//===---- ReachingDefAnalysis.cpp - Reaching Def Analysis ---*- C++ -*-----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/ReachingDefAnalysis.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "reaching-deps-analysis" char ReachingDefAnalysis::ID = 0; INITIALIZE_PASS(ReachingDefAnalysis, DEBUG_TYPE, "ReachingDefAnalysis", false, true) static bool isValidReg(const MachineOperand &MO) { return MO.isReg() && MO.getReg(); } static bool isValidRegUse(const MachineOperand &MO) { return isValidReg(MO) && MO.isUse(); } static bool isValidRegUseOf(const MachineOperand &MO, int PhysReg) { return isValidRegUse(MO) && MO.getReg() == PhysReg; } static bool isValidRegDef(const MachineOperand &MO) { return isValidReg(MO) && MO.isDef(); } static bool isValidRegDefOf(const MachineOperand &MO, int PhysReg) { return isValidRegDef(MO) && MO.getReg() == PhysReg; } void ReachingDefAnalysis::enterBasicBlock(MachineBasicBlock *MBB) { unsigned MBBNumber = MBB->getNumber(); assert(MBBNumber < MBBReachingDefs.size() && "Unexpected basic block number."); MBBReachingDefs[MBBNumber].resize(NumRegUnits); // Reset instruction counter in each basic block. CurInstr = 0; // Set up LiveRegs to represent registers entering MBB. // Default values are 'nothing happened a long time ago'. if (LiveRegs.empty()) LiveRegs.assign(NumRegUnits, ReachingDefDefaultVal); // This is the entry block. if (MBB->pred_empty()) { for (const auto &LI : MBB->liveins()) { for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) { // Treat function live-ins as if they were defined just before the first // instruction. Usually, function arguments are set up immediately // before the call. if (LiveRegs[*Unit] != -1) { LiveRegs[*Unit] = -1; MBBReachingDefs[MBBNumber][*Unit].push_back(-1); } } } LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n"); return; } // Try to coalesce live-out registers from predecessors. for (MachineBasicBlock *pred : MBB->predecessors()) { assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() && "Should have pre-allocated MBBInfos for all MBBs"); const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()]; // Incoming is null if this is a backedge from a BB // we haven't processed yet if (Incoming.empty()) continue; // Find the most recent reaching definition from a predecessor. for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]); } // Insert the most recent reaching definition we found. for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) if (LiveRegs[Unit] != ReachingDefDefaultVal) MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]); } void ReachingDefAnalysis::leaveBasicBlock(MachineBasicBlock *MBB) { assert(!LiveRegs.empty() && "Must enter basic block first."); unsigned MBBNumber = MBB->getNumber(); assert(MBBNumber < MBBOutRegsInfos.size() && "Unexpected basic block number."); // Save register clearances at end of MBB - used by enterBasicBlock(). MBBOutRegsInfos[MBBNumber] = LiveRegs; // While processing the basic block, we kept `Def` relative to the start // of the basic block for convenience. However, future use of this information // only cares about the clearance from the end of the block, so adjust // everything to be relative to the end of the basic block. for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber]) if (OutLiveReg != ReachingDefDefaultVal) OutLiveReg -= CurInstr; LiveRegs.clear(); } void ReachingDefAnalysis::processDefs(MachineInstr *MI) { assert(!MI->isDebugInstr() && "Won't process debug instructions"); unsigned MBBNumber = MI->getParent()->getNumber(); assert(MBBNumber < MBBReachingDefs.size() && "Unexpected basic block number."); for (auto &MO : MI->operands()) { if (!isValidRegDef(MO)) continue; for (MCRegUnitIterator Unit(MO.getReg(), TRI); Unit.isValid(); ++Unit) { // This instruction explicitly defines the