//===- ReservoirSampler.cpp - Tests for the ReservoirSampler --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/FuzzMutate/Random.h" #include "gtest/gtest.h" #include using namespace llvm; TEST(ReservoirSamplerTest, OneItem) { std::mt19937 Rand; auto Sampler = makeSampler(Rand, 7, 1); ASSERT_FALSE(Sampler.isEmpty()); ASSERT_EQ(7, Sampler.getSelection()); } TEST(ReservoirSamplerTest, NoWeight) { std::mt19937 Rand; auto Sampler = makeSampler(Rand, 7, 0); ASSERT_TRUE(Sampler.isEmpty()); } TEST(ReservoirSamplerTest, Uniform) { std::mt19937 Rand; // Run three chi-squared tests to check that the distribution is reasonably // uniform. std::vector Items = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; int Failures = 0; for (int Run = 0; Run < 3; ++Run) { std::vector Counts(Items.size(), 0); // We need $np_s > 5$ at minimum, but we're better off going a couple of // orders of magnitude larger. int N = Items.size() * 5 * 100; for (int I = 0; I < N; ++I) { auto Sampler = makeSampler(Rand, Items); Counts[Sampler.getSelection()] += 1; } // Knuth. TAOCP Vol. 2, 3.3.1 (8): // $V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s}\right) - n$ double Ps = 1.0 / Items.size(); double Sum = 0.0; for (int Ys : Counts) Sum += Ys * Ys / Ps; double V = (Sum / N) - N; assert(Items.size() == 10 && "Our chi-squared values assume 10 items"); // Since we have 10 items, there are 9 degrees of freedom and the table of // chi-squared values is as follows: // // | p=1% | 5% | 25% | 50% | 75% | 95% | 99% | // v=9 | 2.088 | 3.325 | 5.899 | 8.343 | 11.39 | 16.92 | 21.67 | // // Check that we're in the likely range of results. //if (V < 2.088 || V > 21.67) if (V < 2.088 || V > 21.67) ++Failures; } EXPECT_LT(Failures, 3) << "Non-uniform distribution?"; }