//===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the AggressiveAntiDepBreaker class, which // implements register anti-dependence breaking during post-RA // scheduling. It attempts to break all anti-dependencies within a // block. // //===----------------------------------------------------------------------===// #include "AggressiveAntiDepBreaker.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "post-RA-sched" // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod static cl::opt DebugDiv("agg-antidep-debugdiv", cl::desc("Debug control for aggressive anti-dep breaker"), cl::init(0), cl::Hidden); static cl::opt DebugMod("agg-antidep-debugmod", cl::desc("Debug control for aggressive anti-dep breaker"), cl::init(0), cl::Hidden); AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs, MachineBasicBlock *BB) : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0), GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0), DefIndices(TargetRegs, 0) { const unsigned BBSize = BB->size(); for (unsigned i = 0; i < NumTargetRegs; ++i) { // Initialize all registers to be in their own group. Initially we // assign the register to the same-indexed GroupNode. GroupNodeIndices[i] = i; // Initialize the indices to indicate that no registers are live. KillIndices[i] = ~0u; DefIndices[i] = BBSize; } } unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) { unsigned Node = GroupNodeIndices[Reg]; while (GroupNodes[Node] != Node) Node = GroupNodes[Node]; return Node; } void AggressiveAntiDepState::GetGroupRegs( unsigned Group, std::vector &Regs, std::multimap *RegRefs) { for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) { if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0)) Regs.push_back(Reg); } } unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) { assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!"); assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!"); // find group for each register unsigned Group1 = GetGroup(Reg1); unsigned Group2 = GetGroup(Reg2); // if either group is 0, then that must become the parent unsigned Parent = (Group1 == 0) ? Group1 : Group2; unsigned Other = (Parent == Group1) ? Group2 : Group1; GroupNodes.at(Other) = Parent; return Parent; } unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) { // Create a new GroupNode for Reg. Reg's existing GroupNode must // stay as is because there could be other GroupNodes referring to // it. unsigned idx = GroupNodes.size(); GroupNodes.push_back(idx); GroupNodeIndices[Reg] = idx; return idx; } bool AggressiveAntiDepState::IsLive(unsigned Reg) { // KillIndex must be defined and DefIndex not defined for a register // to be live. return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u)); } AggressiveAntiDepBreaker::AggressiveAntiDepBreaker( MachineFunction &MFi, const RegisterClassInfo &RCI, TargetSubtargetInfo::RegClassVector &CriticalPathRCs) : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), TII(MF.getSubtarget().getInstrInfo()), TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) { /* Collect a bitset of all registers that are only broken if they are on the critical path. */ for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) { BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]); if (CriticalPathSet.none()) CriticalPathSet = CPSet; else CriticalPathSet |= CPSet; } LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:"); LLVM_DEBUG(for (unsigned r : CriticalPathSet.set_bits()) dbgs() << " " << printReg(r, TRI)); LLVM_DEBUG(dbgs() << '\n'); } AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() { delete State; } void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { assert(!State); State = new AggressiveAntiDepState(TRI->getNumRegs(), BB); bool IsReturnBlock = BB->isReturnBlock(); std::vector &KillIndices = State->GetKillIndices(); std::vector &DefIndices = State->GetDefIndices(); // Examine the live-in regs of all successors. for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) for (const auto &LI : (*SI)->liveins()) { for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { unsigned Reg = *AI; State->UnionGroups(Reg, 0); KillIndices[Reg] = BB->size(); DefIndices[Reg] = ~0u; } } // Mark live-out callee-saved registers. In a return block this is // all callee-saved registers. In non-return this is any // callee-saved register that is not saved in the prolog. const MachineFrameInfo &MFI = MF.getFrameInfo(); BitVector Pristine = MFI.getPristineRegs(MF); for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; ++I) { unsigned Reg = *I; if (!IsReturnBlock && !Pristine.test(Reg)) continue; for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { unsigned AliasReg = *AI; State->UnionGroups(AliasReg, 0); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = ~0u; } } } void AggressiveAntiDepBreaker::FinishBlock() { delete