//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that ARM uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-isel" #include "ARMISelLowering.h" #include "ARM.h" #include "ARMCallingConv.h" #include "ARMConstantPoolValue.h" #include "ARMMachineFunctionInfo.h" #include "ARMPerfectShuffle.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "ARMTargetObjectFile.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; STATISTIC(NumTailCalls, "Number of tail calls"); STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt"); STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments"); // This option should go away when tail calls fully work. static cl::opt EnableARMTailCalls("arm-tail-calls", cl::Hidden, cl::desc("Generate tail calls (TEMPORARY OPTION)."), cl::init(false)); cl::opt EnableARMLongCalls("arm-long-calls", cl::Hidden, cl::desc("Generate calls via indirect call instructions"), cl::init(false)); static cl::opt ARMInterworking("arm-interworking", cl::Hidden, cl::desc("Enable / disable ARM interworking (for debugging only)"), cl::init(true)); namespace { class ARMCCState : public CCState { public: ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, const TargetMachine &TM, SmallVectorImpl &locs, LLVMContext &C, ParmContext PC) : CCState(CC, isVarArg, MF, TM, locs, C) { assert(((PC == Call) || (PC == Prologue)) && "ARMCCState users must specify whether their context is call" "or prologue generation."); CallOrPrologue = PC; } }; } // The APCS parameter registers. static const uint16_t GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT, MVT PromotedBitwiseVT) { if (VT != PromotedLdStVT) { setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT); setOperationAction(ISD::STORE, VT, Promote); AddPromotedToType (ISD::STORE, VT, PromotedLdStVT); } MVT ElemTy = VT.getVectorElementType(); if (ElemTy != MVT::i64 && ElemTy != MVT::f64) setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); if (ElemTy == MVT::i32) { setOperationAction(ISD::SINT_TO_FP, VT, Custom); setOperationAction(ISD::UINT_TO_FP, VT, Custom); setOperationAction(ISD::FP_TO_SINT, VT, Custom); setOperationAction(ISD::FP_TO_UINT, VT, Custom); } else { setOperationAction(ISD::SINT_TO_FP, VT, Expand); setOperationAction(ISD::UINT_TO_FP, VT, Expand); setOperationAction(ISD::FP_TO_SINT, VT, Expand); setOperationAction(ISD::FP_TO_UINT, VT, Expand); } setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); setOperationAction(ISD::SELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); if (VT.isInteger()) { setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); } // Promote all bit-wise operations. if (VT.isInteger() && VT != PromotedBitwiseVT) { setOperationAction(ISD::AND, VT, Promote); AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT); setOperationAction(ISD::OR, VT, Promote); AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT); setOperationAction(ISD::XOR, VT, Promote); AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT); } // Neon does not support vector divide/remainder operations. setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); } void ARMTargetLowering::addDRTypeForNEON(MVT VT) { addRegisterClass(VT, &ARM::DPRRegClass); addTypeForNEON(VT, MVT::f64, MVT::v2i32); } void ARMTargetLowering::addQRTypeForNEON(MVT VT) { addRegisterClass(VT, &ARM::QPRRegClass); addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); } static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) { if (TM.getSubtarget().isTargetDarwin()) return new TargetLoweringObjectFileMachO(); return new ARMElfTargetObjectFile(); } ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) : TargetLowering(TM, createTLOF(TM)) { Subtarget = &TM.getSubtarget(); RegInfo = TM.getRegisterInfo(); Itins = TM.getInstrItineraryData(); setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); if (Subtarget->isTargetDarwin()) { // Uses VFP for Thumb libfuncs if available. if (Subtarget->isThumb() && Subtarget->hasVFP2()) { // Single-precision floating-point arithmetic. setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); // Double-precision floating-point arithmetic. setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); // Single-precision comparisons. setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); setLibcallName(RTLIB::UO_F32, "__unordsf2vfp"); setLibcallName(RTLIB::O_F32, "__unordsf2vfp"); setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); // Double-precision comparisons. setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); setLibcallName(RTLIB::UO_F64, "__unorddf2vfp"); setLibcallName(RTLIB::O_F64, "__unorddf2vfp"); setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); // Floating-point to integer conversions. // i64 conversions are done via library routines even when generating VFP // instructions, so use the same ones. setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); // Conversions between floating types. setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp"); // Integer to floating-point conversions. // i64 conversions are done via library routines even when generating VFP // instructions, so use the same ones. // FIXME: There appears to be some naming inconsistency in ARM libgcc: // e.g., __floatunsidf vs. __floatunssidfvfp. setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); } } // These libcalls are not available in 32-bit. setLibcallName(RTLIB::SHL_I128, 0); setLibcallName(RTLIB::SRL_I128, 0); setLibcallName(RTLIB::SRA_I128, 0); if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) { // Double-precision floating-point arithmetic helper functions // RTABI chapter 4.1.2, Table 2 setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd"); setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv"); setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul"); setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub"); setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS); // Double-precision floating-point comparison helper functions // RTABI chapter 4.1.2, Table 3 setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq"); setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq"); setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ); setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt"); setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple"); setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge"); setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt"); setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun"); setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun"); setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS); // Single-precision floating-point arithmetic helper functions // RTABI chapter 4.1.2, Table 4 setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd"); setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv"); setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul"); setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub"); setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS); // Single-precision floating-point comparison helper functions // RTABI chapter 4.1.2, Table 5 setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq"); setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq"); setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ); setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt"); setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple"); setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge"); setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt"); setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun"); setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun"); setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS); // Floating-point to integer conversions. // RTABI chapter 4.1.2, Table 6 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz"); setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz"); setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz"); setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz"); setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz"); setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz"); setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz"); setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz"); setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS); // Conversions between floating types. // RTABI chapter 4.1.2, Table 7 setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f"); setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d"); setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS); // Integer to floating-point conversions. // RTABI chapter 4.1.2, Table 8 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d"); setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d"); setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d"); setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d"); setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f"); setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f"); setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f"); setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f"); setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS); // Long long helper functions // RTABI chapter 4.2, Table 9 setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul"); setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl"); setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr"); setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr"); setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS); // Integer division functions // RTABI chapter 4.3.1 setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv"); setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv"); setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv"); setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod"); setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv"); setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv"); setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv"); setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod"); setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS); // Memory operations // RTABI chapter 4.3.4 setLibcallName(RTLIB::MEMCPY, "__aeabi_memcpy"); setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove"); setLibcallName(RTLIB::MEMSET, "__aeabi_memset"); setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS); } // Use divmod compiler-rt calls for iOS 5.0 and later. if (Subtarget->getTargetTriple().getOS() == Triple::IOS && !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) { setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); } if (Subtarget->isThumb1Only()) addRegisterClass(MVT::i32, &ARM::tGPRRegClass); else addRegisterClass(MVT::i32, &ARM::GPRRegClass); if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { addRegisterClass(MVT::f32, &ARM::SPRRegClass); if (!Subtarget->isFPOnlySP()) addRegisterClass(MVT::f64, &ARM::DPRRegClass); setTruncStoreAction(MVT::f64, MVT::f32, Expand); } for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) setTruncStoreAction((MVT::SimpleValueType)VT, (MVT::SimpleValueType)InnerVT, Expand); setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); } setOperationAction(ISD::ConstantFP, MVT::f32, Custom); setOperationAction(ISD::ConstantFP, MVT::f64, Custom); if (Subtarget->hasNEON()) { addDRTypeForNEON(MVT::v2f32); addDRTypeForNEON(MVT::v8i8); addDRTypeForNEON(MVT::v4i16); addDRTypeForNEON(MVT::v2i32); addDRTypeForNEON(MVT::v1i64); addQRTypeForNEON(MVT::v4f32); addQRTypeForNEON(MVT::v2f64); addQRTypeForNEON(MVT::v16i8); addQRTypeForNEON(MVT::v8i16); addQRTypeForNEON(MVT::v4i32); addQRTypeForNEON(MVT::v2i64); // v2f64 is legal so that QR subregs can be extracted as f64 elements, but // neither Neon nor VFP support any arithmetic operations on it. // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively // supported for v4f32. setOperationAction(ISD::FADD, MVT::v2f64, Expand); setOperationAction(ISD::FSUB, MVT::v2f64, Expand); setOperationAction(ISD::FMUL, MVT::v2f64, Expand); // FIXME: Code duplication: FDIV and FREM are expanded always, see // ARMTargetLowering::addTypeForNEON method for details. setOperationAction(ISD::FDIV, MVT::v2f64, Expand); setOperationAction(ISD::FREM, MVT::v2f64, Expand); // FIXME: Create unittest. // In another words, find a way when "copysign" appears in DAG with vector // operands. setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); // FIXME: Code duplication: SETCC has custom operation action, see // ARMTargetLowering::addTypeForNEON method for details. setOperationAction(ISD::SETCC, MVT::v2f64, Expand); // FIXME: Create unittest for FNEG and for FABS. setOperationAction(ISD::FNEG, MVT::v2f64, Expand); setOperationAction(ISD::FABS, MVT::v2f64, Expand); setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); setOperationAction(ISD::FSIN, MVT::v2f64, Expand); setOperationAction(ISD::FCOS, MVT::v2f64, Expand); setOperationAction(ISD::FPOWI, MVT::v2f64, Expand); setOperationAction(ISD::FPOW, MVT::v2f64, Expand); setOperationAction(ISD::FLOG, MVT::v2f64, Expand); setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); setOperationAction(ISD::FEXP, MVT::v2f64, Expand); setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR. setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); setOperationAction(ISD::FRINT, MVT::v2f64, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); setOperationAction(ISD::FMA, MVT::v2f64, Expand); setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); setOperationAction(ISD::FSIN, MVT::v4f32, Expand); setOperationAction(ISD::FCOS, MVT::v4f32, Expand); setOperationAction(ISD::FPOWI, MVT::v4f32, Expand); setOperationAction(ISD::FPOW, MVT::v4f32, Expand); setOperationAction(ISD::FLOG, MVT::v4f32, Expand); setOperationAction(ISD::FLOG2, MVT::v4f32, Expand); setOperationAction(ISD::FLOG10, MVT::v4f32, Expand); setOperationAction(ISD::FEXP, MVT::v4f32, Expand); setOperationAction(ISD::FEXP2, MVT::v4f32, Expand); setOperationAction(ISD::FCEIL, MVT::v4f32, Expand); setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand); setOperationAction(ISD::FRINT, MVT::v4f32, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand); // Mark v2f32 intrinsics. setOperationAction(ISD::FSQRT, MVT::v2f32, Expand); setOperationAction(ISD::FSIN, MVT::v2f32, Expand); setOperationAction(ISD::FCOS, MVT::v2f32, Expand); setOperationAction(ISD::FPOWI, MVT::v2f32, Expand); setOperationAction(ISD::FPOW, MVT::v2f32, Expand); setOperationAction(ISD::FLOG, MVT::v2f32, Expand); setOperationAction(ISD::FLOG2, MVT::v2f32, Expand); setOperationAction(ISD::FLOG10, MVT::v2f32, Expand); setOperationAction(ISD::FEXP, MVT::v2f32, Expand); setOperationAction(ISD::FEXP2, MVT::v2f32, Expand); setOperationAction(ISD::FCEIL, MVT::v2f32, Expand); setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand); setOperationAction(ISD::FRINT, MVT::v2f32, Expand); setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand); setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand); // Neon does not support some operations on v1i64 and v2i64 types. setOperationAction(ISD::MUL, MVT::v1i64, Expand); // Custom handling for some quad-vector types to detect VMULL. setOperationAction(ISD::MUL, MVT::v8i16, Custom); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); // Custom handling for some vector types to avoid expensive expansions setOperationAction(ISD::SDIV, MVT::v4i16, Custom); setOperationAction(ISD::SDIV, MVT::v8i8, Custom); setOperationAction(ISD::UDIV, MVT::v4i16, Custom); setOperationAction(ISD::UDIV, MVT::v8i8, Custom); setOperationAction(ISD::SETCC, MVT::v1i64, Expand); setOperationAction(ISD::SETCC, MVT::v2i64, Expand); // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with // a destination type that is wider than the source, and nor does // it have a FP_TO_[SU]INT instruction with a narrower destination than // source. setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom); setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand); // Custom expand long extensions to vectors. setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom); setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom); setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom); // NEON does not have single instruction CTPOP for vectors with element // types wider than 8-bits. However, custom lowering can leverage the // v8i8/v16i8 vcnt instruction. setOperationAction(ISD::CTPOP, MVT::v2i32, Custom); setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); setOperationAction(ISD::CTPOP, MVT::v4i16, Custom); setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); // NEON only has FMA instructions as of VFP4. if (!Subtarget->hasVFP4()) { setOperationAction(ISD::FMA, MVT::v2f32, Expand); setOperationAction(ISD::FMA, MVT::v4f32, Expand); } setTargetDAGCombine(ISD::INTRINSIC_VOID); setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::ANY_EXTEND); setTargetDAGCombine(ISD::SELECT_CC); setTargetDAGCombine(ISD::BUILD_VECTOR); setTargetDAGCombine(ISD::VECTOR_SHUFFLE); setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::FP_TO_SINT); setTargetDAGCombine(ISD::FP_TO_UINT); setTargetDAGCombine(ISD::FDIV); // It is legal to extload from v4i8 to v4i16 or v4i32. MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16, MVT::v2i32}; for (unsigned i = 0; i < 6; ++i) { setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal); setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal); setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal); } } // ARM and Thumb2 support UMLAL/SMLAL. if (!Subtarget->isThumb1Only()) setTargetDAGCombine(ISD::ADDC); computeRegisterProperties(); // ARM does not have f32 extending load. setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); // ARM does not have i1 sign extending load. setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); // ARM supports all 4 flavors of integer indexed load / store. if (!Subtarget->isThumb1Only()) { for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, MVT::i1, Legal); setIndexedLoadAction(im, MVT::i8, Legal); setIndexedLoadAction(im, MVT::i16, Legal); setIndexedLoadAction(im, MVT::i32, Legal); setIndexedStoreAction(im, MVT::i1, Legal); setIndexedStoreAction(im, MVT::i8, Legal); setIndexedStoreAction(im, MVT::i16, Legal); setIndexedStoreAction(im, MVT::i32, Legal); } } // i64 