current reg unit. LLVM_DEBUG(dbgs() << printReg(*Unit, TRI) << ":\t" << CurInstr << '\t' << *MI); // How many instructions since this reg unit was last written? if (LiveRegs[*Unit] != CurInstr) { LiveRegs[*Unit] = CurInstr; MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr); } } } InstIds[MI] = CurInstr; ++CurInstr; } void ReachingDefAnalysis::reprocessBasicBlock(MachineBasicBlock *MBB) { unsigned MBBNumber = MBB->getNumber(); assert(MBBNumber < MBBReachingDefs.size() && "Unexpected basic block number."); // Count number of non-debug instructions for end of block adjustment. auto NonDbgInsts = instructionsWithoutDebug(MBB->instr_begin(), MBB->instr_end()); int NumInsts = std::distance(NonDbgInsts.begin(), NonDbgInsts.end()); // When reprocessing a block, the only thing we need to do is check whether // there is now a more recent incoming reaching definition from a predecessor. for (MachineBasicBlock *pred : MBB->predecessors()) { assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() && "Should have pre-allocated MBBInfos for all MBBs"); const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()]; // Incoming may be empty for dead predecessors. if (Incoming.empty()) continue; for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) { int Def = Incoming[Unit]; if (Def == ReachingDefDefaultVal) continue; auto Start = MBBReachingDefs[MBBNumber][Unit].begin(); if (Start != MBBReachingDefs[MBBNumber][Unit].end() && *Start < 0) { if (*Start >= Def) continue; // Update existing reaching def from predecessor to a more recent one. *Start = Def; } else { // Insert new reaching def from predecessor. MBBReachingDefs[MBBNumber][Unit].insert(Start, Def); } // Update reaching def at end of of BB. Keep in mind that these are // adjusted relative to the end of the basic block. if (MBBOutRegsInfos[MBBNumber][Unit] < Def - NumInsts) MBBOutRegsInfos[MBBNumber][Unit] = Def - NumInsts; } } } void ReachingDefAnalysis::processBasicBlock( const LoopTraversal::TraversedMBBInfo &TraversedMBB) { MachineBasicBlock *MBB = TraversedMBB.MBB; LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << (!TraversedMBB.IsDone ? ": incomplete\n" : ": all preds known\n")); if (!TraversedMBB.PrimaryPass) { // Reprocess MBB that is part of a loop. reprocessBasicBlock(MBB); return; } enterBasicBlock(MBB); for (MachineInstr &MI : instructionsWithoutDebug(MBB->instr_begin(), MBB->instr_end())) processDefs(&MI); leaveBasicBlock(MBB); } bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) { MF = &mf; TRI = MF->getSubtarget().getRegisterInfo(); LLVM_DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n"); init(); traverse(); return false; } void ReachingDefAnalysis::releaseMemory() { // Clear the internal vectors. MBBOutRegsInfos.clear(); MBBReachingDefs.clear(); InstIds.clear(); LiveRegs.clear(); } void ReachingDefAnalysis::reset() { releaseMemory(); init(); traverse(); } void ReachingDefAnalysis::init() { NumRegUnits = TRI->getNumRegUnits(); MBBReachingDefs.resize(MF->getNumBlockIDs()); // Initialize the MBBOutRegsInfos MBBOutRegsInfos.resize(MF->getNumBlockIDs()); LoopTraversal Traversal; TraversedMBBOrder = Traversal.traverse(*MF); } void ReachingDefAnalysis::traverse() { // Traverse the basic blocks. for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) processBasicBlock(TraversedMBB); #ifndef NDEBUG // Make sure reaching defs are sorted and unique. for (MBBDefsInfo &MBBDefs : MBBReachingDefs) { for (MBBRegUnitDefs &RegUnitDefs : MBBDefs) { int LastDef = ReachingDefDefaultVal; for (int Def : RegUnitDefs) { assert(Def > LastDef && "Defs must be sorted and unique"); LastDef = Def; } } } #endif } int ReachingDefAnalysis::getReachingDef(MachineInstr *MI, int PhysReg) const { assert(InstIds.count(MI) && "Unexpected machine instuction."); int InstId = InstIds.lookup(MI); int