputArg &In = Ins[i]; EVT MemVT; unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT); if (!Subtarget->isAmdHsaOS() && (In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) { // The ABI says the caller will extend these values to 32-bits. MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32; } else if (NumRegs == 1) { // This argument is not split, so the IR type is the memory type. assert(!In.Flags.isSplit()); if (In.ArgVT.isExtended()) { // We have an extended type, like i24, so we should just use the register type MemVT = In.VT; } else { MemVT = In.ArgVT; } } else if (In.ArgVT.isVector() && In.VT.isVector() && In.ArgVT.getScalarType() == In.VT.getScalarType()) { assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements()); // We have a vector value which has been split into a vector with // the same scalar type, but fewer elements. This should handle // all the floating-point vector types. MemVT = In.VT; } else if (In.ArgVT.isVector() && In.ArgVT.getVectorNumElements() == NumRegs) { // This arg has been split so that each element is stored in a separate // register. MemVT = In.ArgVT.getScalarType(); } else if (In.ArgVT.isExtended()) { // We have an extended type, like i65. MemVT = In.VT; } else { unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs; assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0); if (In.VT.isInteger()) { MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); } else if (In.VT.isVector()) { assert(!In.VT.getScalarType().isFloatingPoint()); unsigned NumElements = In.VT.getVectorNumElements(); assert(MemoryBits % NumElements == 0); // This vector type has been split into another vector type with // a different elements size. EVT ScalarVT = EVT::getIntegerVT(State.getContext(), MemoryBits / NumElements); MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); } else { llvm_unreachable("cannot deduce memory type."); } } // Convert one element vectors to scalar. if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) MemVT = MemVT.getScalarType(); if (MemVT.isExtended()) { // This should really only happen if we have vec3 arguments assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3); MemVT = MemVT.getPow2VectorType(State.getContext()); } assert(MemVT.isSimple()); allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags, State); } } SDValue AMDGPUTargetLowering::LowerReturn( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { // FIXME: Fails for r600 tests //assert(!isVarArg && Outs.empty() && OutVals.empty() && // "wave terminate should not have return values"); return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); } //===---------------------------------------------------------------------===// // Target specific lowering //===---------------------------------------------------------------------===// /// Selects the correct CCAssignFn for a given CallingConvention value. CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) { return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); } CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, bool IsVarArg) { return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); } SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo &MFI, int ClobberedFI) const { SmallVector ArgChains; int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; // Include the original chain at the beginning of the list. When this is // used by target LowerCall hooks, this helps legalize find the // CALLSEQ_BEGIN node. ArgChains.push_back(Chain); // Add a chain value for each stack argument corresponding for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U) { if (LoadSDNode *L = dyn_cast(*U)) { if (FrameIndexSDNode *FI = dyn_cast(L->getBasePtr())) { if (FI->getIndex() < 0) { int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); int64_t InLastByte = InFirstByte; InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || (FirstByte <= InFirstByte && InFirstByte <= LastByte)) ArgChains.push_back(SDValue(L, 1)); } } } } // Build a tokenfactor for all the chains. return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); } SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals, StringRef Reason) const { SDValue Callee = CLI.Callee; SelectionDAG &DAG = CLI.DAG; const Function &Fn = DAG.getMachineFunction().getFunction(); StringRef FuncName(""); if (const ExternalSymbolSDNode *G = dyn_cast(Callee)) FuncName = G->getSymbol(); else if (const GlobalAddressSDNode *G = dyn_cast(Callee)) FuncName = G->getGlobal()->getName(); DiagnosticInfoUnsupported NoCalls( Fn, Reason + FuncName, CLI.DL.getDebugLoc()); DAG.getContext()->diagnose(NoCalls); if (!CLI.IsTailCall) { for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); } return DAG.getEntryNode(); } SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); } SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { const Function &Fn = DAG.getMachineFunction().getFunction(); DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", SDLoc(Op).getDebugLoc()); DAG.getContext()->diagnose(NoDynamicAlloca); auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; return DAG.getMergeValues(Ops, SDLoc()); } SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: Op->print(errs(), &DAG); llvm_unreachable("Custom lowering code for this" "instruction is not implemented yet!"); break; case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); case ISD::FREM: return LowerFREM(Op, DAG); case ISD::FCEIL: return LowerFCEIL(Op, DAG); case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); case ISD::FRINT: return LowerFRINT(Op, DAG); case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); case ISD::FROUND: return LowerFROUND(Op, DAG); case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); case ISD::FLOG: return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F); case ISD::FLOG10: return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_CTTZ(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); } return Op; } void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { case ISD::SIGN_EXTEND_INREG: // Different parts of legalization seem to interpret which type of // sign_extend_inreg is the one to check for custom lowering. The extended // from type is what really matters, but some places check for custom // lowering of the result type. This results in trying to use // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do // nothing here and let the illegal result integer be handled normally. return; default: return; } } static bool hasDefinedInitializer(const GlobalValue *GV) { const GlobalVariable *GVar = dyn_cast(GV); if (!GVar || !GVar->hasInitializer()) return false; return !isa(GVar->getInitializer()); } SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, SDValue Op, SelectionDAG &DAG) const { const DataLayout &DL = DAG.getDataLayout(); GlobalAddressSDNode *G = cast(Op); const GlobalValue *GV = G->getGlobal(); if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS) { // XXX: What does the value of G->getOffset() mean? assert(G->getOffset() == 0 && "Do not know what to do with an non-zero offset"); // TODO: We could emit code to handle the initialization somewhere. if (!hasDefinedInitializer(GV)) { unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); } } const Function &Fn = DAG.getMachineFunction().getFunction(); DiagnosticInfoUnsupported BadInit( Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); DAG.getContext()->diagnose(BadInit); return SDValue(); } SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { SmallVector Args; for (const SDUse &U : Op->ops()) DAG.ExtractVectorElements(U.get(), Args); return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); } SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { SmallVector Args; unsigned Start = cast(Op.getOperand(1))->getZExtValue(); EVT VT = Op.getValueType(); DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, VT.getVectorNumElements()); return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); } /// \brief Generate Min/Max node SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, SDValue CC, DAGCombinerInfo &DCI) const { if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) return SDValue(); SelectionDAG &DAG = DCI.DAG; ISD::CondCode CCOpcode = cast(CC)->get(); switch (CCOpcode) { case ISD::SETOEQ: case ISD::SETONE: case ISD::SETUNE: case ISD::SETNE: case ISD::SETUEQ: case ISD::SETEQ: case ISD::SETFALSE: case ISD::SETFALSE2: case ISD::SETTRUE: case ISD::SETTRUE2: case ISD::SETUO: case ISD::SETO: break; case ISD::SETULE: case ISD::SETULT: { if (LHS == True) return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); } case ISD::SETOLE: case ISD::SETOLT: case ISD::SETLE: case ISD::SETLT: { // Ordered. Assume ordered for undefined. // Only do this after legalization to avoid interfering with other combines // which might occur. if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && !DCI.isCalledByLegalizer()) return SDValue(); // We need to permute the operands to get the correct NaN behavior. The // selected operand is the second one based on the failing compare with NaN, // so permute it based on the compare type the hardware uses. if (LHS == True) return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); } case ISD::SETUGE: case ISD::SETUGT: { if (LHS == True) return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); } case