//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a simple pass that applies a variety of small // optimizations for calls to specific well-known function calls (e.g. runtime // library functions). Any optimization that takes the very simple form // "replace call to library function with simpler code that provides the same // result" belongs in this file. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "simplify-libcalls" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/IRBuilder.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringMap.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/DataLayout.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Config/config.h" // FIXME: Shouldn't depend on host! using namespace llvm; STATISTIC(NumSimplified, "Number of library calls simplified"); STATISTIC(NumAnnotated, "Number of attributes added to library functions"); //===----------------------------------------------------------------------===// // Optimizer Base Class //===----------------------------------------------------------------------===// /// This class is the abstract base class for the set of optimizations that /// corresponds to one library call. namespace { class LibCallOptimization { protected: Function *Caller; const DataLayout *TD; const TargetLibraryInfo *TLI; LLVMContext* Context; public: LibCallOptimization() { } virtual ~LibCallOptimization() {} /// CallOptimizer - This pure virtual method is implemented by base classes to /// do various optimizations. If this returns null then no transformation was /// performed. If it returns CI, then it transformed the call and CI is to be /// deleted. If it returns something else, replace CI with the new value and /// delete CI. virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) =0; Value *OptimizeCall(CallInst *CI, const DataLayout *TD, const TargetLibraryInfo *TLI, IRBuilder<> &B) { Caller = CI->getParent()->getParent(); this->TD = TD; this->TLI = TLI; if (CI->getCalledFunction()) Context = &CI->getCalledFunction()->getContext(); // We never change the calling convention. if (CI->getCallingConv() != llvm::CallingConv::C) return NULL; return CallOptimizer(CI->getCalledFunction(), CI, B); } }; } // End anonymous namespace. //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// static bool CallHasFloatingPointArgument(const CallInst *CI) { for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); it != e; ++it) { if ((*it)->getType()->isFloatingPointTy()) return true; } return false; } namespace { //===----------------------------------------------------------------------===// // Integer Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'ffs*' Optimizations struct FFSOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 2 arguments of the same FP type, which match the // result type. if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) || !FT->getParamType(0)->isIntegerTy()) return 0; Value *Op = CI->getArgOperand(0); // Constant fold. if (ConstantInt *CI = dyn_cast(Op)) { if (CI->isZero()) // ffs(0) -> 0. return B.getInt32(0); // ffs(c) -> cttz(c)+1 return B.getInt32(CI->getValue().countTrailingZeros() + 1); } // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 Type *ArgType = Op->getType(); Value *F = Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); V = B.CreateIntCast(V, B.getInt32Ty(), false); Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); return B.CreateSelect(Cond, V, B.getInt32(0)); } }; //===---------------------------------------===// // 'isdigit' Optimizations struct IsDigitOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // We require integer(i32) if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || !FT->getParamType(0)->isIntegerTy(32)) return 0; // isdigit(c) -> (c-'0') getArgOperand(0); Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); return B.CreateZExt(Op, CI->getType()); } }; //===---------------------------------------===// // 'isascii' Optimizations struct IsAsciiOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // We require integer(i32) if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || !FT->getParamType(0)->isIntegerTy(32)) return 0; // isascii(c) -> c getArgOperand(0); Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); return B.CreateZExt(Op, CI->getType()); } }; //===---------------------------------------===// // 'abs', 'labs', 'llabs' Optimizations struct AbsOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // We require integer(integer) where the types agree. if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || FT->getParamType(0) != FT->getReturnType()) return 0; // abs(x) -> x >s -1 ? x : -x Value *Op = CI->getArgOperand(0); Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); Value *Neg = B.CreateNeg(Op, "neg"); return B.CreateSelect(Pos, Op, Neg); } }; //===---------------------------------------===// // 'toascii' Optimizations struct ToAsciiOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // We require i32(i32) if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isIntegerTy(32)) return 0; // isascii(c) -> c & 0x7f return