State; State = nullptr; } void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, unsigned InsertPosIndex) { assert(Count < InsertPosIndex && "Instruction index out of expected range!"); std::set PassthruRegs; GetPassthruRegs(MI, PassthruRegs); PrescanInstruction(MI, Count, PassthruRegs); ScanInstruction(MI, Count); LLVM_DEBUG(dbgs() << "Observe: "); LLVM_DEBUG(MI.dump()); LLVM_DEBUG(dbgs() << "\tRegs:"); std::vector &DefIndices = State->GetDefIndices(); for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { // If Reg is current live, then mark that it can't be renamed as // we don't know the extent of its live-range anymore (now that it // has been scheduled). If it is not live but was defined in the // previous schedule region, then set its def index to the most // conservative location (i.e. the beginning of the previous // schedule region). if (State->IsLive(Reg)) { LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg) << "->g0(region live-out)"); State->UnionGroups(Reg, 0); } else if ((DefIndices[Reg] < InsertPosIndex) && (DefIndices[Reg] >= Count)) { DefIndices[Reg] = Count; } } LLVM_DEBUG(dbgs() << '\n'); } bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI, MachineOperand &MO) { if (!MO.isReg() || !MO.isImplicit()) return false; Register Reg = MO.getReg(); if (Reg == 0) return false; MachineOperand *Op = nullptr; if (MO.isDef()) Op = MI.findRegisterUseOperand(Reg, true); else Op = MI.findRegisterDefOperand(Reg); return(Op && Op->isImplicit()); } void AggressiveAntiDepBreaker::GetPassthruRegs( MachineInstr &MI, std::set &PassthruRegs) { for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) || IsImplicitDefUse(MI, MO)) { const Register Reg = MO.getReg(); for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) PassthruRegs.insert(*SubRegs); } } } /// AntiDepEdges - Return in Edges the anti- and output- dependencies /// in SU that we want to consider for breaking. static void AntiDepEdges(const SUnit *SU, std::vector &Edges) { SmallSet RegSet; for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); P != PE; ++P) { if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) { if (RegSet.insert(P->getReg()).second) Edges.push_back(&*P); } } } /// CriticalPathStep - Return the next SUnit after SU on the bottom-up /// critical path. static const SUnit *CriticalPathStep(const SUnit *SU) { const SDep *Next = nullptr; unsigned NextDepth = 0; // Find the predecessor edge with the greatest depth. if (SU) { for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); P != PE; ++P) { const SUnit *PredSU = P->getSUnit(); unsigned PredLatency = P->getLatency(); unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; // In the case of a latency tie, prefer an anti-dependency edge over // other types of edges. if (NextDepth < PredTotalLatency || (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { NextDepth = PredTotalLatency; Next = &*P; } } } return (Next) ? Next->getSUnit() : nullptr; } void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx, const char *tag, const char *header, const char *footer) { std::vector &KillIndices = State->GetKillIndices(); std::vector &DefIndices = State->GetDefIndices(); std::multimap& RegRefs = State->GetRegRefs(); // FIXME: We must leave subregisters of live super registers as live, so that // we don't clear out the register tracking information for subregisters of // super registers we're still tracking (and with which we're unioning // subregister definitions). for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) { LLVM_DEBUG(if (!header && footer) dbgs() << footer); return; } if (!State->IsLive(Reg)) { KillIndices[Reg] = KillIdx; DefIndices[Reg] = ~0u; RegRefs.erase(Reg); State->LeaveGroup(Reg); LLVM_DEBUG(if (header) { dbgs() << header << printReg(Reg, TRI); header = nullptr; }); LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag); // Repeat for subregisters. Note that we only do this if the superregister // was not live because otherwise, regardless whether we have an explicit // use of the subregister, the subregister's contents are needed for the // uses of the superregister. for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubregReg = *SubRegs; if (!State->IsLive(SubregReg)) { KillIndices[SubregReg] = KillIdx; DefIndices[SubregReg] = ~0u; RegRefs.erase(SubregReg); State->LeaveGroup(SubregReg); LLVM_DEBUG(if (header) { dbgs() << header << printReg(Reg, TRI); header = nullptr; }); LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g" << State->GetGroup(SubregReg) << tag); } } } LLVM_DEBUG(if (!header && footer) dbgs() << footer); } void AggressiveAntiDepBreaker::PrescanInstruction( MachineInstr &MI, unsigned Count, std::set &PassthruRegs) { std::vector &DefIndices = State->GetDefIndices(); std::multimap& RegRefs = State->GetRegRefs(); // Handle dead defs by simulating a last-use of the register just // after the def. A dead def can occur because the def is truly // dead, or because only a subregister is live at the def. If we // don't do this the dead def will be incorrectly merged into the // previous def. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n"); } LLVM_DEBUG(dbgs() << "\tDef Groups:"); for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg)); // If MI's defs have a special allocation requirement, don't allow // any def registers to be changed. Also assume all registers // defined in a call must not be changed (ABI). Inline assembly may // reference either system calls or the register directly. Skip it until we // can tell user specified registers from compiler-specified. if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) || MI.isInlineAsm()) { LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); State->UnionGroups(Reg, 0); } // Any aliased that are live at this point are completely or // partially defined here, so group those aliases with Reg. for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { unsigned AliasReg = *AI; if (State->IsLive(AliasReg)) { State->UnionGroups(Reg, AliasReg); LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " << printReg(AliasReg, TRI) << ")"); } } // Note register reference... const TargetRegisterClass *RC = nullptr; if (i < MI.getDesc().getNumOperands()) RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; RegRefs.insert(std::make_pair(Reg, RR)); } LLVM_DEBUG(dbgs() << '\n'); // Scan the register defs for this instruction and update // live-ranges. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; // Ignore KILLs and passthru registers for liveness... if (MI.isKill() || (PassthruRegs.count(Reg) != 0)) continue; // Update def for Reg and aliases. for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { // We need to be careful here not to define already-live super registers. // If the super register is already live, then this definition is not // a definition of the whole super register (just a partial insertion // into it). Earlier subregister definitions (which we've not yet visited // because we're iterating bottom-up) need to be linked to the same group // as this definition. if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) continue; DefIndices[*AI] = Count; } } } void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { LLVM_DEBUG(dbgs() << "\tUse Groups:"); std::multimap& RegRefs = State->GetRegRefs(); // If MI's uses have special allocation requirement, don't allow // any use registers to be changed. Also assume all registers // used in a call must not be changed (ABI). // Inline Assembly register uses also cannot be safely changed. // FIXME: The issue with predicated instruction is more complex. We are being // conservatively here because the kill markers cannot be trusted after // if-conversion: // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] // ... // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) // // The first R6 kill is not really a kill since it's killed by a predicated // instruction which may not be executed. The second R6 def may or may not // re-define R6 so it's not safe to change it since the last R6 use cannot be // changed. bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI) || MI.isInlineAsm(); // Scan the register uses for this instruction and update // live-ranges, groups and RegRefs. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg)); // It wasn't previously live but now it is, this is a kill. Forget // the previous live-range information and start a new live-range // for the register. HandleLastUse(Reg, Count, "(last-use)"); if (Special) { LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); State->UnionGroups(Reg, 0); } // Note register reference... const TargetRegisterClass *RC = nullptr; if (i < MI.getDesc().getNumOperands()) RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; RegRefs.insert(std::make_pair(Reg, RR)); } LLVM_DEBUG(dbgs() << '\n'); // Form a group of all defs and uses of a KILL instruction to ensure // that all registers are renamed as a group. if (MI.isKill()) { LLVM_DEBUG(dbgs() << "\tKill Group:"); unsigned FirstReg = 0; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; if (FirstReg != 0) { LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI)); State->UnionGroups(FirstReg, Reg); } else { LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); FirstReg = Reg; } } LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n'); } } BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) { BitVector BV(TRI->getNumRegs(), false); bool first = true; // Check all references that need rewriting for Reg. For each, use // the corresponding register class to narrow the set of registers // that are appropriate for