ISD::SETGT: case ISD::SETGE: case ISD::SETOGE: case ISD::SETOGT: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && !DCI.isCalledByLegalizer()) return SDValue(); if (LHS == True) return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); } case ISD::SETCC_INVALID: llvm_unreachable("Invalid setcc condcode!"); } return SDValue(); } std::pair AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); const SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); return std::make_pair(Lo, Hi); } SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); } SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); const SDValue One = DAG.getConstant(1, SL, MVT::i32); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); } SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, SelectionDAG &DAG) const { LoadSDNode *Load = cast(Op); EVT VT = Op.getValueType(); // If this is a 2 element vector, we really want to scalarize and not create // weird 1 element vectors. if (VT.getVectorNumElements() == 2) return scalarizeVectorLoad(Load, DAG); SDValue BasePtr = Load->getBasePtr(); EVT MemVT = Load->getMemoryVT(); SDLoc SL(Op); const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); EVT LoVT, HiVT; EVT LoMemVT, HiMemVT; SDValue Lo, Hi; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); unsigned Size = LoMemVT.getStoreSize(); unsigned BaseAlign = Load->getAlignment(); unsigned HiAlign = MinAlign(BaseAlign, Size); SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, Load->getChain(), BasePtr, SrcValue, LoMemVT, BaseAlign, Load->getMemOperand()->getFlags()); SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); SDValue HiLoad = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); SDValue Ops[] = { DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoLoad.getValue(1), HiLoad.getValue(1)) }; return DAG.getMergeValues(Ops, SL); } SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, SelectionDAG &DAG) const { StoreSDNode *Store = cast(Op); SDValue Val = Store->getValue(); EVT VT = Val.getValueType(); // If this is a 2 element vector, we really want to scalarize and not create // weird 1 element vectors. if (VT.getVectorNumElements() == 2) return scalarizeVectorStore(Store, DAG); EVT MemVT = Store->getMemoryVT(); SDValue Chain = Store->getChain(); SDValue BasePtr = Store->getBasePtr(); SDLoc SL(Op); EVT LoVT, HiVT; EVT LoMemVT, HiMemVT; SDValue Lo, Hi; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); unsigned BaseAlign = Store->getAlignment(); unsigned Size = LoMemVT.getStoreSize(); unsigned HiAlign = MinAlign(BaseAlign, Size); SDValue LoStore = DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, Store->getMemOperand()->getFlags()); SDValue HiStore = DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); } // This is a shortcut for integer division because we have fast i32<->f32 // conversions, and fast f32 reciprocal instructions. The fractional part of a // float is enough to accurately represent up to a 24-bit signed integer. SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool Sign) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); MVT IntVT = MVT::i32; MVT FltVT = MVT::f32; unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); if (LHSSignBits < 9) return SDValue(); unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); if (RHSSignBits < 9) return SDValue(); unsigned BitSize = VT.getSizeInBits(); unsigned SignBits = std::min(LHSSignBits, RHSSignBits); unsigned DivBits = BitSize - SignBits; if (Sign) ++DivBits; ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; SDValue jq = DAG.getConstant(1, DL, IntVT); if (Sign) { // char|short jq = ia ^ ib; jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); // jq = jq >> (bitsize - 2) jq = DAG.getNode(ISD::SRA, DL, VT, jq, DAG.getConstant(BitSize - 2, DL, VT)); // jq = jq | 0x1 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); } // int ia = (int)LHS; SDValue ia = LHS; // int ib, (int)RHS; SDValue ib = RHS; // float fa = (float)ia; SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); // float fb = (float)ib; SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); // fq = trunc(fq); fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); // float fqneg = -fq; SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); // float fr = mad(fqneg, fb, fa); unsigned OpCode = Subtarget->hasFP32Denormals() ? (unsigned)AMDGPUISD::FMAD_FTZ : (unsigned)ISD::FMAD; SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); // int iq = (int)fq; SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); // fr = fabs(fr); fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); // fb = fabs(fb); fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); // int cv = fr >= fb; SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); // jq = (cv ? jq : 0); jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); // dst = iq + jq; SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); // Rem needs compensation, it's easier to recompute it SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); // Truncate to number of bits this divide really is. if (Sign) { SDValue InRegSize = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); } else { SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); } return DAG.getMergeValues({ Div, Rem }, DL); } void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, SelectionDAG &DAG, SmallVectorImpl &Results) const { SDLoc DL(Op); EVT VT = Op.getValueType(); assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); SDValue One = DAG.getConstant(1, DL, HalfVT); SDValue Zero = DAG.getConstant(0, DL, HalfVT); //HiLo split SDValue LHS = Op.getOperand(0); SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); SDValue RHS = Op.getOperand(1); SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), LHS_Lo, RHS_Lo); SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); return; } if (isTypeLegal(MVT::i64)) { // Compute denominator reciprocal. unsigned FMAD = Subtarget->hasFP32Denormals() ? (unsigned)AMDGPUISD::FMAD_FTZ : (unsigned)ISD::FMAD; SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), Cvt_Lo); SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), Mul1); SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); SDValue Rcp64 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); SDValue Zero64 = DAG.getConstant(0, DL, VT); SDValue One64 = DAG.getConstant(1, DL, VT); SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, Zero); SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, One); SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, Mulhi1_Lo, Zero1); SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, Mulhi1_Hi, Add1_Lo.getValue(1)); SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); SDValue Add1 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, Zero); SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, One); SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, Mulhi2_Lo, Zero1); SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, Mulhi2_Hi, Add1_Lo.getValue(1)); SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, Zero, Add2_Lo.getValue(1)); SDValue Add2 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, Mul3_Lo, Zero1); SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, Mul3_Hi, Sub1_Lo.getValue(1)); SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); SDValue Sub1 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, ISD::SETUGE); SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, ISD::SETUGE); SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); // TODO: Here and below portions of the code can be enclosed into if/endif. // Currently control flow is unconditional and we have 4 selects after // potential endif to substitute PHIs. // if C3 != 0 ... SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, RHS_Lo, Zero1); SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, RHS_Hi, Sub1_Lo.getValue(1)); SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, Zero, Sub2_Lo.getValue(1)); SDValue Sub2 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, ISD::SETUGE); SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, ISD::SETUGE); SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); // if (C6 != 0) SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, RHS_Lo, Zero1); SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, RHS_Hi, Sub2_Lo.getValue(1)); SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, Zero, Sub3_Lo.getValue(1)); SDValue Sub3 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); // endif C6 // endif C3 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); Results.push_back(Div); Results.push_back(Rem); return; } // r600 expandion. // Get Speculative values SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); SDValue DIV_Lo = Zero; const unsigned halfBitWidth = HalfVT.getSizeInBits(); for (unsigned i = 0; i < halfBitWidth; ++i) { const unsigned bitPos = halfBitWidth - i - 1; SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); // Get value of high bit SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); // Shift REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); // Add LHS high bit REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); // Update REM SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); } SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); Results.push_back(DIV); Results.push_back(REM); } SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); if (VT == MVT::i64) { SmallVector Results; LowerUDIVREM64(Op, DAG, Results); return DAG.getMergeValues(Results, DL); } if (VT == MVT::i32) { if (SDValue Res = LowerDIVREM24(Op, DAG, false)) return Res; } SDValue Num = Op.getOperand(0); SDValue Den = Op.getOperand(1); // RCP = URECIP(Den) = 2^32 / Den + e // e is rounding error. SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); // RCP_LO = mul(RCP, Den) */ SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); // RCP_HI = mulhu (RCP, Den) */ SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); // NEG_RCP_LO = -RCP_LO SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RCP_LO); // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), NEG_RCP_LO, RCP_LO, ISD::SETEQ); // Calculate the rounding error from the URECIP instruction // E = mulhu(ABS_RCP_LO, RCP) SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); // RCP_A_E = RCP + E SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); // RCP_S_E = RCP - E SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), RCP_A_E, RCP_S_E, ISD::SETEQ); // Quotient = mulhu(Tmp0, Num) SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); // Num_S_Remainder = Quotient * Den SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); // Remainder = Num - Num_S_Remainder SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), ISD::SETUGE); // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, Num_S_Remainder, DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), ISD::SETUGE); // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, Remainder_GE_Zero); // Calculate Division result: // Quotient_A_One = Quotient + 1 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, DAG.getConstant(1, DL, VT)); // Quotient_S_One = Quotient - 1 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, DAG.getConstant(1, DL, VT)); // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), Quotient, Quotient_A_One, ISD::SETEQ); // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), Quotient_S_One, Div, ISD::SETEQ); // Calculate Rem result: // Remainder_S_Den = Remainder - Den SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); // Remainder_A_Den = Remainder + Den SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), Remainder, Remainder_S_Den, ISD::SETEQ); // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), Remainder_A_Den, Rem, ISD::SETEQ); SDValue Ops[2] = { Div, Rem }; return DAG.getMergeValues(Ops, DL); } SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue Zero = DAG.getConstant(0, DL, VT); SDValue NegOne = DAG.getConstant(-1, DL, VT); if (VT == MVT::i32) { if (SDValue Res = LowerDIVREM24(Op, DAG, true)) return Res; } if (VT == MVT::i64 && DAG.ComputeNumSignBits(LHS) > 32 && DAG.ComputeNumSignBits(RHS) > 32) { EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); //HiLo split SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), LHS_Lo, RHS_Lo); SDValue Res[2] = { DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) }; return DAG.getMergeValues(Res, DL); } SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); SDValue RSign = LHSign; // Remainder sign is the same as LHS LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); SDValue Rem = Div.getValue(1); Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); SDValue Res[2] = { Div, Rem }; return DAG.getMergeValues(Res, DL); } // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); EVT VT = Op.getValueType(); SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); // TODO: Should this propagate fast-math-flags? SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); } SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); // result = trunc(src) // if (src > 0.0 && src != result) // result += 1.0 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); // TODO: Should this propagate fast-math-flags? return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); } static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, SelectionDAG &DAG) { const unsigned FractBits = 52; const unsigned ExpBits = 11; SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, Hi, DAG.getConstant(FractBits - 32, SL, MVT::i32), DAG.getConstant(ExpBits, SL, MVT::i32)); SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, DAG.getConstant(1023, SL, MVT::i32)); return Exp; } SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); assert(Op.getValueType() == MVT::f64); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); const SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); // Extract the upper half, since this is where we will find the sign and // exponent. SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); SDValue Exp = extractF64Exponent(Hi, SL, DAG); const unsigned FractBits = 52; // Extract the sign bit. const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); // Extend back to 64-bits. SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); const SDValue FractMask = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); } SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); assert(Op.getValueType() == MVT::f64); APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); // TODO: Should this propagate fast-math-flags? SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); } SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { // FNEARBYINT and FRINT are the same, except in their handling of FP // exceptions. Those aren't really meaningful for us, and OpenCL only has // rint, so just treat them as equivalent. return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); } // XXX - May require not supporting f32 denormals? // Don't handle v2f16. The extra instructions to scalarize and repack around the // compare and vselect end up producing worse code than scalarizing the whole // operation. SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue X = Op.getOperand(0); EVT VT = Op.getValueType(); SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); // TODO: Should this propagate fast-math-flags? SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); const SDValue One = DAG.getConstantFP(1.0, SL, VT); const SDValue Half = DAG.getConstantFP(0.5, SL, VT); SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); return DAG.getNode(ISD::FADD, SL, VT, T, Sel); } SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue X = Op.getOperand(0); SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); const SDValue One = DAG.getConstant(1, SL, MVT::i32); const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); SDValue Exp = extractF64Exponent(Hi, SL, DAG); const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, MVT::i64); SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, DAG.getConstant(INT64_C(0x0008000000000000), SL, MVT::i64), Exp); SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, DAG.getConstant(0, SL, MVT::i64), Tmp0, ISD::SETNE); SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, D, DAG.getConstant(0, SL, MVT::i64)); SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpEqNegOne, DAG.getConstantFP(1.0, SL, MVT::f64), DAG.getConstantFP(0.0, SL, MVT::f64)); SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); return K; } SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT == MVT::f32 || VT == MVT::f16) return LowerFROUND32_16(Op, DAG); if (VT == MVT::f64) return LowerFROUND64(Op, DAG); llvm_unreachable("unhandled type"); } SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); // result = trunc(src); // if (src < 0.0 && src != result) // result += -1.0. SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); // TODO: Should this propagate fast-math-flags? return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); } SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, double Log2BaseInverted) const { EVT VT = Op.getValueType(); SDLoc SL(Op); SDValue Operand = Op.getOperand(0); SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); } static bool isCtlzOpc(unsigned Opc) { return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; } static bool isCttzOpc(unsigned Opc) { return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; } SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; unsigned ISDOpc, NewOpc; if (isCtlzOpc(Op.getOpcode())) { ISDOpc = ISD::CTLZ_ZERO_UNDEF; NewOpc = AMDGPUISD::FFBH_U32; } else if (isCttzOpc(Op.getOpcode())) { ISDOpc = ISD::CTTZ_ZERO_UNDEF; NewOpc = AMDGPUISD::FFBL_B32; } else llvm_unreachable("Unexpected OPCode!!!"); if (ZeroUndef && Src.getValueType() == MVT::i32) return DAG.getNode(NewOpc, SL, MVT::i32, Src); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); const SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); SDValue Add, NewOpr; if (isCtlzOpc(Op.getOpcode())) { Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); } else { Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); } if (!ZeroUndef) { // Test if the full 64-bit input is zero. // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, // which we probably don't want. SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction // with the same cycles, otherwise it is slower. // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); // The instruction returns -1 for 0 input, but the defined intrinsic // behavior is to return the number of bits. NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, SrcIsZero, Bits32, NewOpr); } return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); } SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, bool Signed) const { // Unsigned // cul2f(ulong u) //{ // uint lz = clz(u); // uint e = (u != 0) ? 