B.CreateAnd(CI->getArgOperand(0), ConstantInt::get(CI->getType(),0x7F)); } }; //===----------------------------------------------------------------------===// // Formatting and IO Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'printf' Optimizations struct PrintFOpt : public LibCallOptimization { Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Check for a fixed format string. StringRef FormatStr; if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) return 0; // Empty format string -> noop. if (FormatStr.empty()) // Tolerate printf's declared void. return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 0); // Do not do any of the following transformations if the printf return value // is used, in general the printf return value is not compatible with either // putchar() or puts(). if (!CI->use_empty()) return 0; // printf("x") -> putchar('x'), even for '%'. if (FormatStr.size() == 1) { Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI); if (CI->use_empty() || !Res) return Res; return B.CreateIntCast(Res, CI->getType(), true); } // printf("foo\n") --> puts("foo") if (FormatStr[FormatStr.size()-1] == '\n' && FormatStr.find('%') == std::string::npos) { // no format characters. // Create a string literal with no \n on it. We expect the constant merge // pass to be run after this pass, to merge duplicate strings. FormatStr = FormatStr.drop_back(); Value *GV = B.CreateGlobalString(FormatStr, "str"); Value *NewCI = EmitPutS(GV, B, TD, TLI); return (CI->use_empty() || !NewCI) ? NewCI : ConstantInt::get(CI->getType(), FormatStr.size()+1); } // Optimize specific format strings. // printf("%c", chr) --> putchar(chr) if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && CI->getArgOperand(1)->getType()->isIntegerTy()) { Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI); if (CI->use_empty() || !Res) return Res; return B.CreateIntCast(Res, CI->getType(), true); } // printf("%s\n", str) --> puts(str) if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && CI->getArgOperand(1)->getType()->isPointerTy()) { return EmitPutS(CI->getArgOperand(1), B, TD, TLI); } return 0; } virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require one fixed pointer argument and an integer/void result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) return 0; if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { return V; } // printf(format, ...) -> iprintf(format, ...) if no floating point // arguments. if (TLI->has(LibFunc::iprintf) && !CallHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *IPrintFFn = M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); CallInst *New = cast(CI->clone()); New->setCalledFunction(IPrintFFn); B.Insert(New); return New; } return 0; } }; //===---------------------------------------===// // 'sprintf' Optimizations struct SPrintFOpt : public LibCallOptimization { Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Check for a fixed format string. StringRef FormatStr; if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) return 0; // If we just have a format string (nothing else crazy) transform it. if (CI->getNumArgOperands() == 2) { // Make sure there's no % in the constant array. We could try to handle // %% -> % in the future if we cared. for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') return 0; // we found a format specifier, bail out. // These optimizations require DataLayout. if (!TD) return 0; // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), ConstantInt::get(TD->getIntPtrType(*Context), // Copy the FormatStr.size() + 1), 1); // nul byte. return ConstantInt::get(CI->getType(), FormatStr.size()); } // The remaining optimizations require the format string to be "%s" or "%c" // and have an extra operand. if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumArgOperands() < 3) return 0; // Decode the second character of the format string. if (FormatStr[1] == 'c') { // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0; Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); Value *Ptr = CastToCStr(CI->getArgOperand(0), B); B.CreateStore(V, Ptr); Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); B.CreateStore(B.getInt8(0), Ptr); return ConstantInt::get(CI->getType(), 1); } if (FormatStr[1] == 's') { // These optimizations require DataLayout. if (!TD) return 0; // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0; Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI); if (!Len) return 0; Value *IncLen = B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); // The sprintf result is the unincremented number of bytes in the string. return B.CreateIntCast(Len, CI->getType(), false); } return 0; } virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require two fixed pointer arguments and an integer result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !FT->getReturnType()->isIntegerTy()) return 0; if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { return V; } // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating // point arguments. if (TLI->has(LibFunc::siprintf) && !CallHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *SIPrintFFn = M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); CallInst *New = cast(CI->clone()); New->setCalledFunction(SIPrintFFn); B.Insert(New); return New; } return 0; } }; //===---------------------------------------===// // 'fwrite' Optimizations struct FWriteOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require a pointer, an integer, an integer, a pointer, returning integer. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isIntegerTy() || !FT->getParamType(2)->isIntegerTy() || !FT->getParamType(3)->isPointerTy() || !FT->getReturnType()->isIntegerTy()) return 0; // Get the element size and count. ConstantInt *SizeC = dyn_cast(CI->getArgOperand(1)); ConstantInt *CountC = dyn_cast(CI->getArgOperand(2)); if (!SizeC || !CountC) return 0; uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue(); // If this is writing zero records, remove the call (it's a noop). if (Bytes == 0) return ConstantInt::get(CI->getType(), 0); // If this is writing one byte, turn it into fputc. // This optimisation is only valid, if the return value is unused. if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI); return NewCI ? ConstantInt::get(CI->getType(), 1) : 0; } return 0; } }; //===---------------------------------------===// // 'fputs' Optimizations struct FPutsOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require DataLayout. if (!TD) return 0; // Require two pointers. Also, we can't optimize if return value is used. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) return 0; // fputs(s,F) --> fwrite(s,1,strlen(s),F) uint64_t Len = GetStringLength(CI->getArgOperand(0)); if (!Len) return 0; // Known to have no uses (see above). return EmitFWrite(CI->getArgOperand(0), ConstantInt::get(TD->getIntPtrType(*Context), Len-1), CI->getArgOperand(1), B, TD, TLI); } }; //===---------------------------------------===// // 'fprintf' Optimizations struct FPrintFOpt : public LibCallOptimization { Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // All the optimizations depend on the format string. StringRef FormatStr; if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) return 0; // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) if (CI->getNumArgOperands() == 2) { for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') // Could handle %% -> % if we cared. return 0; // We found a format specifier. // These optimizations require DataLayout. if (!TD) return 0; Value *NewCI = EmitFWrite(CI->getArgOperand(1), ConstantInt::get(TD->getIntPtrType(*Context), FormatStr.size()), CI->getArgOperand(0), B, TD, TLI); return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0; } // The remaining optimizations require the format string to be "%s" or "%c" // and have an extra operand. if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumArgOperands() < 3) return 0; // Decode the second character of the format string. if (FormatStr[1] == 'c') { // fprintf(F, "%c", chr) --> fputc(chr, F) if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0; Value *NewCI = EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI); return NewCI ? ConstantInt::get(CI->getType(), 1) : 0; } if (FormatStr[1] == 's') { // fprintf(F, "%s", str) --> fputs(str, F) if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty()) return 0; return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI); } return 0; } virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require two fixed paramters as pointers and integer result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !FT->getReturnType()->isIntegerTy()) return 0; if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { return V; } // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no // floating point arguments. if (TLI->has(LibFunc::fiprintf) && !CallHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *FIPrintFFn = M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); CallInst *New = cast(CI->clone()); New->setCalledFunction(FIPrintFFn); B.Insert(New); return New; } return 0; } }; //===---------------------------------------===// // 'puts' Optimizations struct PutsOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require one fixed pointer argument and an integer/void result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) return 0; // Check for a constant string. StringRef Str; if (!getConstantStringInfo(CI->getArgOperand(0), Str)) return 0; if (Str.empty() && CI->use_empty()) { // puts("") -> putchar('\n') Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI); if (CI->use_empty() || !Res) return Res; return B.CreateIntCast(Res, CI->getType(), true); } return 0; } }; } // end anonymous namespace. //===----------------------------------------------------------------------===// // SimplifyLibCalls Pass Implementation //===----------------------------------------------------------------------===// namespace { /// This pass optimizes well known library functions from libc and libm. /// class SimplifyLibCalls : public FunctionPass { TargetLibraryInfo *TLI; StringMap Optimizations; // Integer Optimizations FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii; ToAsciiOpt ToAscii; // Formatting and IO