renaming. for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) { const TargetRegisterClass *RC = Q.second.RC; if (!RC) continue; BitVector RCBV = TRI->getAllocatableSet(MF, RC); if (first) { BV |= RCBV; first = false; } else { BV &= RCBV; } LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC)); } return BV; } bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters( unsigned AntiDepGroupIndex, RenameOrderType& RenameOrder, std::map &RenameMap) { std::vector &KillIndices = State->GetKillIndices(); std::vector &DefIndices = State->GetDefIndices(); std::multimap& RegRefs = State->GetRegRefs(); // Collect all referenced registers in the same group as // AntiDepReg. These all need to be renamed together if we are to // break the anti-dependence. std::vector Regs; State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs); assert(!Regs.empty() && "Empty register group!"); if (Regs.empty()) return false; // Find the "superest" register in the group. At the same time, // collect the BitVector of registers that can be used to rename // each register. LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex << ":\n"); std::map RenameRegisterMap; unsigned SuperReg = 0; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { unsigned Reg = Regs[i]; if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg)) SuperReg = Reg; // If Reg has any references, then collect possible rename regs if (RegRefs.count(Reg) > 0) { LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":"); BitVector &BV = RenameRegisterMap[Reg]; assert(BV.empty()); BV = GetRenameRegisters(Reg); LLVM_DEBUG({ dbgs() << " ::"; for (unsigned r : BV.set_bits()) dbgs() << " " << printReg(r, TRI); dbgs() << "\n"; }); } } // All group registers should be a subreg of SuperReg. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { unsigned Reg = Regs[i]; if (Reg == SuperReg) continue; bool IsSub = TRI->isSubRegister(SuperReg, Reg); // FIXME: remove this once PR18663 has been properly fixed. For now, // return a conservative answer: // assert(IsSub && "Expecting group subregister"); if (!IsSub) return false; } #ifndef NDEBUG // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod if (DebugDiv > 0) { static int renamecnt = 0; if (renamecnt++ % DebugDiv != DebugMod) return false; dbgs() << "*** Performing rename " << printReg(SuperReg, TRI) << " for debug ***\n"; } #endif // Check each possible rename register for SuperReg in round-robin // order. If that register is available, and the corresponding // registers are available for the other group subregisters, then we // can use those registers to rename. // FIXME: Using getMinimalPhysRegClass is very conservative. We should // check every use of the register and find the largest register class // that can be used in all of them. const TargetRegisterClass *SuperRC = TRI->getMinimalPhysRegClass(SuperReg, MVT::Other); ArrayRef Order = RegClassInfo.getOrder(SuperRC); if (Order.empty()) { LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n"); return false; } LLVM_DEBUG(dbgs() << "\tFind Registers:"); RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size())); unsigned OrigR = RenameOrder[SuperRC]; unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR); unsigned R = OrigR; do { if (R == 0) R = Order.size(); --R; const unsigned NewSuperReg = Order[R]; // Don't consider non-allocatable registers if (!MRI.isAllocatable(NewSuperReg)) continue; // Don't replace a register with itself. if (NewSuperReg == SuperReg) continue; LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':'); RenameMap.clear(); // For each referenced group register (which must be a SuperReg or // a subregister of SuperReg), find the corresponding subregister // of NewSuperReg and make sure it is free to be renamed. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { unsigned Reg = Regs[i]; unsigned NewReg = 0; if (Reg == SuperReg) { NewReg = NewSuperReg; } else { unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg); if (NewSubRegIdx != 0) NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx); } LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI)); // Check if Reg can be renamed to NewReg. if (!RenameRegisterMap[Reg].test(NewReg)) { LLVM_DEBUG(dbgs() << "(no rename)"); goto next_super_reg; } // If NewReg is dead and NewReg's most recent def is not before // Regs's kill, it's safe to replace Reg with NewReg. We // must also check all aliases of NewReg, because we can't define a // register when any sub or super is already live. if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) { LLVM_DEBUG(dbgs() << "(live)"); goto next_super_reg; } else { bool found = false; for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) { unsigned AliasReg = *AI; if (State->IsLive(AliasReg) || (KillIndices[Reg] > DefIndices[AliasReg])) { LLVM_DEBUG(dbgs() << "(alias " << printReg(AliasReg, TRI) << " live)"); found = true; break; } } if (found) goto next_super_reg; } // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also // defines 'NewReg' via an early-clobber operand. for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { MachineInstr *UseMI = Q.second.Operand->getParent(); int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI); if (Idx == -1) continue; if (UseMI->getOperand(Idx).isEarlyClobber()) { LLVM_DEBUG(dbgs() << "(ec)"); goto next_super_reg; } } // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining // 'Reg' is an early-clobber define and that instruction also uses // 'NewReg'. for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber()) continue; MachineInstr *DefMI = Q.second.Operand->getParent(); if (DefMI->readsRegister(NewReg, TRI)) { LLVM_DEBUG(dbgs() << "(ec)"); goto next_super_reg; } } // Record that 'Reg' can be renamed to 'NewReg'. RenameMap.insert(std::pair(Reg, NewReg)); } // If we fall-out here, then every register in the group can be // renamed, as recorded in RenameMap. RenameOrder.erase(SuperRC); RenameOrder.insert(RenameOrderType::value_type(SuperRC, R)); LLVM_DEBUG(dbgs() << "]\n"); return true; next_super_reg: LLVM_DEBUG(dbgs() << ']'); } while (R != EndR); LLVM_DEBUG(dbgs() << '\n'); // No registers are free and available! return false; } /// BreakAntiDependencies - Identifiy anti-dependencies within the /// ScheduleDAG and break them by renaming registers. unsigned AggressiveAntiDepBreaker::BreakAntiDependencies( const std::vector &SUnits, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned InsertPosIndex, DbgValueVector &DbgValues) { std::vector &KillIndices = State->GetKillIndices(); std::vector &DefIndices = State->GetDefIndices(); std::multimap& RegRefs = State->GetRegRefs(); // The code below assumes that there is at least one instruction, // so just duck out immediately if the block is empty. if (SUnits.empty()) return 0; // For each regclass the next register to use for renaming. RenameOrderType RenameOrder; // ...need a map from MI to SUnit. std::map MISUnitMap; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { const SUnit *SU = &SUnits[i]; MISUnitMap.insert(std::pair(SU->getInstr(), SU)); } // Track progress along the critical path through the SUnit graph as // we walk the instructions. This is needed for regclasses that only // break critical-path anti-dependencies. const SUnit *CriticalPathSU = nullptr; MachineInstr *CriticalPathMI = nullptr; if (CriticalPathSet.any()) { for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { const SUnit *SU = &SUnits[i]; if (!CriticalPathSU || ((SU->getDepth() + SU->Latency) > (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) { CriticalPathSU = SU; } } assert(CriticalPathSU && "Failed to find SUnit critical path"); CriticalPathMI = CriticalPathSU->getInstr(); } #ifndef NDEBUG LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n"); LLVM_DEBUG(dbgs() << "Available regs:"); for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { if (!State->IsLive(Reg)) LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); } LLVM_DEBUG(dbgs() << '\n'); #endif BitVector RegAliases(TRI->getNumRegs()); // Attempt to break anti-dependence edges. Walk the instructions // from the bottom up, tracking information about liveness as we go // to help determine which registers are available. unsigned Broken = 0; unsigned Count = InsertPosIndex - 1; for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { MachineInstr &MI = *--I; if (MI.isDebugInstr()) continue; LLVM_DEBUG(dbgs() << "Anti: "); LLVM_DEBUG(MI.dump()); std::set PassthruRegs; GetPassthruRegs(MI, PassthruRegs); // Process the defs in MI... PrescanInstruction(MI, Count, PassthruRegs); // The dependence edges that represent anti- and output- // dependencies that are candidates for breaking. std::vector Edges; const SUnit *PathSU = MISUnitMap[&MI]; AntiDepEdges(PathSU, Edges); // If MI is not on the critical path, then we don't rename // registers in the CriticalPathSet. BitVector *ExcludeRegs = nullptr; if (&MI == CriticalPathMI) { CriticalPathSU = CriticalPathStep(CriticalPathSU); CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr; } else if (CriticalPathSet.any()) { ExcludeRegs = &CriticalPathSet; } // Ignore KILL instructions (they form a group in ScanInstruction // but don't cause any anti-dependence breaking themselves) if (!MI.isKill()) { // Attempt to break each anti-dependency... for (unsigned i = 0, e = Edges.size(); i != e; ++i) { const SDep *Edge = Edges[i]; SUnit *NextSU = Edge->getSUnit(); if ((Edge->getKind() != SDep::Anti) && (Edge->getKind() != SDep::Output)) continue; unsigned AntiDepReg = Edge->getReg(); LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI)); assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); if (!MRI.isAllocatable(AntiDepReg)) { // Don't break anti-dependencies on non-allocatable registers. LLVM_DEBUG(dbgs() << " (non-allocatable)\n"); continue; } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) { // Don't break anti-dependencies for critical path registers // if not on the critical path LLVM_DEBUG(dbgs() << " (not critical-path)\n"); continue; } else if (PassthruRegs.count(AntiDepReg) != 0) { // If the anti-dep register liveness "passes-thru", then // don't try to change it. It will be changed along with // the use if required to break an earlier antidep. LLVM_DEBUG(dbgs() << " (passthru)\n"); continue; } else { // No anti-dep breaking for implicit deps MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg); assert(AntiDepOp && "Can't find index for defined register operand"); if (!AntiDepOp || AntiDepOp->isImplicit()) { LLVM_DEBUG(dbgs() << " (implicit)\n"); continue; } // If the SUnit has other dependencies on the SUnit that // it anti-depends on, don't bother breaking the // anti-dependency since those edges would prevent such // units from being scheduled past each other // regardless. // // Also, if there are dependencies on other SUnits with the // same register as the anti-dependency, don't attempt to // break it. for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), PE = PathSU->Preds.end(); P != PE; ++P) { if (P->getSUnit() == NextSU ? (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { AntiDepReg = 0; break; } } for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), PE = PathSU->Preds.end(); P != PE; ++P) { if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) && (P->getKind() != SDep::Output)) { LLVM_DEBUG(dbgs() << " (real dependency)\n"); AntiDepReg = 0; break; } else if ((P->getSUnit() != NextSU) && (P->getKind() == SDep::Data) && (P->getReg() == AntiDepReg)) { LLVM_DEBUG(dbgs() << " (other dependency)\n"); AntiDepReg = 0; break; } } if (AntiDepReg == 0) continue; // If the definition of the anti-dependency register does not start // a new live range, bail out. This can happen if the anti-dep // register is a sub-register of another register whose live range // spans over PathSU. In such case, PathSU defines only a part of // the larger register. RegAliases.reset(); for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI) RegAliases.set(*AI); for (SDep S : PathSU->Succs) { SDep::Kind K = S.getKind(); if (K != SDep::Data && K != SDep::Output && K != SDep::Anti) continue; unsigned R = S.getReg(); if (!RegAliases[R]) continue; if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R)) continue; AntiDepReg = 0; break; } if (AntiDepReg == 0) continue; } assert(AntiDepReg != 0); if (AntiDepReg == 0) continue; // Determine AntiDepReg's register group. const unsigned GroupIndex = State->GetGroup(AntiDepReg); if (GroupIndex == 0) { LLVM_DEBUG(dbgs() << " (zero group)\n"); continue; } LLVM_DEBUG(dbgs() << '\n'); // Look for a suitable register to use to break the anti-dependence. std::map RenameMap; if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) { LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on " << printReg(AntiDepReg, TRI) << ":"); // Handle each group register... for (std::map::iterator S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) { unsigned CurrReg = S->first; unsigned NewReg = S->second; LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->" << printReg(NewReg, TRI) << "(" << RegRefs.count(CurrReg) << " refs)"); // Update the references to the old register CurrReg to // refer to the new register NewReg. for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) { Q.second.Operand->setReg(NewReg); // If the SU for the instruction being updated has debug // information related to the anti-dependency register, make // sure to update that as well. const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()]; if (!SU) continue; UpdateDbgValues(DbgValues, Q.second.Operand->getParent(), AntiDepReg, NewReg); } // We just went back in time and modified history; the // liveness information for CurrReg is now inconsistent. Set // the state as if it were dead. State->UnionGroups(NewReg, 0); RegRefs.erase(NewReg); DefIndices[NewReg] = DefIndices[CurrReg]; KillIndices[NewReg] = KillIndices[CurrReg]; State->UnionGroups(CurrReg, 0); RegRefs.erase(CurrReg); DefIndices[CurrReg] = KillIndices[CurrReg]; KillIndices[CurrReg] = ~0u; assert(((KillIndices[CurrReg] == ~0u) != (DefIndices[CurrReg] == ~0u)) && "Kill and Def maps aren't consistent for AntiDepReg!"); } ++Broken; LLVM_DEBUG(dbgs() << '\n'); } } } ScanInstruction(MI, Count); } return Broken; } AntiDepBreaker *llvm::createAggressiveAntiDepBreaker( MachineFunction &MFi, const RegisterClassInfo &RCI, TargetSubtargetInfo::RegClassVector &CriticalPathRCs) { return new AggressiveAntiDepBreaker(MFi, RCI, CriticalPathRCs); }