127U + 63U - lz : 0; // u = (u << lz) & 0x7fffffffffffffffUL; // ulong t = u & 0xffffffffffUL; // uint v = (e << 23) | (uint)(u >> 40); // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); // return as_float(v + r); //} // Signed // cl2f(long l) //{ // long s = l >> 63; // float r = cul2f((l + s) ^ s); // return s ? -r : r; //} SDLoc SL(Op); SDValue Src = Op.getOperand(0); SDValue L = Src; SDValue S; if (Signed) { const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); } EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); SDValue E = DAG.getSelect(SL, MVT::i32, DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), ZeroI32); SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, U, DAG.getConstant(40, SL, MVT::i64)); SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); SDValue R = DAG.getSelect(SL, MVT::i32, RCmp, One, DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); if (!Signed) return R; SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); } SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, bool Signed) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, DAG.getConstant(0, SL, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, DAG.getConstant(1, SL, MVT::i32)); SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, SL, MVT::f64, Hi); SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, DAG.getConstant(32, SL, MVT::i32)); // TODO: Should this propagate fast-math-flags? return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); } SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOperand(0).getValueType() == MVT::i64 && "operation should be legal"); // TODO: Factor out code common with LowerSINT_TO_FP. EVT DestVT = Op.getValueType(); if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { SDLoc DL(Op); SDValue Src = Op.getOperand(0); SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); SDValue FPRound = DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); return FPRound; } if (DestVT == MVT::f32) return LowerINT_TO_FP32(Op, DAG, false); assert(DestVT == MVT::f64); return LowerINT_TO_FP64(Op, DAG, false); } SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOperand(0).getValueType() == MVT::i64 && "operation should be legal"); // TODO: Factor out code common with LowerUINT_TO_FP. EVT DestVT = Op.getValueType(); if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { SDLoc DL(Op); SDValue Src = Op.getOperand(0); SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); SDValue FPRound = DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); return FPRound; } if (DestVT == MVT::f32) return LowerINT_TO_FP32(Op, DAG, true); assert(DestVT == MVT::f64); return LowerINT_TO_FP64(Op, DAG, true); } SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, bool Signed) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, MVT::f64); SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, MVT::f64); // TODO: Should this propagate fast-math-flags? SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, MVT::i32, FloorMul); SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); } SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue N0 = Op.getOperand(0); // Convert to target node to get known bits if (N0.getValueType() == MVT::f32) return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); if (getTargetMachine().Options.UnsafeFPMath) { // There is a generic expand for FP_TO_FP16 with unsafe fast math. return SDValue(); } assert(N0.getSimpleValueType() == MVT::f64); // f64 -> f16 conversion using round-to-nearest-even rounding mode. const unsigned ExpMask = 0x7ff; const unsigned ExpBiasf64 = 1023; const unsigned ExpBiasf16 = 15; SDValue Zero = DAG.getConstant(0, DL, MVT::i32); SDValue One = DAG.getConstant(1, DL, MVT::i32); SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, DAG.getConstant(32, DL, MVT::i64)); UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); U = DAG.getZExtOrTrunc(U, DL, MVT::i32); SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, DAG.getConstant(20, DL, MVT::i64)); E = DAG.getNode(ISD::AND, DL, MVT::i32, E, DAG.getConstant(ExpMask, DL, MVT::i32)); // Subtract the fp64 exponent bias (1023) to get the real exponent and // add the f16 bias (15) to get the biased exponent for the f16 format. E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, DAG.getConstant(8, DL, MVT::i32)); M = DAG.getNode(ISD::AND, DL, MVT::i32, M, DAG.getConstant(0xffe, DL, MVT::i32)); SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, DAG.getConstant(0x1ff, DL, MVT::i32)); MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); // (M != 0 ? 0x0200 : 0) | 0x7c00; SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); // N = M | (E << 12); SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, DAG.getNode(ISD::SHL, DL, MVT::i32, E, DAG.getConstant(12, DL, MVT::i32))); // B = clamp(1-E, 0, 13); SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, One, E); SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, DAG.getConstant(13, DL, MVT::i32)); SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, DAG.getConstant(0x1000, DL, MVT::i32)); SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, DAG.getConstant(0x7, DL, MVT::i32)); V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, DAG.getConstant(2, DL, MVT::i32)); SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), One, Zero, ISD::SETEQ); SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), One, Zero, ISD::SETGT); V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), I, V, ISD::SETEQ); // Extract the sign bit. SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, DAG.getConstant(16, DL, MVT::i32)); Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, DAG.getConstant(0x8000, DL, MVT::i32)); V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); } SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { SDValue Src = Op.getOperand(0); // TODO: Factor out code common with LowerFP_TO_UINT. EVT SrcVT = Src.getValueType(); if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { SDLoc DL(Op); SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); SDValue FpToInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); return FpToInt32; } if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) return LowerFP64_TO_INT(Op, DAG, true); return SDValue(); } SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const { SDValue Src = Op.getOperand(0); // TODO: Factor out code common with LowerFP_TO_SINT. EVT SrcVT = Src.getValueType(); if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { SDLoc DL(Op); SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); SDValue FpToInt32 = DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); return FpToInt32; } if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) return LowerFP64_TO_INT(Op, DAG, false); return SDValue(); } SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const { EVT ExtraVT = cast(Op.getOperand(1))->getVT(); MVT VT = Op.getSimpleValueType(); MVT ScalarVT = VT.getScalarType(); assert(VT.isVector()); SDValue Src = Op.getOperand(0); SDLoc DL(Op); // TODO: Don't scalarize on Evergreen? unsigned NElts = VT.getVectorNumElements(); SmallVector Args; DAG.ExtractVectorElements(Src, Args, 0, NElts); SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); for (unsigned I = 0; I < NElts; ++I) Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); return DAG.getBuildVector(VT, DL, Args); } //===----------------------------------------------------------------------===// // Custom DAG optimizations //===----------------------------------------------------------------------===// static bool isU24(SDValue Op, SelectionDAG &DAG) { return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; } static bool isI24(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated // as unsigned 24-bit values. AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; } static bool simplifyI24(SDNode *Node24, unsigned OpIdx, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDValue Op = Node24->getOperand(OpIdx); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT = Op.getValueType(); APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); APInt KnownZero, KnownOne; TargetLowering::TargetLoweringOpt TLO(DAG, true, true); if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) return true; return false; } template static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, uint32_t Width, const SDLoc &DL) { if (Width + Offset < 32) { uint32_t Shl = static_cast(Src0) << (32 - Offset - Width); IntTy Result = static_cast(Shl) >> (32 - Width); return DAG.getConstant(Result, DL, MVT::i32); } return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); } static bool hasVolatileUser(SDNode *Val) { for (SDNode *U : Val->uses()) { if (MemSDNode *M = dyn_cast(U)) { if (M->isVolatile()) return true; } } return false; } bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { // i32 vectors are the canonical memory type. if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) return