Optimizations SPrintFOpt SPrintF; PrintFOpt PrintF; FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF; PutsOpt Puts; bool Modified; // This is only used by doInitialization. public: static char ID; // Pass identification SimplifyLibCalls() : FunctionPass(ID) { initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); } void AddOpt(LibFunc::Func F, LibCallOptimization* Opt); void AddOpt(LibFunc::Func F1, LibFunc::Func F2, LibCallOptimization* Opt); void InitOptimizations(); bool runOnFunction(Function &F); void setDoesNotAccessMemory(Function &F); void setOnlyReadsMemory(Function &F); void setDoesNotThrow(Function &F); void setDoesNotCapture(Function &F, unsigned n); void setDoesNotAlias(Function &F, unsigned n); bool doInitialization(Module &M); void inferPrototypeAttributes(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } }; } // end anonymous namespace. char SimplifyLibCalls::ID = 0; INITIALIZE_PASS_BEGIN(SimplifyLibCalls, "simplify-libcalls", "Simplify well-known library calls", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_PASS_END(SimplifyLibCalls, "simplify-libcalls", "Simplify well-known library calls", false, false) // Public interface to the Simplify LibCalls pass. FunctionPass *llvm::createSimplifyLibCallsPass() { return new SimplifyLibCalls(); } void SimplifyLibCalls::AddOpt(LibFunc::Func F, LibCallOptimization* Opt) { if (TLI->has(F)) Optimizations[TLI->getName(F)] = Opt; } void SimplifyLibCalls::AddOpt(LibFunc::Func F1, LibFunc::Func F2, LibCallOptimization* Opt) { if (TLI->has(F1) && TLI->has(F2)) Optimizations[TLI->getName(F1)] = Opt; } /// Optimizations - Populate the Optimizations map with all the optimizations /// we know. void SimplifyLibCalls::InitOptimizations() { // Integer Optimizations Optimizations["ffs"] = &FFS; Optimizations["ffsl"] = &FFS; Optimizations["ffsll"] = &FFS; Optimizations["abs"] = &Abs; Optimizations["labs"] = &Abs; Optimizations["llabs"] = &Abs; Optimizations["isdigit"] = &IsDigit; Optimizations["isascii"] = &IsAscii; Optimizations["toascii"] = &ToAscii; // Formatting and IO Optimizations Optimizations["sprintf"] = &SPrintF; Optimizations["printf"] = &PrintF; AddOpt(LibFunc::fwrite, &FWrite); AddOpt(LibFunc::fputs, &FPuts); Optimizations["fprintf"] = &FPrintF; Optimizations["puts"] = &Puts; } /// runOnFunction - Top level algorithm. /// bool SimplifyLibCalls::runOnFunction(Function &F) { TLI = &getAnalysis(); if (Optimizations.empty()) InitOptimizations(); const DataLayout *TD = getAnalysisIfAvailable(); IRBuilder<> Builder(F.getContext()); bool Changed = false; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { // Ignore non-calls. CallInst *CI = dyn_cast(I++); if (!CI) continue; // Ignore indirect calls and calls to non-external functions. Function *Callee = CI->getCalledFunction(); if (Callee == 0 || !Callee->isDeclaration() || !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage())) continue; // Ignore unknown calls. LibCallOptimization *LCO = Optimizations.lookup(Callee->getName()); if (!LCO) continue; // Set the builder to the instruction after the call. Builder.SetInsertPoint(BB, I); // Use debug location of CI for all new instructions. Builder.SetCurrentDebugLocation(CI->getDebugLoc()); // Try to optimize this call. Value *Result = LCO->OptimizeCall(CI, TD, TLI, Builder); if (Result == 0) continue; DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI; dbgs() << " into: " << *Result << "\n"); // Something changed! Changed = true; ++NumSimplified; // Inspect the instruction after the call (which was potentially just // added) next. I = CI; ++I; if (CI != Result && !CI->use_empty()) { CI->replaceAllUsesWith(Result); if (!Result->hasName()) Result->takeName(CI); } CI->eraseFromParent(); } } return Changed; } // Utility methods for doInitialization. void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) { if (!F.doesNotAccessMemory()) { F.setDoesNotAccessMemory(); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setOnlyReadsMemory(Function &F) { if (!F.onlyReadsMemory()) { F.setOnlyReadsMemory(); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setDoesNotThrow(Function &F) { if (!F.doesNotThrow()) { F.setDoesNotThrow(); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) { if (!F.doesNotCapture(n)) { F.setDoesNotCapture(n); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) { if (!F.doesNotAlias(n)) { F.setDoesNotAlias(n); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::inferPrototypeAttributes(Function &F) { FunctionType *FTy = F.getFunctionType(); StringRef Name = F.getName(); switch (Name[0]) { case 's': if (Name == "strlen") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "strchr" || Name == "strrchr") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isIntegerTy()) return; setOnlyReadsMemory(F); setDoesNotThrow(F); } else if (Name == "strcpy" || Name == "stpcpy" || Name == "strcat" || Name == "strtol" || Name == "strtod" || Name == "strtof" || Name == "strtoul" || Name == "strtoll" || Name == "strtold" || Name == "strncat" || Name == "strncpy" || Name == "stpncpy" || Name == "strtoull") { if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "strxfrm") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "strcmp" || Name == "strspn" || Name == "strncmp" || Name == "strcspn" || Name == "strcoll" || Name == "strcasecmp" || Name == "strncasecmp") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "strstr" || Name == "strpbrk") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "strtok" || Name == "strtok_r") { if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "scanf" || Name == "setbuf" || Name == "setvbuf") { if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "strdup" || Name == "strndup") { if (FTy->getNumParams() < 1 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } else if (Name == "stat" || Name == "sscanf" || Name == "sprintf" || Name == "statvfs") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "snprintf") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(2)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 3); } else if (Name == "setitimer") { if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy() || !FTy->getParamType(2)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); setDoesNotCapture(F, 3); } else if (Name == "system") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; // May throw; "system" is a valid pthread cancellation point. setDoesNotCapture(F, 1); } break; case 'm': if (Name == "malloc") { if (FTy->getNumParams() != 1 || !FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "memcmp") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "memchr" || Name == "memrchr") { if (FTy->getNumParams() != 3) return; setOnlyReadsMemory(F); setDoesNotThrow(F); } else if (Name == "modf" || Name == "modff" || Name == "modfl" || Name == "memcpy" || Name == "memccpy" || Name == "memmove") { if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "memalign") { if (!FTy->getReturnType()->isPointerTy()) return; setDoesNotAlias(F, 0); } else if (Name == "mkdir" || Name == "mktime") { if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'r': if (Name == "realloc") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } else if (Name == "read") { if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy()) return; // May throw; "read" is a valid pthread cancellation point. setDoesNotCapture(F, 2); } else if (Name == "rmdir" || Name == "rewind" || Name == "remove" || Name == "realpath") { if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "rename" || Name == "readlink") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } break; case 'w': if (Name == "write") { if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy()) return; // May throw; "write" is a valid pthread cancellation point. setDoesNotCapture(F, 2); } break; case 'b': if (Name == "bcopy") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "bcmp") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setOnlyReadsMemory(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "bzero") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'c': if (Name == "calloc") { if (FTy->getNumParams() != 2 || !FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "chmod" || Name == "chown" || Name == "ctermid" || Name == "clearerr" || Name == "closedir") { if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'a': if (Name == "atoi" || Name == "atol" || Name == "atof" || Name == "atoll") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setOnlyReadsMemory(F); setDoesNotCapture(F, 1); } else if (Name == "access") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'f': if (Name == "fopen") { if (FTy->getNumParams() != 2 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "fdopen") { if (FTy->getNumParams() != 2 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 2); } else if (Name == "feof" || Name == "free" || Name == "fseek" || Name == "ftell" || Name == "fgetc" || Name == "fseeko" || Name == "ftello" || Name == "fileno" || Name == "fflush" || Name == "fclose" || Name == "fsetpos" || Name == "flockfile" || Name == "funlockfile" || Name == "ftrylockfile") { if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "ferror") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setOnlyReadsMemory(F); } else if (Name == "fputc" || Name == "fstat" || Name == "frexp" || Name == "frexpf" || Name == "frexpl" || Name == "fstatvfs") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "fgets") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(2)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 3); } else if (Name == "fread" || Name == "fwrite") { if (FTy->getNumParams() != 4 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(3)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 4); } else if (Name == "fputs" || Name == "fscanf" || Name == "fprintf" || Name == "fgetpos") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } break; case 'g': if (Name == "getc" || Name == "getlogin_r" || Name == "getc_unlocked") { if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "getenv") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setOnlyReadsMemory(F); setDoesNotCapture(F, 1); } else if (Name == "gets" || Name == "getchar") { setDoesNotThrow(F); } else if (Name == "getitimer") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "getpwnam") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'u': if (Name == "ungetc") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "uname" || Name == "unlink" || Name == "unsetenv") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "utime" || Name == "utimes") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } break; case 'p': if (Name == "putc") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "puts" || Name == "printf" || Name == "perror") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "pread" || Name == "pwrite") { if (FTy->getNumParams() != 4 || !FTy->getParamType(1)->isPointerTy()) return; // May throw; these are valid pthread cancellation points. setDoesNotCapture(F, 2); } else if (Name == "putchar") { setDoesNotThrow(F); } else if (Name == "popen") { if (FTy->getNumParams() != 2 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "pclose") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'v': if (Name == "vscanf") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "vsscanf" || Name == "vfscanf") { if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy() || !FTy->getParamType(2)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "valloc") { if (!FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "vprintf") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "vfprintf" || Name == "vsprintf") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "vsnprintf") { if (FTy->getNumParams() != 4 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(2)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 3); } break; case 'o': if (Name == "open") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy()) return; // May throw; "open" is a valid pthread cancellation point. setDoesNotCapture(F, 1); } else if (Name == "opendir") { if (FTy->getNumParams() != 1 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } break; case 't': if (Name == "tmpfile") { if (!FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "times") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'h': if (Name == "htonl" || Name == "htons") { setDoesNotThrow(F); setDoesNotAccessMemory(F); } break; case 'n': if (Name == "ntohl" || Name == "ntohs") { setDoesNotThrow(F); setDoesNotAccessMemory(F); } break; case 'l': if (Name == "lstat") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "lchown") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'q': if (Name == "qsort") { if (FTy->getNumParams() != 4 || !FTy->getParamType(3)->isPointerTy()) return; // May throw; places call through function pointer. setDoesNotCapture(F, 4); } break; case '_': if (Name == "__strdup" || Name == "__strndup") { if (FTy->getNumParams() < 1 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } else if (Name == "__strtok_r") { if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "_IO_getc") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "_IO_putc") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } break; case 1: if (Name == "\1__isoc99_scanf") { if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "\1stat64" || Name == "\1lstat64" || Name == "\1statvfs64" || Name == "\1__isoc99_sscanf") { if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "\1fopen64") { if (FTy->getNumParams() != 2 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "\1fseeko64" || Name == "\1ftello64") { if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "\1tmpfile64") { if (!FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "\1fstat64" || Name == "\1fstatvfs64") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "\1open64") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy()) return; // May throw; "open" is a valid pthread cancellation point. setDoesNotCapture(F, 1); } break; } } /// doInitialization - Add attributes to well-known functions. /// bool SimplifyLibCalls::doInitialization(Module &M) { Modified = false; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { Function &F = *I; if (F.isDeclaration() && F.hasName()) inferPrototypeAttributes(F); } return Modified; } // TODO: // Additional cases that we need to add to this file: // // cbrt: // * cbrt(expN(X)) -> expN(x/3) // * cbrt(sqrt(x)) -> pow(x,1/6) // * cbrt(sqrt(x)) -> pow(x,1/9) // // exp, expf, expl: // * exp(log(x)) -> x // // log, logf, logl: // * log(exp(x)) -> x // * log(x**y) -> y*log(x) // * log(exp(y)) -> y*log(e) // * log(exp2(y)) -> y*log(2) // * log(exp10(y)) -> y*log(10) // * log(sqrt(x)) -> 0.5*log(x) // * log(pow(x,y)) -> y*log(x) // // lround, lroundf, lroundl: // * lround(cnst) -> cnst' // // pow, powf, powl: // * pow(exp(x),y) -> exp(x*y) // * pow(sqrt(x),y) -> pow(x,y*0.5) // * pow(pow(x,y),z)-> pow(x,y*z) // // round, roundf, roundl: // * round(cnst) -> cnst' // // signbit: // * signbit(cnst) -> cnst' // * signbit(nncst) -> 0 (if pstv is a non-negative constant) // // sqrt, sqrtf, sqrtl: // * sqrt(expN(x)) -> expN(x*0.5) // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) // // strchr: // * strchr(p, 0) -> strlen(p) // tan, tanf, tanl: // * tan(atan(x)) -> x // // trunc, truncf, truncl: // * trunc(cnst) -> cnst' // //