//===-- Sparc.cpp - General implementation file for the Sparc Target ------===// // // This file contains the code for the Sparc Target that does not fit in any of // the other files in this directory. // //===----------------------------------------------------------------------===// #include "SparcInternals.h" #include "llvm/Target/Sparc.h" #include "llvm/CodeGen/InstrScheduling.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/MachineCodeForMethod.h" #include "llvm/CodeGen/RegisterAllocation.h" #include "llvm/Reoptimizer/Mapping/MappingInfo.h" #include "llvm/Reoptimizer/Mapping/FInfo.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "llvm/PassManager.h" #include using std::cerr; // Build the MachineInstruction Description Array... const MachineInstrDescriptor SparcMachineInstrDesc[] = { #define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \ { OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS }, #include "SparcInstr.def" }; //---------------------------------------------------------------------------- // allocateSparcTargetMachine - Allocate and return a subclass of TargetMachine // that implements the Sparc backend. (the llvm/CodeGen/Sparc.h interface) //---------------------------------------------------------------------------- TargetMachine *allocateSparcTargetMachine() { return new UltraSparc(); } //--------------------------------------------------------------------------- // class UltraSparcFrameInfo // // Purpose: // Interface to stack frame layout info for the UltraSPARC. // Starting offsets for each area of the stack frame are aligned at // a multiple of getStackFrameSizeAlignment(). //--------------------------------------------------------------------------- int UltraSparcFrameInfo::getFirstAutomaticVarOffset(MachineCodeForMethod& , bool& pos) const { pos = false; // static stack area grows downwards return StaticAreaOffsetFromFP; } int UltraSparcFrameInfo::getRegSpillAreaOffset(MachineCodeForMethod& mcInfo, bool& pos) const { mcInfo.freezeAutomaticVarsArea(); // ensure no more auto vars are added pos = false; // static stack area grows downwards unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize(); return StaticAreaOffsetFromFP - autoVarsSize; } int UltraSparcFrameInfo::getTmpAreaOffset(MachineCodeForMethod& mcInfo, bool& pos) const { mcInfo.freezeAutomaticVarsArea(); // ensure no more auto vars are added mcInfo.freezeSpillsArea(); // ensure no more spill slots are added pos = false; // static stack area grows downwards unsigned int autoVarsSize = mcInfo.getAutomaticVarsSize(); unsigned int spillAreaSize = mcInfo.getRegSpillsSize(); int offset = autoVarsSize + spillAreaSize; return StaticAreaOffsetFromFP - offset; } int UltraSparcFrameInfo::getDynamicAreaOffset(MachineCodeForMethod& mcInfo, bool& pos) const { // Dynamic stack area grows downwards starting at top of opt-args area. // The opt-args, required-args, and register-save areas are empty except // during calls and traps, so they are shifted downwards on each // dynamic-size alloca. pos = false; unsigned int optArgsSize = mcInfo.getMaxOptionalArgsSize(); int offset = optArgsSize + FirstOptionalOutgoingArgOffsetFromSP; assert((offset - OFFSET) % getStackFrameSizeAlignment() == 0); return offset; } //--------------------------------------------------------------------------- // class UltraSparcMachine // // Purpose: // Primary interface to machine description for the UltraSPARC. // Primarily just initializes machine-dependent parameters in // class TargetMachine, and creates machine-dependent subclasses // for classes such as MachineInstrInfo. // //--------------------------------------------------------------------------- UltraSparc::UltraSparc() : TargetMachine("UltraSparc-Native"), instrInfo(*this), schedInfo(*this), regInfo(*this), frameInfo(*this), cacheInfo(*this) { optSizeForSubWordData = 4; minMemOpWordSize = 8; maxAtomicMemOpWordSize = 8; } //===---------------------------------------------------------------------===// // GenerateCodeForTarget Pass // // Native code generation for a specified target. //===---------------------------------------------------------------------===// class ConstructMachineCodeForFunction : public FunctionPass { TargetMachine &Target; public: inline ConstructMachineCodeForFunction(TargetMachine &T) : Target(T) {} const char *getPassName() const { return "Sparc ConstructMachineCodeForFunction"; } bool runOnFunction(Function &F) { MachineCodeForMethod::construct(&F, Target); return false; } }; struct FreeMachineCodeForFunction : public FunctionPass { const char *getPassName() const { return "Sparc FreeMachineCodeForFunction"; } static void freeMachineCode(Instruction &I) { MachineCodeForInstruction::destroy(&I); } bool runOnFunction(Function &F) { for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E; ++I) MachineCodeForInstruction::get(I).dropAllReferences(); for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) for_each(FI->begin(), FI->end(), freeMachineCode); return false; } }; // addPassesToEmitAssembly - This method controls the entire code generation // process for the ultra sparc. // void UltraSparc::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out) { // Construct and initialize the MachineCodeForMethod object for this fn. PM.add(new ConstructMachineCodeForFunction(*this)); PM.add(createInstructionSelectionPass(*this)); PM.add(createInstructionSchedulingWithSSAPass(*this)); PM.add(getRegisterAllocator(*this)); //PM.add(new OptimizeLeafProcedures()); //PM.add(new DeleteFallThroughBranches()); //PM.add(new RemoveChainedBranches()); // should be folded with previous //PM.add(new RemoveRedundantOps()); // operations with %g0, NOP, etc. PM.add(createPrologEpilogCodeInserter(*this)); //PM.add(MappingInfoForFunction(Out)); // Output assembly language to the .s file. Assembly emission is split into // two parts: Function output and Global value output. This is because // function output is pipelined with all of the rest of code generation stuff, // allowing machine code representations for functions to be free'd after the // function has been emitted. // PM.add(getFunctionAsmPrinterPass(PM, Out)); PM.add(new FreeMachineCodeForFunction()); // Free stuff no longer needed // Emit Module level assembly after all of the functions have been processed. PM.add(getModuleAsmPrinterPass(PM, Out)); // Emit bytecode to the sparc assembly file into its special section next PM.add(getEmitBytecodeToAsmPass(Out)); //PM.add(getFunctionInfo(Out)); }