false; if (!VT.isByteSized()) return false; unsigned Size = VT.getStoreSize(); if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) return false; if (Size == 3 || (Size > 4 && (Size % 4 != 0))) return false; return true; } // Replace load of an illegal type with a store of a bitcast to a friendlier // type. SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (!DCI.isBeforeLegalize()) return SDValue(); LoadSDNode *LN = cast(N); if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) return SDValue(); SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; EVT VT = LN->getMemoryVT(); unsigned Size = VT.getStoreSize(); unsigned Align = LN->getAlignment(); if (Align < Size && isTypeLegal(VT)) { bool IsFast; unsigned AS = LN->getAddressSpace(); // Expand unaligned loads earlier than legalization. Due to visitation order // problems during legalization, the emitted instructions to pack and unpack // the bytes again are not eliminated in the case of an unaligned copy. if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { if (VT.isVector()) return scalarizeVectorLoad(LN, DAG); SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); return DAG.getMergeValues(Ops, SDLoc(N)); } if (!IsFast) return SDValue(); } if (!shouldCombineMemoryType(VT)) return SDValue(); EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); SDValue NewLoad = DAG.getLoad(NewVT, SL, LN->getChain(), LN->getBasePtr(), LN->getMemOperand()); SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); DCI.CombineTo(N, BC, NewLoad.getValue(1)); return SDValue(N, 0); } // Replace store of an illegal type with a store of a bitcast to a friendlier // type. SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (!DCI.isBeforeLegalize()) return SDValue(); StoreSDNode *SN = cast(N); if (SN->isVolatile() || !ISD::isNormalStore(SN)) return SDValue(); EVT VT = SN->getMemoryVT(); unsigned Size = VT.getStoreSize(); SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; unsigned Align = SN->getAlignment(); if (Align < Size && isTypeLegal(VT)) { bool IsFast; unsigned AS = SN->getAddressSpace(); // Expand unaligned stores earlier than legalization. Due to visitation // order problems during legalization, the emitted instructions to pack and // unpack the bytes again are not eliminated in the case of an unaligned // copy. if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) { if (VT.isVector()) return scalarizeVectorStore(SN, DAG); return expandUnalignedStore(SN, DAG); } if (!IsFast) return SDValue(); } if (!shouldCombineMemoryType(VT)) return SDValue(); EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); SDValue Val = SN->getValue(); //DCI.AddToWorklist(Val.getNode()); bool OtherUses = !Val.hasOneUse(); SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); if (OtherUses) { SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); DAG.ReplaceAllUsesOfValueWith(Val, CastBack); } return DAG.getStore(SN->getChain(), SL, CastVal, SN->getBasePtr(), SN->getMemOperand()); } SDValue AMDGPUTargetLowering::performClampCombine(SDNode *N, DAGCombinerInfo &DCI) const { ConstantFPSDNode *CSrc = dyn_cast(N->getOperand(0)); if (!CSrc) return SDValue(); const APFloat &F = CSrc->getValueAPF(); APFloat Zero = APFloat::getZero(F.getSemantics()); APFloat::cmpResult Cmp0 = F.compare(Zero); if (Cmp0 == APFloat::cmpLessThan || (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) { return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); } APFloat One(F.getSemantics(), "1.0"); APFloat::cmpResult Cmp1 = F.compare(One); if (Cmp1 == APFloat::cmpGreaterThan) return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); return SDValue(CSrc, 0); } // FIXME: This should go in generic DAG combiner with an isTruncateFree check, // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU // issues. SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); // (vt2 (assertzext (truncate vt0:x), vt1)) -> // (vt2 (truncate (assertzext vt0:x, vt1))) if (N0.getOpcode() == ISD::TRUNCATE) { SDValue N1 = N->getOperand(1); EVT ExtVT = cast(N1)->getVT(); SDLoc SL(N); SDValue Src = N0.getOperand(0); EVT SrcVT = Src.getValueType(); if (SrcVT.bitsGE(ExtVT)) { SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); } } return SDValue(); } /// Split the 64-bit value \p LHS into two 32-bit components, and perform the /// binary operation \p Opc to it with the corresponding constant operands. SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS, uint32_t ValLo, uint32_t ValHi) const { SelectionDAG &DAG = DCI.DAG; SDValue Lo, Hi; std::tie(Lo, Hi) = split64BitValue(LHS, DAG); SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); // Re-visit the ands. It's possible we eliminated one of them and it could // simplify the vector. DCI.AddToWorklist(Lo.getNode()); DCI.AddToWorklist(Hi.getNode()); SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); ConstantSDNode *RHS = dyn_cast(N->getOperand(1)); if (!RHS) return SDValue(); SDValue LHS = N->getOperand(0); unsigned RHSVal = RHS->getZExtValue(); if (!RHSVal) return LHS; SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; switch (LHS->getOpcode()) { default: break; case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::ANY_EXTEND: { SDValue X = LHS->getOperand(0); if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && isTypeLegal(MVT::v2i16)) { // Prefer build_vector as the canonical form if packed types are legal. // (shl ([asz]ext i16:x), 16 -> build_vector 0, x SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); } // shl (ext x) => zext (shl x), if shift does not overflow int if (VT != MVT::i64) break; KnownBits Known; DAG.computeKnownBits(X, Known); unsigned LZ = Known.countMinLeadingZeros(); if (LZ < RHSVal) break; EVT XVT = X.getValueType(); SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); return DAG.getZExtOrTrunc(Shl, SL, VT); } } if (VT != MVT::i64) return SDValue(); // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) // On some subtargets, 64-bit shift is a quarter rate instruction. In the // common case, splitting this into a move and a 32-bit shift is faster and // the same code size. if (RHSVal < 32) return SDValue(); SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i64) return SDValue(); const ConstantSDNode *RHS = dyn_cast(N->getOperand(1)); if (!RHS) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); unsigned RHSVal = RHS->getZExtValue(); // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) if (RHSVal == 32) { SDValue Hi = getHiHalf64(N->getOperand(0), DAG); SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, DAG.getConstant(31, SL, MVT::i32)); SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); } // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) if (RHSVal == 63) { SDValue Hi = getHiHalf64(N->getOperand(0), DAG); SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, DAG.getConstant(31, SL, MVT::i32)); SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); } return SDValue(); } SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i64) return SDValue(); const ConstantSDNode *RHS = dyn_cast(N->getOperand(1)); if (!RHS) return SDValue(); unsigned ShiftAmt = RHS->getZExtValue(); if (ShiftAmt < 32) return SDValue(); // srl i64:x, C for C >= 32 // => // build_pair (srl hi_32(x), C - 32), 0 SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue Zero = DAG.getConstant(0, SL, MVT::i32); SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0)); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); } // We need to specifically handle i64 mul here to avoid unnecessary conversion // instructions. If we only match on the legalized i64 mul expansion, // SimplifyDemandedBits will be unable to remove them because there will be // multiple uses due to the separate mul + mulh[su]. static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, SDValue N0, SDValue N1, unsigned Size, bool Signed) { if (Size <= 32) { unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); } // Because we want to eliminate extension instructions before the // operation, we need to create a single user here (i.e. not the separate // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; SDValue Mul = DAG.getNode(MulOpc, SL, DAG.getVTList(MVT::i32, MVT::i32), N0, N1); return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Mul.getValue(0), Mul.getValue(1)); } SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); unsigned Size = VT.getSizeInBits(); if (VT.isVector() || Size > 64) return SDValue(); // There are i16 integer mul/mad. if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue Mul; if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); Mul = getMul24(DAG, DL, N0, N1, Size, false); } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); Mul = getMul24(DAG, DL, N0, N1, Size, true); } else { return SDValue(); } // We need to use sext even for MUL_U24, because MUL_U24 is used // for signed multiply of 8 and 16-bit types. return DAG.getSExtOrTrunc(Mul, DL, VT); } SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); if (!Subtarget->hasMulI24() || VT.isVector()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (!isI24(N0, DAG) || !isI24(N1, DAG)) return SDValue(); N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); DCI.AddToWorklist(Mulhi.getNode()); return DAG.getSExtOrTrunc(Mulhi, DL, VT); } SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (!isU24(N0, DAG) || !isU24(N1, DAG)) return