DefRes = ReachingDefDefaultVal; unsigned MBBNumber = MI->getParent()->getNumber(); assert(MBBNumber < MBBReachingDefs.size() && "Unexpected basic block number."); int LatestDef = ReachingDefDefaultVal; for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) { for (int Def : MBBReachingDefs[MBBNumber][*Unit]) { if (Def >= InstId) break; DefRes = Def; } LatestDef = std::max(LatestDef, DefRes); } return LatestDef; } MachineInstr* ReachingDefAnalysis::getReachingLocalMIDef(MachineInstr *MI, int PhysReg) const { return hasLocalDefBefore(MI, PhysReg) ? getInstFromId(MI->getParent(), getReachingDef(MI, PhysReg)) : nullptr; } bool ReachingDefAnalysis::hasSameReachingDef(MachineInstr *A, MachineInstr *B, int PhysReg) const { MachineBasicBlock *ParentA = A->getParent(); MachineBasicBlock *ParentB = B->getParent(); if (ParentA != ParentB) return false; return getReachingDef(A, PhysReg) == getReachingDef(B, PhysReg); } MachineInstr *ReachingDefAnalysis::getInstFromId(MachineBasicBlock *MBB, int InstId) const { assert(static_cast(MBB->getNumber()) < MBBReachingDefs.size() && "Unexpected basic block number."); assert(InstId < static_cast(MBB->size()) && "Unexpected instruction id."); if (InstId < 0) return nullptr; for (auto &MI : *MBB) { auto F = InstIds.find(&MI); if (F != InstIds.end() && F->second == InstId) return &MI; } return nullptr; } int ReachingDefAnalysis::getClearance(MachineInstr *MI, MCPhysReg PhysReg) const { assert(InstIds.count(MI) && "Unexpected machine instuction."); return InstIds.lookup(MI) - getReachingDef(MI, PhysReg); } bool ReachingDefAnalysis::hasLocalDefBefore(MachineInstr *MI, int PhysReg) const { return getReachingDef(MI, PhysReg) >= 0; } void ReachingDefAnalysis::getReachingLocalUses(MachineInstr *Def, int PhysReg, InstSet &Uses) const { MachineBasicBlock *MBB = Def->getParent(); MachineBasicBlock::iterator MI = MachineBasicBlock::iterator(Def); while (++MI != MBB->end()) { if (MI->isDebugInstr()) continue; // If/when we find a new reaching def, we know that there's no more uses // of 'Def'. if (getReachingLocalMIDef(&*MI, PhysReg) != Def) return; for (auto &MO : MI->operands()) { if (!isValidRegUseOf(MO, PhysReg)) continue; Uses.insert(&*MI); if (MO.isKill()) return; } } } bool ReachingDefAnalysis::getLiveInUses(MachineBasicBlock *MBB, int PhysReg, InstSet &Uses) const { for (MachineInstr &MI : instructionsWithoutDebug(MBB->instr_begin(), MBB->instr_end())) { for (auto &MO : MI.operands()) { if (!isValidRegUseOf(MO, PhysReg)) continue; if (getReachingDef(&MI, PhysReg) >= 0) return false; Uses.insert(&MI); } } MachineInstr *Last = &*MBB->getLastNonDebugInstr(); return isReachingDefLiveOut(Last, PhysReg); } void ReachingDefAnalysis::getGlobalUses(MachineInstr *MI, int PhysReg, InstSet &Uses) const { MachineBasicBlock *MBB = MI->getParent(); // Collect the uses that each def touches within the block. getReachingLocalUses(MI, PhysReg, Uses); // Handle live-out values. if (auto *LiveOut = getLocalLiveOutMIDef(MI->getParent(), PhysReg)) { if (LiveOut != MI) return; SmallVector ToVisit; ToVisit.insert(ToVisit.begin(), MBB->successors().begin(), MBB->successors().end()); SmallPtrSetVisited; while (!ToVisit.empty()) { MachineBasicBlock *MBB = ToVisit.back(); ToVisit.pop_back(); if (Visited.count(MBB) || !MBB->isLiveIn(PhysReg)) continue; if (getLiveInUses(MBB, PhysReg, Uses)) ToVisit.insert(ToVisit.end(), MBB->successors().begin(), MBB->successors().end()); Visited.insert(MBB); } } } void ReachingDefAnalysis::getGlobalReachingDefs(MachineInstr *MI, int PhysReg, InstSet &Defs) const { if (auto *Def = getUniqueReachingMIDef(MI, PhysReg)) { Defs.insert(Def); return; } for (auto *MBB : MI->getParent()->predecessors()) getLiveOuts(MBB, PhysReg, Defs); } void ReachingDefAnalysis::getLiveOuts(MachineBasicBlock *MBB, int PhysReg, InstSet &Defs) const { SmallPtrSet VisitedBBs; getLiveOuts(MBB, PhysReg, Defs, VisitedBBs); } void ReachingDefAnalysis::getLiveOuts(MachineBasicBlock *MBB, int PhysReg, InstSet &Defs, BlockSet &VisitedBBs) const { if (VisitedBBs.count(MBB)) return; VisitedBBs.insert(MBB); LivePhysRegs LiveRegs(*TRI); LiveRegs.addLiveOuts(*MBB); if (!LiveRegs.contains(PhysReg)) return; if (auto *Def = getLocalLiveOutMIDef(MBB, PhysReg)) Defs.insert(Def); else for (auto *Pred : MBB->predecessors()) getLiveOuts(Pred, PhysReg, Defs, VisitedBBs); } MachineInstr *ReachingDefAnalysis::getUniqueReachingMIDef(MachineInstr *MI, int PhysReg) const { // If there's a local def before MI, return it. MachineInstr *LocalDef = getReachingLocalMIDef(MI, PhysReg); if (LocalDef && InstIds.lookup(LocalDef) < InstIds.lookup(MI)) return LocalDef; SmallPtrSet Incoming; MachineBasicBlock *Parent = MI->getParent(); for (auto *Pred : Parent->predecessors()) getLiveOuts(Pred, PhysReg, Incoming); // Check that we have a single incoming value and that it does not // come from the same block as MI - since it would mean that the def // is executed after MI. if (Incoming.size() == 1 && (*Incoming.begin())->getParent() != Parent) return *Incoming.begin(); return nullptr; } MachineInstr *ReachingDefAnalysis::getMIOperand(MachineInstr *MI, unsigned Idx) const { assert(MI->getOperand(Idx).isReg() && "Expected register operand"); return getUniqueReachingMIDef(MI, MI->getOperand(Idx).getReg()); } MachineInstr *ReachingDefAnalysis::getMIOperand(MachineInstr *MI, MachineOperand &MO) const { assert(MO.isReg() && "Expected register operand"); return getUniqueReachingMIDef(MI, MO.getReg()); } bool ReachingDefAnalysis::isRegUsedAfter(MachineInstr *MI, int PhysReg) const { MachineBasicBlock *MBB = MI->getParent(); LivePhysRegs LiveRegs(*TRI); LiveRegs.addLiveOuts(*MBB); // Yes if the register is live out of the basic block. if (LiveRegs.contains(PhysReg)) return true; // Walk backwards through the block to see if the register is live at some // point. for (MachineInstr &Last : instructionsWithoutDebug(MBB->instr_rbegin(), MBB->instr_rend())) { LiveRegs.stepBackward(Last); if (LiveRegs.contains(PhysReg)) return InstIds.lookup(&Last) > InstIds.lookup(MI); } return false; } bool ReachingDefAnalysis::isRegDefinedAfter(MachineInstr *MI, int PhysReg) const { MachineBasicBlock *MBB = MI->getParent(); MachineInstr *Last = &*MBB->getLastNonDebugInstr(); if (getReachingDef(MI, PhysReg) != getReachingDef(Last, PhysReg)) return true; if (auto *Def = getLocalLiveOutMIDef(MBB, PhysReg)) return Def == getReachingLocalMIDef(MI, PhysReg); return false; } bool ReachingDefAnalysis::isReachingDefLiveOut(MachineInstr *MI, int PhysReg) const { MachineBasicBlock *MBB = MI->getParent(); LivePhysRegs LiveRegs(*TRI); LiveRegs.addLiveOuts(*MBB); if (!LiveRegs.contains(PhysReg)) return false; MachineInstr *Last = &*MBB->getLastNonDebugInstr(); int Def = getReachingDef(MI, PhysReg); if (getReachingDef(Last, PhysReg) != Def) return false; // Finally check that the last instruction doesn't redefine the register. for (auto &MO : Last->operands()) if (isValidRegDefOf(MO, PhysReg)) return false; return true; } MachineInstr* ReachingDefAnalysis::getLocalLiveOutMIDef(MachineBasicBlock *MBB, int PhysReg) const { LivePhysRegs LiveRegs(*TRI); LiveRegs.addLiveOuts(*MBB); if (!LiveRegs.contains(PhysReg)) return nullptr; MachineInstr *Last = &*MBB->getLastNonDebugInstr(); int Def = getReachingDef(Last, PhysReg); for (auto &MO : Last->operands()) if (isValidRegDefOf(MO, PhysReg)) return Last; return Def < 0 ? nullptr : getInstFromId(MBB, Def); } static bool mayHaveSideEffects(MachineInstr &MI) { return MI.mayLoadOrStore() || MI.mayRaiseFPException() || MI.hasUnmodeledSideEffects() || MI.isTerminator() || MI.isCall() || MI.isBarrier() || MI.isBranch() || MI.isReturn(); } // Can