SDValue(); N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); DCI.AddToWorklist(Mulhi.getNode()); return DAG.getZExtOrTrunc(Mulhi, DL, VT); } SDValue AMDGPUTargetLowering::performMulLoHi24Combine( SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; // Simplify demanded bits before splitting into multiple users. if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI)) return SDValue(); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; SDLoc SL(N); SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); return DAG.getMergeValues({ MulLo, MulHi }, SL); } static bool isNegativeOne(SDValue Val) { if (ConstantSDNode *C = dyn_cast(Val)) return C->isAllOnesValue(); return false; } SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, SDValue Op, const SDLoc &DL, unsigned Opc) const { EVT VT = Op.getValueType(); EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && LegalVT != MVT::i16)) return SDValue(); if (VT != MVT::i32) Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); if (VT != MVT::i32) FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); return FFBX; } // The native instructions return -1 on 0 input. Optimize out a select that // produces -1 on 0. // // TODO: If zero is not undef, we could also do this if the output is compared // against the bitwidth. // // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, SDValue LHS, SDValue RHS, DAGCombinerInfo &DCI) const { ConstantSDNode *CmpRhs = dyn_cast(Cond.getOperand(1)); if (!CmpRhs || !CmpRhs->isNullValue()) return SDValue(); SelectionDAG &DAG = DCI.DAG; ISD::CondCode CCOpcode = cast(Cond.getOperand(2))->get(); SDValue CmpLHS = Cond.getOperand(0); unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x if (CCOpcode == ISD::SETEQ && (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) { return getFFBX_U32(DAG, CmpLHS, SL, Opc); } // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x if (CCOpcode == ISD::SETNE && (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) { return getFFBX_U32(DAG, CmpLHS, SL, Opc); } return SDValue(); } static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, unsigned Op, const SDLoc &SL, SDValue Cond, SDValue N1, SDValue N2) { SelectionDAG &DAG = DCI.DAG; EVT VT = N1.getValueType(); SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, N1.getOperand(0), N2.getOperand(0)); DCI.AddToWorklist(NewSelect.getNode()); return DAG.getNode(Op, SL, VT, NewSelect); } // Pull a free FP operation out of a select so it may fold into uses. // // select c, (fneg x), (fneg y) -> fneg (select c, x, y) // select c, (fneg x), k -> fneg (select c, x, (fneg k)) // // select c, (fabs x), (fabs y) -> fabs (select c, x, y) // select c, (fabs x), +k -> fabs (select c, x, k) static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, SDValue N) { SelectionDAG &DAG = DCI.DAG; SDValue Cond = N.getOperand(0); SDValue LHS = N.getOperand(1); SDValue RHS = N.getOperand(2); EVT VT = N.getValueType(); if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { return distributeOpThroughSelect(DCI, LHS.getOpcode(), SDLoc(N), Cond, LHS, RHS); } bool Inv = false; if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { std::swap(LHS, RHS); Inv = true; } // TODO: Support vector constants. ConstantFPSDNode *CRHS = dyn_cast(RHS); if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { SDLoc SL(N); // If one side is an fneg/fabs and the other is a constant, we can push the // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. SDValue NewLHS = LHS.getOperand(0); SDValue NewRHS = RHS; // Careful: if the neg can be folded up, don't try to pull it back down. bool ShouldFoldNeg = true; if (NewLHS.hasOneUse()) { unsigned Opc = NewLHS.getOpcode(); if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) ShouldFoldNeg = false; if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) ShouldFoldNeg = false; } if (ShouldFoldNeg) { if (LHS.getOpcode() == ISD::FNEG) NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); else if (CRHS->isNegative()) return SDValue(); if (Inv) std::swap(NewLHS, NewRHS); SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, NewLHS, NewRHS); DCI.AddToWorklist(NewSelect.getNode()); return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); } } return SDValue(); } SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) return Folded; SDValue Cond = N->getOperand(0); if (Cond.getOpcode() != ISD::SETCC) return SDValue(); EVT VT = N->getValueType(0); SDValue LHS = Cond.getOperand(0); SDValue RHS = Cond.getOperand(1); SDValue CC = Cond.getOperand(2); SDValue True = N->getOperand(1); SDValue False = N->getOperand(2); if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. SelectionDAG &DAG = DCI.DAG; if ((DAG.isConstantValueOfAnyType(True) || DAG.isConstantValueOfAnyType(True)) && (!DAG.isConstantValueOfAnyType(False) && !DAG.isConstantValueOfAnyType(False))) { // Swap cmp + select pair to move constant to false input. // This will allow using VOPC cndmasks more often. // select (setcc x, y), k, x -> select (setcc y, x) x, x SDLoc SL(N); ISD::CondCode NewCC = getSetCCInverse(cast(CC)->get(), LHS.getValueType().isInteger()); SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); } if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { SDValue MinMax = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); // Revisit this node so we can catch min3/max3/med3 patterns. //DCI.AddToWorklist(MinMax.getNode()); return MinMax; } } // There's no reason to not do this if the condition has other uses. return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); } static bool isConstantFPZero(SDValue N) { if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) return C->isZero() && !C->isNegative(); return false; } static unsigned inverseMinMax(unsigned Opc) { switch (Opc) { case ISD::FMAXNUM: return ISD::FMINNUM; case ISD::FMINNUM: return ISD::FMAXNUM; case AMDGPUISD::FMAX_LEGACY: return AMDGPUISD::FMIN_LEGACY; case AMDGPUISD::FMIN_LEGACY: return AMDGPUISD::FMAX_LEGACY; default: llvm_unreachable("invalid min/max opcode"); } } SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); unsigned Opc = N0.getOpcode(); // If the input has multiple uses and we can either fold the negate down, or // the other uses cannot, give up. This both prevents unprofitable // transformations and infinite loops: we won't repeatedly try to fold around // a negate that has no 'good' form. if (N0.hasOneUse()) { // This may be able to fold into the source, but at a code size cost. Don't // fold if the fold into the user is free. if (allUsesHaveSourceMods(N, 0)) return SDValue(); } else { if (fnegFoldsIntoOp(Opc) && (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) return SDValue(); } SDLoc SL(N); switch (Opc) { case ISD::FADD: { if (!mayIgnoreSignedZero(N0)) return SDValue(); // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) SDValue LHS = N0.getOperand(0); SDValue RHS = N0.getOperand(1); if (LHS.getOpcode() != ISD::FNEG) LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); else LHS = LHS.getOperand(0); if (RHS.getOpcode() != ISD::FNEG) RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); else RHS = RHS.getOperand(0); SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); if (!N0.hasOneUse()) DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); return Res; } case ISD::FMUL: case AMDGPUISD::FMUL_LEGACY: { // (fneg (fmul x, y)) -> (fmul x, (fneg y)) // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) SDValue LHS = N0.getOperand(0); SDValue RHS = N0.getOperand(1); if (LHS.getOpcode() == ISD::FNEG) LHS = LHS.getOperand(0); else if (RHS.getOpcode() == ISD::FNEG) RHS = RHS.getOperand(0); else RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); if (!N0.hasOneUse()) DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); return Res; } case ISD::FMA: case ISD::FMAD: { if (!mayIgnoreSignedZero(N0)) return SDValue(); // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) SDValue LHS = N0.getOperand(0); SDValue MHS = N0.getOperand(1); SDValue RHS = N0.getOperand(2); if (LHS.getOpcode() == ISD::FNEG) LHS = LHS.getOperand(0); else if (MHS.getOpcode() == ISD::FNEG) MHS = MHS.getOperand(0); else MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); if (RHS.getOpcode() != ISD::FNEG) RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); else RHS = RHS.getOperand(0); SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); if (!N0.hasOneUse()) DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); return Res; } case ISD::FMAXNUM: case ISD::FMINNUM: case AMDGPUISD::FMAX_LEGACY: case AMDGPUISD::FMIN_LEGACY: { // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) SDValue LHS = N0.getOperand(0); SDValue RHS = N0.getOperand(1); // 0 doesn't have a negated inline immediate. // TODO: Shouldn't fold 1/2pi either, and should be generalized to other // operations. if (isConstantFPZero(RHS)) return SDValue(); SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); unsigned Opposite = inverseMinMax(Opc); SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); if (!N0.hasOneUse()) DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); return Res; } case ISD::FP_EXTEND: case ISD::FTRUNC: case ISD::FRINT: case ISD::FNEARBYINT: // XXX - Should fround be handled? case ISD::FSIN: case AMDGPUISD::RCP: case AMDGPUISD::RCP_LEGACY: case AMDGPUISD::SIN_HW: { SDValue CvtSrc = N0.getOperand(0); if (CvtSrc.getOpcode() == ISD::FNEG) { // (fneg (fp_extend (fneg x))) -> (fp_extend x) // (fneg (rcp (fneg x))) -> (rcp x) return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); } if (!N0.hasOneUse()) return SDValue(); // (fneg (fp_extend x)) -> (fp_extend (fneg x)) // (fneg (rcp x)) -> (rcp (fneg x)) SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); } case ISD::FP_ROUND: { SDValue CvtSrc = N0.getOperand(0); if (CvtSrc.getOpcode() == ISD::FNEG) { // (fneg (fp_round (fneg x))) -> (fp_round x) return DAG.getNode(ISD::FP_ROUND, SL, VT, CvtSrc.getOperand(0), N0.getOperand(1)); } if (!N0.hasOneUse()) return SDValue(); // (fneg (fp_round x)) -> (fp_round (fneg x)) SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); } case ISD::FP16_TO_FP: { // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal // f16, but legalization of f16 fneg ends up pulling it out of the source. // Put the fneg back as a legal source operation that can be matched later. SDLoc SL(N); SDValue Src = N0.getOperand(0); EVT SrcVT = Src.getValueType(); // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, DAG.getConstant(0x8000, SL, SrcVT)); return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); } default: return SDValue(); } } SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); if (!N0.hasOneUse()) return SDValue(); switch (N0.getOpcode()) { case ISD::FP16_TO_FP: { assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); SDLoc SL(N); SDValue Src = N0.getOperand(0); EVT SrcVT = Src.getValueType(); // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, DAG.getConstant(0x7fff, SL, SrcVT)); return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); } default: return SDValue(); } } SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); switch(N->getOpcode()) { default: break; case ISD::BITCAST: { EVT DestVT = N->getValueType(0); // Push casts through vector builds. This helps avoid emitting a large // number of copies when materializing floating point vector constants. // // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) if (DestVT.isVector()) { SDValue Src = N->getOperand(0); if (Src.getOpcode() == ISD::BUILD_VECTOR) { EVT SrcVT = Src.getValueType(); unsigned NElts = DestVT.getVectorNumElements(); if (SrcVT.getVectorNumElements() == NElts) { EVT DestEltVT = DestVT.getVectorElementType(); SmallVector CastedElts; SDLoc SL(N); for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { SDValue Elt = Src.getOperand(I); CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); } return DAG.getBuildVector(DestVT, SL, CastedElts); } } } if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) break; // Fold bitcasts of constants. // // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) // TODO: Generalize and move to DAGCombiner SDValue Src = N->getOperand(0); if (ConstantSDNode *C = dyn_cast(Src)) { assert(Src.getValueType() == MVT::i64); SDLoc SL(N); uint64_t CVal = C->getZExtValue(); return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT, DAG.getConstant(Lo_32(CVal), SL, MVT::i32), DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); } if (ConstantFPSDNode *C = dyn_cast(Src)) { const APInt &Val = C->getValueAPF().bitcastToAPInt(); SDLoc SL(N); uint64_t CVal = Val.getZExtValue(); SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, DAG.getConstant(Lo_32(CVal), SL, MVT::i32), DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); } break; } case ISD::SHL: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; return performShlCombine(N, DCI); } case ISD::SRL: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; return performSrlCombine(N, DCI); } case ISD::SRA: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; return performSraCombine(N, DCI); } case ISD::MUL: return performMulCombine(N, DCI); case ISD::MULHS: return performMulhsCombine(N, DCI); case ISD::MULHU: return performMulhuCombine(N, DCI); case AMDGPUISD::MUL_I24: case AMDGPUISD::MUL_U24: case AMDGPUISD::MULHI_I24: case AMDGPUISD::MULHI_U24: { // If the first call to simplify is successfull, then N may end up being // deleted, so we shouldn't call simplifyI24 again. simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI); return SDValue(); } case AMDGPUISD::MUL_LOHI_I24: case AMDGPUISD::MUL_LOHI_U24: return performMulLoHi24Combine(N, DCI); case ISD::SELECT: return performSelectCombine(N, DCI); case ISD::FNEG: return performFNegCombine(N, DCI); case ISD::FABS: return performFAbsCombine(N, DCI); case AMDGPUISD::BFE_I32: case AMDGPUISD::BFE_U32: { assert(!N->getValueType(0).isVector() && "Vector handling of BFE not implemented"); ConstantSDNode *Width = dyn_cast(N->getOperand(2)); if (!Width) break; uint32_t WidthVal = Width->getZExtValue() & 0x1f; if (WidthVal == 0) return DAG.getConstant(0, DL, MVT::i32); ConstantSDNode *Offset = dyn_cast(N->getOperand(1)); if (!Offset) break; SDValue BitsFrom = N->getOperand(0); uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; if (OffsetVal == 0) { // This is already sign / zero extended, so try to fold away extra BFEs. unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); if (OpSignBits >= SignBits) return BitsFrom; EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); if (Signed) { // This is a sign_extend_inreg. Replace it to take advantage of existing // DAG Combines. If not eliminated, we will match back to BFE during // selection. // TODO: The sext_inreg of extended types ends, although we can could // handle them in a single BFE. return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, DAG.getValueType(SmallVT)); } return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); } if (ConstantSDNode *CVal = dyn_cast(BitsFrom)) { if (Signed) { return constantFoldBFE(DAG, CVal->getSExtValue(), OffsetVal, WidthVal, DL); } return constantFoldBFE(DAG, CVal->getZExtValue(), OffsetVal, WidthVal, DL); } if ((OffsetVal + WidthVal) >= 32 && !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, BitsFrom, ShiftVal); } if (BitsFrom.hasOneUse()) { APInt Demanded = APInt::getBitsSet(32, OffsetVal, OffsetVal + WidthVal); KnownBits Known; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { DCI.CommitTargetLoweringOpt(TLO); } } break; } case ISD::LOAD: return performLoadCombine(N, DCI); case ISD::STORE: return performStoreCombine(N, DCI); case AMDGPUISD::CLAMP: return performClampCombine(N, DCI); case AMDGPUISD::RCP: { if (const auto *CFP = dyn_cast(N->getOperand(0))) { // XXX - Should this flush denormals? const APFloat &Val = CFP->getValueAPF(); APFloat One(Val.getSemantics(), "1.0"); return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); } break; } case ISD::AssertZext: case ISD::AssertSext: return performAssertSZExtCombine(N, DCI); } return SDValue(); } //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, unsigned Reg, EVT VT, const SDLoc &SL, bool RawReg) const { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &MRI = MF.getRegInfo(); unsigned VReg; if (!MRI.isLiveIn(Reg)) { VReg = MRI.createVirtualRegister(RC); MRI.addLiveIn(Reg, VReg); } else { VReg = MRI.getLiveInVirtReg(Reg); } if (RawReg) return DAG.getRegister(VReg, VT); return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); } SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, EVT VT, const SDLoc &SL, int64_t Offset) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true); auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, SDValue StackPtr, SDValue ArgVal, int64_t Offset) const { MachineFunction &MF = DAG.getMachineFunction(); MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); SDValue Ptr = DAG.getObjectPtrOffset(SL, StackPtr, Offset); SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, MachineMemOperand::MODereferenceable); return Store; } SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, const TargetRegisterClass *RC, EVT VT, const SDLoc &SL, const ArgDescriptor &Arg) const { assert(Arg && "Attempting to load missing argument"); if (Arg.isRegister()) return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL); return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); } uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr(); uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment); switch (Param) { case GRID_DIM: return ArgOffset; case GRID_OFFSET: return ArgOffset + 4; } llvm_unreachable("unexpected implicit parameter type"); } #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((AMDGPUISD::NodeType)Opcode) { case AMDGPUISD::FIRST_NUMBER: break; // AMDIL DAG nodes NODE_NAME_CASE(UMUL); NODE_NAME_CASE(BRANCH_COND); // AMDGPU DAG nodes