we safely move 'From' to just before 'To'? To satisfy this, 'From' must // not define a register that is used by any instructions, after and including, // 'To'. These instructions also must not redefine any of Froms operands. template bool ReachingDefAnalysis::isSafeToMove(MachineInstr *From, MachineInstr *To) const { if (From->getParent() != To->getParent()) return false; SmallSet Defs; // First check that From would compute the same value if moved. for (auto &MO : From->operands()) { if (!isValidReg(MO)) continue; if (MO.isDef()) Defs.insert(MO.getReg()); else if (!hasSameReachingDef(From, To, MO.getReg())) return false; } // Now walk checking that the rest of the instructions will compute the same // value and that we're not overwriting anything. Don't move the instruction // past any memory, control-flow or other ambiguous instructions. for (auto I = ++Iterator(From), E = Iterator(To); I != E; ++I) { if (mayHaveSideEffects(*I)) return false; for (auto &MO : I->operands()) if (MO.isReg() && MO.getReg() && Defs.count(MO.getReg())) return false; } return true; } bool ReachingDefAnalysis::isSafeToMoveForwards(MachineInstr *From, MachineInstr *To) const { return isSafeToMove(From, To); } bool ReachingDefAnalysis::isSafeToMoveBackwards(MachineInstr *From, MachineInstr *To) const { return isSafeToMove(From, To); } bool ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &ToRemove) const { SmallPtrSet Ignore; SmallPtrSet Visited; return isSafeToRemove(MI, Visited, ToRemove, Ignore); } bool ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &ToRemove, InstSet &Ignore) const { SmallPtrSet Visited; return isSafeToRemove(MI, Visited, ToRemove, Ignore); } bool ReachingDefAnalysis::isSafeToRemove(MachineInstr *MI, InstSet &Visited, InstSet &ToRemove, InstSet &Ignore) const { if (Visited.count(MI) || Ignore.count(MI)) return true; else if (mayHaveSideEffects(*MI)) { // Unless told to ignore the instruction, don't remove anything which has // side effects. return false; } Visited.insert(MI); for (auto &MO : MI->operands()) { if (!isValidRegDef(MO)) continue; SmallPtrSet Uses; getGlobalUses(MI, MO.getReg(), Uses); for (auto I : Uses) { if (Ignore.count(I) || ToRemove.count(I)) continue; if (!isSafeToRemove(I, Visited, ToRemove, Ignore)) return false; } } ToRemove.insert(MI); return true; } void ReachingDefAnalysis::collectKilledOperands(MachineInstr *MI, InstSet &Dead) const { Dead.insert(MI); auto IsDead = [this, &Dead](MachineInstr *Def, int PhysReg) { unsigned LiveDefs = 0; for (auto &MO : Def->operands()) { if (!isValidRegDef(MO)) continue; if (!MO.isDead()) ++LiveDefs; } if (LiveDefs > 1) return false; SmallPtrSet Uses; getGlobalUses(Def, PhysReg, Uses); for (auto *Use : Uses) if (!Dead.count(Use)) return false; return true; }; for (auto &MO : MI->operands()) { if (!isValidRegUse(MO)) continue; if (MachineInstr *Def = getMIOperand(MI, MO)) if (IsDead(Def, MO.getReg())) collectKilledOperands(Def, Dead); } } bool ReachingDefAnalysis::isSafeToDefRegAt(MachineInstr *MI, int PhysReg) const { SmallPtrSet Ignore; return isSafeToDefRegAt(MI, PhysReg, Ignore); } bool ReachingDefAnalysis::isSafeToDefRegAt(MachineInstr *MI, int PhysReg, InstSet &Ignore) const { // Check for any uses of the register after MI. if (isRegUsedAfter(MI, PhysReg)) { if (auto *Def = getReachingLocalMIDef(MI, PhysReg)) { SmallPtrSet Uses; getReachingLocalUses(Def, PhysReg, Uses); for (auto *Use : Uses) if (!Ignore.count(Use)) return false; } else return false; } MachineBasicBlock *MBB = MI->getParent(); // Check for any defs after MI. if (isRegDefinedAfter(MI, PhysReg)) { auto I = MachineBasicBlock::iterator(MI); for (auto E = MBB->end(); I != E; ++I) { if (Ignore.count(&*I)) continue; for (auto &MO : I->operands()) if (isValidRegDefOf(MO, PhysReg)) return false; } } return true; }