NODE_NAME_CASE(IF) NODE_NAME_CASE(ELSE) NODE_NAME_CASE(LOOP) NODE_NAME_CASE(CALL) NODE_NAME_CASE(TC_RETURN) NODE_NAME_CASE(TRAP) NODE_NAME_CASE(RET_FLAG) NODE_NAME_CASE(RETURN_TO_EPILOG) NODE_NAME_CASE(ENDPGM) NODE_NAME_CASE(DWORDADDR) NODE_NAME_CASE(FRACT) NODE_NAME_CASE(SETCC) NODE_NAME_CASE(SETREG) NODE_NAME_CASE(FMA_W_CHAIN) NODE_NAME_CASE(FMUL_W_CHAIN) NODE_NAME_CASE(CLAMP) NODE_NAME_CASE(COS_HW) NODE_NAME_CASE(SIN_HW) NODE_NAME_CASE(FMAX_LEGACY) NODE_NAME_CASE(FMIN_LEGACY) NODE_NAME_CASE(FMAX3) NODE_NAME_CASE(SMAX3) NODE_NAME_CASE(UMAX3) NODE_NAME_CASE(FMIN3) NODE_NAME_CASE(SMIN3) NODE_NAME_CASE(UMIN3) NODE_NAME_CASE(FMED3) NODE_NAME_CASE(SMED3) NODE_NAME_CASE(UMED3) NODE_NAME_CASE(URECIP) NODE_NAME_CASE(DIV_SCALE) NODE_NAME_CASE(DIV_FMAS) NODE_NAME_CASE(DIV_FIXUP) NODE_NAME_CASE(FMAD_FTZ) NODE_NAME_CASE(TRIG_PREOP) NODE_NAME_CASE(RCP) NODE_NAME_CASE(RSQ) NODE_NAME_CASE(RCP_LEGACY) NODE_NAME_CASE(RSQ_LEGACY) NODE_NAME_CASE(FMUL_LEGACY) NODE_NAME_CASE(RSQ_CLAMP) NODE_NAME_CASE(LDEXP) NODE_NAME_CASE(FP_CLASS) NODE_NAME_CASE(DOT4) NODE_NAME_CASE(CARRY) NODE_NAME_CASE(BORROW) NODE_NAME_CASE(BFE_U32) NODE_NAME_CASE(BFE_I32) NODE_NAME_CASE(BFI) NODE_NAME_CASE(BFM) NODE_NAME_CASE(FFBH_U32) NODE_NAME_CASE(FFBH_I32) NODE_NAME_CASE(FFBL_B32) NODE_NAME_CASE(MUL_U24) NODE_NAME_CASE(MUL_I24) NODE_NAME_CASE(MULHI_U24) NODE_NAME_CASE(MULHI_I24) NODE_NAME_CASE(MUL_LOHI_U24) NODE_NAME_CASE(MUL_LOHI_I24) NODE_NAME_CASE(MAD_U24) NODE_NAME_CASE(MAD_I24) NODE_NAME_CASE(MAD_I64_I32) NODE_NAME_CASE(MAD_U64_U32) NODE_NAME_CASE(TEXTURE_FETCH) NODE_NAME_CASE(EXPORT) NODE_NAME_CASE(EXPORT_DONE) NODE_NAME_CASE(R600_EXPORT) NODE_NAME_CASE(CONST_ADDRESS) NODE_NAME_CASE(REGISTER_LOAD) NODE_NAME_CASE(REGISTER_STORE) NODE_NAME_CASE(SAMPLE) NODE_NAME_CASE(SAMPLEB) NODE_NAME_CASE(SAMPLED) NODE_NAME_CASE(SAMPLEL) NODE_NAME_CASE(CVT_F32_UBYTE0) NODE_NAME_CASE(CVT_F32_UBYTE1) NODE_NAME_CASE(CVT_F32_UBYTE2) NODE_NAME_CASE(CVT_F32_UBYTE3) NODE_NAME_CASE(CVT_PKRTZ_F16_F32) NODE_NAME_CASE(CVT_PKNORM_I16_F32) NODE_NAME_CASE(CVT_PKNORM_U16_F32) NODE_NAME_CASE(CVT_PK_I16_I32) NODE_NAME_CASE(CVT_PK_U16_U32) NODE_NAME_CASE(FP_TO_FP16) NODE_NAME_CASE(FP16_ZEXT) NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) NODE_NAME_CASE(CONST_DATA_PTR) NODE_NAME_CASE(PC_ADD_REL_OFFSET) NODE_NAME_CASE(KILL) NODE_NAME_CASE(DUMMY_CHAIN) case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; NODE_NAME_CASE(INIT_EXEC) NODE_NAME_CASE(INIT_EXEC_FROM_INPUT) NODE_NAME_CASE(SENDMSG) NODE_NAME_CASE(SENDMSGHALT) NODE_NAME_CASE(INTERP_MOV) NODE_NAME_CASE(INTERP_P1) NODE_NAME_CASE(INTERP_P2) NODE_NAME_CASE(STORE_MSKOR) NODE_NAME_CASE(LOAD_CONSTANT) NODE_NAME_CASE(TBUFFER_STORE_FORMAT) NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3) NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) NODE_NAME_CASE(ATOMIC_CMP_SWAP) NODE_NAME_CASE(ATOMIC_INC) NODE_NAME_CASE(ATOMIC_DEC) NODE_NAME_CASE(ATOMIC_LOAD_FADD) NODE_NAME_CASE(ATOMIC_LOAD_FMIN) NODE_NAME_CASE(ATOMIC_LOAD_FMAX) NODE_NAME_CASE(BUFFER_LOAD) NODE_NAME_CASE(BUFFER_LOAD_FORMAT) NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) NODE_NAME_CASE(BUFFER_STORE) NODE_NAME_CASE(BUFFER_STORE_FORMAT) NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) NODE_NAME_CASE(BUFFER_ATOMIC_ADD) NODE_NAME_CASE(BUFFER_ATOMIC_SUB) NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) NODE_NAME_CASE(BUFFER_ATOMIC_AND) NODE_NAME_CASE(BUFFER_ATOMIC_OR) NODE_NAME_CASE(BUFFER_ATOMIC_XOR) NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) NODE_NAME_CASE(IMAGE_LOAD) NODE_NAME_CASE(IMAGE_LOAD_MIP) NODE_NAME_CASE(IMAGE_STORE) NODE_NAME_CASE(IMAGE_STORE_MIP) // Basic sample. NODE_NAME_CASE(IMAGE_SAMPLE) NODE_NAME_CASE(IMAGE_SAMPLE_CL) NODE_NAME_CASE(IMAGE_SAMPLE_D) NODE_NAME_CASE(IMAGE_SAMPLE_D_CL) NODE_NAME_CASE(IMAGE_SAMPLE_L) NODE_NAME_CASE(IMAGE_SAMPLE_B) NODE_NAME_CASE(IMAGE_SAMPLE_B_CL) NODE_NAME_CASE(IMAGE_SAMPLE_LZ) NODE_NAME_CASE(IMAGE_SAMPLE_CD) NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL) // Sample with comparison. NODE_NAME_CASE(IMAGE_SAMPLE_C) NODE_NAME_CASE(IMAGE_SAMPLE_C_CL) NODE_NAME_CASE(IMAGE_SAMPLE_C_D) NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL) NODE_NAME_CASE(IMAGE_SAMPLE_C_L) NODE_NAME_CASE(IMAGE_SAMPLE_C_B) NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL) NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ) NODE_NAME_CASE(IMAGE_SAMPLE_C_CD) NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL) // Sample with offsets. NODE_NAME_CASE(IMAGE_SAMPLE_O) NODE_NAME_CASE(IMAGE_SAMPLE_CL_O) NODE_NAME_CASE(IMAGE_SAMPLE_D_O) NODE_NAME_CASE(IMAGE_SAMPLE_D_CL_O) NODE_NAME_CASE(IMAGE_SAMPLE_L_O) NODE_NAME_CASE(IMAGE_SAMPLE_B_O) NODE_NAME_CASE(IMAGE_SAMPLE_B_CL_O) NODE_NAME_CASE(IMAGE_SAMPLE_LZ_O) NODE_NAME_CASE(IMAGE_SAMPLE_CD_O) NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL_O) // Sample with comparison and offsets. NODE_NAME_CASE(IMAGE_SAMPLE_C_O) NODE_NAME_CASE(IMAGE_SAMPLE_C_CL_O) NODE_NAME_CASE(IMAGE_SAMPLE_C_D_O) NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL_O) NODE_NAME_CASE(IMAGE_SAMPLE_C_L_O) NODE_NAME_CASE(IMAGE_SAMPLE_C_B_O) NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL_O) NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ_O) NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_O) NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL_O) // Basic gather4. NODE_NAME_CASE(IMAGE_GATHER4) NODE_NAME_CASE(IMAGE_GATHER4_CL) NODE_NAME_CASE(IMAGE_GATHER4_L) NODE_NAME_CASE(IMAGE_GATHER4_B) NODE_NAME_CASE(IMAGE_GATHER4_B_CL) NODE_NAME_CASE(IMAGE_GATHER4_LZ) // Gather4 with comparison. NODE_NAME_CASE(IMAGE_GATHER4_C) NODE_NAME_CASE(IMAGE_GATHER4_C_CL) NODE_NAME_CASE(IMAGE_GATHER4_C_L) NODE_NAME_CASE(IMAGE_GATHER4_C_B) NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL) NODE_NAME_CASE(IMAGE_GATHER4_C_LZ) // Gather4 with offsets. NODE_NAME_CASE(IMAGE_GATHER4_O) NODE_NAME_CASE(IMAGE_GATHER4_CL_O) NODE_NAME_CASE(IMAGE_GATHER4_L_O) NODE_NAME_CASE(IMAGE_GATHER4_B_O) NODE_NAME_CASE(IMAGE_GATHER4_B_CL_O) NODE_NAME_CASE(IMAGE_GATHER4_LZ_O) // Gather4 with comparison and offsets. NODE_NAME_CASE(IMAGE_GATHER4_C_O) NODE_NAME_CASE(IMAGE_GATHER4_C_CL_O) NODE_NAME_CASE(IMAGE_GATHER4_C_L_O) NODE_NAME_CASE(IMAGE_GATHER4_C_B_O) NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL_O) NODE_NAME_CASE(IMAGE_GATHER4_C_LZ_O) case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; } return nullptr; } SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const { EVT VT = Operand.getValueType(); if (VT == MVT::f32) { RefinementSteps = 0; return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); } // TODO: There is also f64 rsq instruction, but the documentation is less // clear on its precision. return SDValue(); } SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const { EVT VT = Operand.getValueType(); if (VT == MVT::f32) { // Reciprocal, < 1 ulp error. // // This reciprocal approximation converges to < 0.5 ulp error with one // newton rhapson performed with two fused multiple adds (FMAs). RefinementSteps = 0; return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); } // TODO: There is also f64 rcp instruction, but the documentation is less // clear on its precision. return SDValue(); } void AMDGPUTargetLowering::computeKnownBitsForTargetNode( const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { Known.resetAll(); // Don't know anything. unsigned Opc = Op.getOpcode(); switch (Opc) { default: break; case AMDGPUISD::CARRY: case AMDGPUISD::BORROW: { Known.Zero = APInt::getHighBitsSet(32, 31); break; } case AMDGPUISD::BFE_I32: case AMDGPUISD::BFE_U32: { ConstantSDNode *CWidth = dyn_cast(Op.getOperand(2)); if (!CWidth) return; uint32_t Width = CWidth->getZExtValue() & 0x1f; if (Opc == AMDGPUISD::BFE_U32) Known.Zero = APInt::getHighBitsSet(32, 32 - Width); break; } case AMDGPUISD::FP_TO_FP16: case AMDGPUISD::FP16_ZEXT: { unsigned BitWidth = Known.getBitWidth(); // High bits are zero. Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); break; } case AMDGPUISD::MUL_U24: case AMDGPUISD::MUL_I24: { KnownBits LHSKnown, RHSKnown; DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1); DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1); unsigned TrailZ = LHSKnown.countMinTrailingZeros() + RHSKnown.countMinTrailingZeros(); Known.Zero.setLowBits(std::min(TrailZ, 32u)); unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u); unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u); unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); if (MaxValBits >= 32) break; bool Negative = false; if (Opc == AMDGPUISD::MUL_I24) { bool LHSNegative = !!(LHSKnown.One & (1 << 23)); bool LHSPositive = !!(LHSKnown.Zero & (1 << 23)); bool RHSNegative = !!(RHSKnown.One & (1 << 23)); bool RHSPositive = !!(RHSKnown.Zero & (1 << 23)); if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) break; Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); } if (Negative) Known.One.setHighBits(32 - MaxValBits); else Known.Zero.setHighBits(32 - MaxValBits); break; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = cast(Op.getOperand(0))->getZExtValue(); switch (IID) { case Intrinsic::amdgcn_mbcnt_lo: case Intrinsic::amdgcn_mbcnt_hi: { // These return at most the wavefront size - 1. unsigned Size = Op.getValueType().getSizeInBits(); Known.Zero.setHighBits(Size - Subtarget->getWavefrontSizeLog2()); break; } default: break; } } } } unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { switch (Op.getOpcode()) { case AMDGPUISD::BFE_I32: { ConstantSDNode *Width = dyn_cast(Op.getOperand(2)); if (!Width) return 1; unsigned SignBits = 32 - Width->getZExtValue() + 1; if (!isNullConstant(Op.getOperand(1))) return SignBits; // TODO: Could probably figure something out with non-0 offsets. unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); return std::max(SignBits, Op0SignBits); } case AMDGPUISD::BFE_U32: { ConstantSDNode *Width = dyn_cast(Op.getOperand(2)); return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; } case AMDGPUISD::CARRY: case AMDGPUISD::BORROW: return 31; case AMDGPUISD::FP_TO_FP16: case AMDGPUISD::FP16_ZEXT: return 16; default: return 1; } }