operation support. setOperationAction(ISD::MUL, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i32, Expand); if (Subtarget->isThumb1Only()) { setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); } if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops() || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP())) setOperationAction(ISD::MULHS, MVT::i32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL, MVT::i64, Custom); setOperationAction(ISD::SRA, MVT::i64, Custom); if (!Subtarget->isThumb1Only()) { // FIXME: We should do this for Thumb1 as well. setOperationAction(ISD::ADDC, MVT::i32, Custom); setOperationAction(ISD::ADDE, MVT::i32, Custom); setOperationAction(ISD::SUBC, MVT::i32, Custom); setOperationAction(ISD::SUBE, MVT::i32, Custom); } // ARM does not have ROTL. setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::CTTZ, MVT::i32, Custom); setOperationAction(ISD::CTPOP, MVT::i32, Expand); if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) setOperationAction(ISD::CTLZ, MVT::i32, Expand); // These just redirect to CTTZ and CTLZ on ARM. setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand); setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); // Only ARMv6 has BSWAP. if (!Subtarget->hasV6Ops()) setOperationAction(ISD::BSWAP, MVT::i32, Expand); if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) && !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) { // These are expanded into libcalls if the cpu doesn't have HW divider. setOperationAction(ISD::SDIV, MVT::i32, Expand); setOperationAction(ISD::UDIV, MVT::i32, Expand); } // FIXME: Also set divmod for SREM on EABI setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); // Register based DivRem for AEABI (RTABI 4.2) if (Subtarget->isTargetAEABI()) { setLibcallName(RTLIB::SDIVREM_I8, "__aeabi_idivmod"); setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod"); setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod"); setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod"); setLibcallName(RTLIB::UDIVREM_I8, "__aeabi_uidivmod"); setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod"); setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod"); setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod"); setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS); setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS); setOperationAction(ISD::SDIVREM, MVT::i32, Custom); setOperationAction(ISD::UDIVREM, MVT::i32, Custom); } else { setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); } setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); setOperationAction(ISD::TRAP, MVT::Other, Legal); // Use the default implementation. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); if (!Subtarget->isTargetDarwin()) { // Non-Darwin platforms may return values in these registers via the // personality function. setExceptionPointerRegister(ARM::R0); setExceptionSelectorRegister(ARM::R1); } setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use // the default expansion. // FIXME: This should be checking for v6k, not just v6. if (Subtarget->hasDataBarrier() || (Subtarget->hasV6Ops() && !Subtarget->isThumb())) { // membarrier needs custom lowering; the rest are legal and handled // normally. setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); // Custom lowering for 64-bit ops setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc. setInsertFencesForAtomic(true); } else { // Set them all for expansion, which will force libcalls. setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the // Unordered/Monotonic case. setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); } setOperationAction(ISD::PREFETCH, MVT::Other, Custom); // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes. if (!Subtarget->hasV6Ops()) { setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); } setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR // iff target supports vfp2. setOperationAction(ISD::BITCAST, MVT::i64, Custom); setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); } // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); if (Subtarget->isTargetDarwin()) { setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); } setOperationAction(ISD::SETCC, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Expand); setOperationAction(ISD::SETCC, MVT::f64, Expand); setOperationAction(ISD::SELECT, MVT::i32, Custom); setOperationAction(ISD::SELECT, MVT::f32, Custom); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Custom); // We don't support sin/cos/fmod/copysign/pow setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f32, Expand); if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); } setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FPOW, MVT::f32, Expand); if (!Subtarget->hasVFP4()) { setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FMA, MVT::f32, Expand); } // Various VFP goodness if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) { // int <-> fp are custom expanded into bit_convert + ARMISD ops. if (Subtarget->hasVFP2()) { setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); } // Special handling for half-precision FP. if (!Subtarget->hasFP16()) { setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand); setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand); } } // We have target-specific dag combine patterns for the following nodes: // ARMISD::VMOVRRD - No need to call setTargetDAGCombine setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::SUB); setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::XOR); if (Subtarget->hasV6Ops()) setTargetDAGCombine(ISD::SRL); setStackPointerRegisterToSaveRestore(ARM::SP); if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2()) setSchedulingPreference(Sched::RegPressure); else setSchedulingPreference(Sched::Hybrid); //// temporary - rewrite interface to use type MaxStoresPerMemset = 8; MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4; MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2; MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2; // On ARM arguments smaller than 4 bytes are extended, so all arguments // are at least 4 bytes aligned. setMinStackArgumentAlignment(4); // Prefer likely predicted branches to selects on out-of-order cores. PredictableSelectIsExpensive = Subtarget->isLikeA9(); setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2); } // FIXME: It might make sense to define the representative register class as the // nearest super-register that has a non-null superset. For example, DPR_VFP2 is // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently, // SPR's representative would be DPR_VFP2. This should work well if register // pressure tracking were modified such that a register use would increment the // pressure of the register class's representative and all of it's super // classes' representatives transitively. We have not implemented this because // of the difficulty prior to coalescing of modeling operand register classes // due to the common occurrence of cross class copies and subregister insertions // and extractions. std::pair ARMTargetLowering::findRepresentativeClass(MVT VT) const{ const TargetRegisterClass *RRC = 0; uint8_t Cost = 1; switch (VT.SimpleTy) { default: return TargetLowering::findRepresentativeClass(VT); // Use DPR as representative register class for all floating point // and vector types. Since there are 32 SPR registers and 32 DPR registers so // the cost is 1 for both f32 and f64. case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16: case MVT::v2i32: case MVT::v1i64: case MVT::v2f32: RRC = &ARM::DPRRegClass; // When NEON is used for SP, only half of the register file is available // because operations that define both SP and DP results will be constrained // to the VFP2 class (D0-D15). We currently model this constraint prior to // coalescing by double-counting the SP regs. See the FIXME above. if (Subtarget->useNEONForSinglePrecisionFP()) Cost = 2; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: case MVT::v4f32: case MVT::v2f64: RRC = &ARM::DPRRegClass; Cost = 2; break; case MVT::v4i64: RRC = &ARM::DPRRegClass; Cost = 4; break; case MVT::v8i64: RRC = &ARM::DPRRegClass; Cost = 8; break; } return std::make_pair(RRC, Cost); } const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case ARMISD::Wrapper: return "ARMISD::Wrapper"; case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN"; case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC"; case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; case ARMISD::CALL: return "ARMISD::CALL"; case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; case ARMISD::tCALL: return "ARMISD::tCALL"; case ARMISD::BRCOND: return "ARMISD::BRCOND"; case ARMISD::BR_JT: return "ARMISD::BR_JT"; case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; case ARMISD::CMP: return "ARMISD::CMP"; case ARMISD::CMN: return "ARMISD::CMN"; case ARMISD::CMPZ: return "ARMISD::CMPZ"; case ARMISD::CMPFP: return "ARMISD::CMPFP"; case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; case ARMISD::BCC_i64: return "ARMISD::BCC_i64"; case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; case ARMISD::CMOV: return "ARMISD::CMOV"; case ARMISD::RBIT: return "ARMISD::RBIT"; case ARMISD::FTOSI: return "ARMISD::FTOSI"; case ARMISD::FTOUI: return "ARMISD::FTOUI"; case ARMISD::SITOF: return "ARMISD::SITOF"; case ARMISD::UITOF: return "ARMISD::UITOF"; case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; case ARMISD::RRX: return "ARMISD::RRX"; case ARMISD::ADDC: return "ARMISD::ADDC"; case ARMISD::ADDE: return "ARMISD::ADDE"; case ARMISD::SUBC: return "ARMISD::SUBC"; case ARMISD::SUBE: return "ARMISD::SUBE"; case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD"; case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR"; case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP"; case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN"; case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC"; case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER"; case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR"; case ARMISD::PRELOAD: return "ARMISD::PRELOAD"; case ARMISD::VCEQ: return "ARMISD::VCEQ"; case ARMISD::VCEQZ: return "ARMISD::VCEQZ"; case ARMISD::VCGE: return "ARMISD::VCGE"; case ARMISD::VCGEZ: return "ARMISD::VCGEZ"; case ARMISD::VCLEZ: return "ARMISD::VCLEZ"; case ARMISD::VCGEU: return "ARMISD::VCGEU"; case ARMISD::VCGT: return "ARMISD::VCGT"; case ARMISD::VCGTZ: return "ARMISD::VCGTZ"; case ARMISD::VCLTZ: return "ARMISD::VCLTZ"; case ARMISD::VCGTU: return "ARMISD::VCGTU"; case ARMISD::VTST: return "ARMISD::VTST"; case ARMISD::VSHL: return "ARMISD::VSHL"; case ARMISD::VSHRs: return "ARMISD::VSHRs"; case ARMISD::VSHRu: return "ARMISD::VSHRu"; case ARMISD::VSHLLs: return "ARMISD::VSHLLs"; case ARMISD::VSHLLu: return "ARMISD::VSHLLu"; case ARMISD::VSHLLi: return "ARMISD::VSHLLi"; case ARMISD::VSHRN: return "ARMISD::VSHRN"; case ARMISD::VRSHRs: return "ARMISD::VRSHRs"; case ARMISD::VRSHRu: return "ARMISD::VRSHRu"; case ARMISD::VRSHRN: return "ARMISD::VRSHRN"; case ARMISD::VQSHLs: return "ARMISD::VQSHLs"; case ARMISD::VQSHLu: return "ARMISD::VQSHLu"; case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu"; case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs"; case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu"; case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu"; case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs"; case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu"; case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu"; case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM"; case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM"; case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM"; case ARMISD::VDUP: return "ARMISD::VDUP"; case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE"; case ARMISD::VEXT: return "ARMISD::VEXT"; case ARMISD::VREV64: return "ARMISD::VREV64"; case ARMISD::VREV32: return "ARMISD::VREV32"; case ARMISD::VREV16: return "ARMISD::VREV16"; case ARMISD::VZIP: return "ARMISD::VZIP"; case ARMISD::VUZP: return "ARMISD::VUZP"; case ARMISD::VTRN: return "ARMISD::VTRN"; case ARMISD::VTBL1: return "ARMISD::VTBL1"; case ARMISD::VTBL2: return "ARMISD::VTBL2"; case ARMISD::VMULLs: return "ARMISD::VMULLs"; case ARMISD::VMULLu: return "ARMISD::VMULLu"; case ARMISD::UMLAL: return "ARMISD::UMLAL"; case ARMISD::SMLAL: return "ARMISD::SMLAL"; case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR"; case ARMISD::FMAX: return "ARMISD::FMAX"; case ARMISD::FMIN: return "ARMISD::FMIN"; case ARMISD::BFI: return "ARMISD::BFI"; case ARMISD::VORRIMM: return "ARMISD::VORRIMM"; case ARMISD::VBICIMM: return "ARMISD::VBICIMM"; case ARMISD::VBSL: return "ARMISD::VBSL"; case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP"; case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP"; case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP"; case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD"; case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD"; case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD"; case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD"; case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD"; case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD"; case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD"; case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD"; case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD"; case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD"; case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD"; case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD"; case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD"; case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD"; case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD"; case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD"; case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD"; case ARMISD::ATOMADD64_DAG: return "ATOMADD64_DAG"; case ARMISD::ATOMSUB64_DAG: return "ATOMSUB64_DAG"; case ARMISD::ATOMOR64_DAG: return "ATOMOR64_DAG"; case ARMISD::ATOMXOR64_DAG: return "ATOMXOR64_DAG"; case ARMISD::ATOMAND64_DAG: return "ATOMAND64_DAG"; case ARMISD::ATOMNAND64_DAG: return "ATOMNAND64_DAG"; case ARMISD::ATOMSWAP64_DAG: return "ATOMSWAP64_DAG"; case ARMISD::ATOMCMPXCHG64_DAG: return "ATOMCMPXCHG64_DAG"; case ARMISD::ATOMMIN64_DAG: return "ATOMMIN64_DAG"; case ARMISD::ATOMUMIN64_DAG: return "ATOMUMIN64_DAG"; case ARMISD::ATOMMAX64_DAG: return "ATOMMAX64_DAG"; case ARMISD::ATOMUMAX64_DAG: return "ATOMUMAX64_DAG"; } } EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { if (!VT.isVector()) return getPointerTy(); return VT.changeVectorElementTypeToInteger(); } /// getRegClassFor - Return the register class that should be used for the /// specified value type. const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const { // Map v4i64 to QQ registers but do not make the type legal. Similarly map // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to // load / store 4 to 8 consecutive D registers. if (Subtarget->hasNEON()) { if (VT == MVT::v4i64) return &ARM::QQPRRegClass; if (VT == MVT::v8i64) return &ARM::QQQQPRRegClass; } return TargetLowering::getRegClassFor(VT); } // Create a fast isel object. FastISel * ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const { return ARM::createFastISel(funcInfo, libInfo); } /// getMaximalGlobalOffset - Returns the maximal possible offset which can /// be used for loads / stores from the global. unsigned ARMTargetLowering::getMaximalGlobalOffset() const { return (Subtarget->isThumb1Only() ? 127 : 4095); } Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { unsigned NumVals = N->getNumValues(); if (!NumVals) return Sched::RegPressure; for (unsigned i = 0; i != NumVals; ++i) { EVT VT = N->getValueType(i); if (VT == MVT::Glue || VT == MVT::Other) continue; if (VT.isFloatingPoint() || VT.isVector()) return Sched::ILP; } if (!N->isMachineOpcode()) return Sched::RegPressure; // Load are scheduled for latency even if there instruction itinerary // is not available. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); if (MCID.getNumDefs() == 0) return Sched::RegPressure; if (!Itins->isEmpty() && Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2) return Sched::ILP; return Sched::RegPressure; } //===----------------------------------------------------------------------===// // Lowering Code //===----------------------------------------------------------------------===// /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown condition code!"); case ISD::SETNE: return ARMCC::NE; case ISD::SETEQ: return ARMCC::EQ; case ISD::SETGT: return ARMCC::GT; case ISD::SETGE: return ARMCC::GE; case ISD::SETLT: return ARMCC::LT; case ISD::SETLE: return ARMCC::LE; case ISD::SETUGT: return ARMCC::HI; case ISD::SETUGE: return ARMCC::HS; case ISD::SETULT: return ARMCC::LO; case ISD::SETULE: return ARMCC::LS; } } /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, ARMCC::CondCodes &CondCode2) { CondCode2 = ARMCC::AL; switch (CC) { default: llvm_unreachable("Unknown FP condition!"); case ISD::SETEQ: case ISD::SETOEQ: CondCode = ARMCC::EQ; break; case ISD::SETGT: case ISD::SETOGT: CondCode = ARMCC::GT; break; case ISD::SETGE: case ISD::SETOGE: CondCode = ARMCC::GE; break; case ISD::SETOLT: CondCode = ARMCC::MI; break; case ISD::SETOLE: CondCode = ARMCC::LS; break; case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; case ISD::SETO: CondCode = ARMCC::VC; break; case ISD::SETUO: CondCode = ARMCC::VS; break; case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; case ISD::SETUGT: CondCode = ARMCC::HI; break; case ISD::SETUGE: CondCode = ARMCC::PL; break; case ISD::SETLT: case ISD::SETULT: CondCode = ARMCC::LT; break; case ISD::SETLE: case ISD::SETULE: CondCode = ARMCC::LE; break; case ISD::SETNE: case ISD::SETUNE: CondCode = ARMCC::NE; break; } } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// #include "ARMGenCallingConv.inc" /// CCAssignFnForNode - Selects the correct CCAssignFn for a the /// given CallingConvention value. CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, bool Return, bool isVarArg) const { switch (CC) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::Fast: if (Subtarget->hasVFP2() && !isVarArg) { if (!Subtarget->isAAPCS_ABI()) return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); // For AAPCS ABI targets, just use VFP variant of the calling convention. return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); } // Fallthrough case CallingConv::C: { // Use target triple & subtarget features to do actual dispatch. if (!Subtarget->isAAPCS_ABI()) return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); else if (Subtarget->hasVFP2() && getTargetMachine().Options.FloatABIType == FloatABI::Hard && !isVarArg) return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); } case CallingConv::ARM_AAPCS_VFP: if (!isVarArg) return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); // Fallthrough case CallingConv::ARM_AAPCS: return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); case CallingConv::ARM_APCS: return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); case CallingConv::GHC: return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC); } } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. SDValue ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals, bool isThisReturn, SDValue ThisVal) const { // Assign locations to each value returned by this call. SmallVector RVLocs; ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext(), Call); CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv, /* Return*/ true, isVarArg)); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign VA = RVLocs[i]; // Pass 'this' value directly from the argument to return value, to avoid // reg unit interference if (i == 0 && isThisReturn) { assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 && "unexpected return calling convention register assignment"); InVals.push_back(ThisVal); continue; } SDValue Val; if (VA.needsCustom()) { // Handle f64 or half of a v2f64. SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Lo.getValue(1); InFlag = Lo.getValue(2); VA = RVLocs[++i]; // skip ahead to next loc SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Hi.getValue(1); InFlag = Hi.getValue(2); Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); if (VA.getLocVT() == MVT::v2f64) { SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, DAG.getConstant(0, MVT::i32)); VA = RVLocs[++i]; // skip ahead to next loc Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Lo.getValue(1); InFlag = Lo.getValue(2); VA = RVLocs[++i]; // skip ahead to next loc Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); Chain = Hi.getValue(1); InFlag = Hi.getValue(2); Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, DAG.getConstant(1, MVT::i32)); } } else { Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); } switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); break; } InVals.push_back(Val); } return Chain; } /// LowerMemOpCallTo - Store the argument to the stack. SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, SDLoc dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); return DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo::getStack(LocMemOffset), false, false, 0); } void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg, RegsToPassVector &RegsToPass, CCValAssign &VA, CCValAssign &NextVA, SDValue &StackPtr, SmallVectorImpl &MemOpChains, ISD::ArgFlagsTy Flags) const { SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Arg); RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd)); if (NextVA.isRegLoc()) RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1))); else { assert(NextVA.isMemLoc()); if (StackPtr.getNode() == 0) StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1), dl, DAG, NextVA, Flags)); } } /// LowerCall - Lowering a call into a callseq_start <- /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter /// nodes. SDValue ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool doesNotRet = CLI.DoesNotReturn; bool isVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); bool isThisReturn = false; bool isSibCall = false; // Disable tail calls if they're not supported. if (!EnableARMTailCalls && !Subtarget->supportsTailCall()) isTailCall = false; if (isTailCall) { // Check if it's really possible to do a tail call. isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG); // We don't support GuaranteedTailCallOpt for ARM, only automatically // detected sibcalls. if (isTailCall) { ++NumTailCalls; isSibCall = true; } } // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext(), Call); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv, /* Return*/ false, isVarArg)); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); // For tail calls, memory operands are available in our caller's stack. if (isSibCall) NumBytes = 0; // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass if (!isSibCall) Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), dl); SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); RegsToPassVector RegsToPass; SmallVector MemOpChains; // Walk the register/memloc assignments, inserting copies/loads. In the case // of tail call optimization, arguments are handled later. for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[realArgIdx]; ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; bool isByVal = Flags.isByVal(); // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); break; } // f64 and v2f64 might be passed in i32 pairs and must be split into pieces if (VA.needsCustom()) { if (VA.getLocVT() == MVT::v2f64) { SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(0, MVT::i32)); SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(1, MVT::i32)); PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); VA = ArgLocs[++i]; // skip ahead to next loc if (VA.isRegLoc()) { PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); } else { assert(VA.isMemLoc()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, dl, DAG, VA, Flags)); } } else { PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); } } else if (VA.isRegLoc()) { if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) { assert(VA.getLocVT() == MVT::i32 && "unexpected calling convention register assignment"); assert(!Ins.empty() && Ins[0].VT == MVT::i32 && "unexpected use of 'returned'"); isThisReturn = true; } RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else if (isByVal) { assert(VA.isMemLoc()); unsigned offset = 0; // True if this byval aggregate will be split between registers // and memory. unsigned ByValArgsCount = CCInfo.getInRegsParamsCount(); unsigned CurByValIdx = CCInfo.getInRegsParamsProceed(); if (CurByValIdx < ByValArgsCount) { unsigned RegBegin, RegEnd; CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); unsigned int i, j; for (i = 0, j = RegBegin; j < RegEnd; i++, j++) { SDValue Const = DAG.getConstant(4*i, MVT::i32); SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(), false, false, false, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(j, Load)); } // If parameter size outsides register area, "offset" value // helps us to calculate stack slot for remained part properly. offset = RegEnd - RegBegin; CCInfo.nextInRegsParam(); } if (Flags.getByValSize() > 4*offset) { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset); SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, StkPtrOff); SDValue SrcOffset = DAG.getIntPtrConstant(4*offset); SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset); SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, MVT::i32); SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32); SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode}; MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs, Ops, array_lengthof(Ops))); } } else if (!isSibCall) { assert(VA.isMemLoc()); MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, dl, DAG, VA, Flags)); } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; // Tail call byval lowering might overwrite argument registers so in case of // tail call optimization the copies to registers are lowered later. if (!isTailCall) for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // For tail calls lower the arguments to the 'real' stack slot. if (isTailCall) { // Force all the incoming stack arguments to be loaded from the stack // before any new outgoing arguments are stored to the stack, because the // outgoing stack slots may alias the incoming argument stack slots, and // the alias isn't otherwise explicit. This is slightly more conservative // than necessary, because it means that each store effectively depends // on every argument instead of just those arguments it would clobber. // Do not flag preceding copytoreg stuff together with the following stuff. InFlag = SDValue(); for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } InFlag = SDValue(); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. bool isDirect = false; bool isARMFunc = false; bool isLocalARMFunc = false; ARMFunctionInfo *AFI = MF.getInfo(); if (EnableARMLongCalls) { assert (getTargetMachine().getRelocationModel() == Reloc::Static && "long-calls with non-static relocation model!"); // Handle a global address or an external symbol. If it's not one of // those, the target's already in a register, so we don't need to do // anything extra. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { const GlobalValue *GV = G->getGlobal(); // Create a constant pool entry for the callee address unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0); // Get the address of the callee into a register SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); } else if (ExternalSymbolSDNode *S=dyn_cast(Callee)) { const char *Sym = S->getSymbol(); // Create a constant pool entry for the callee address unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, ARMPCLabelIndex, 0); // Get the address of the callee into a register SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); } } else if (GlobalAddressSDNode *G = dyn_cast(Callee)) { const GlobalValue *GV = G->getGlobal(); isDirect = true; bool isExt = GV->isDeclaration() || GV->isWeakForLinker(); bool isStub = (isExt && Subtarget->isTargetDarwin()) && getTargetMachine().getRelocationModel() != Reloc::Static; isARMFunc = !Subtarget->isThumb() || isStub; // ARM call to a local ARM function is predicable. isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking); // tBX takes a register source operand. if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4); SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); Callee = DAG.getNode(ARMISD::PIC_ADD, dl, getPointerTy(), Callee, PICLabel); } else { // On ELF targets for PIC code, direct calls should go through the PLT unsigned OpFlags = 0; if (Subtarget->isTargetELF() && getTargetMachine().getRelocationModel() == Reloc::PIC_) OpFlags = ARMII::MO_PLT; Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); } } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { isDirect = true; bool isStub = Subtarget->isTargetDarwin() && getTargetMachine().getRelocationModel() != Reloc::Static; isARMFunc = !Subtarget->isThumb() || isStub; // tBX takes a register source operand. const char *Sym = S->getSymbol(); if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, ARMPCLabelIndex, 4); SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); Callee = DAG.getNode(ARMISD::PIC_ADD, dl, getPointerTy(), Callee, PICLabel); } else { unsigned OpFlags = 0; // On ELF targets for PIC code, direct calls should go through the PLT if (Subtarget->isTargetELF() && getTargetMachine().getRelocationModel() == Reloc::PIC_) OpFlags = ARMII::MO_PLT; Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags); } } // FIXME: handle tail calls differently. unsigned CallOpc; bool HasMinSizeAttr = MF.getFunction()->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize); if (Subtarget->isThumb()) { if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) CallOpc = ARMISD::CALL_NOLINK; else CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; } else { if (!isDirect && !Subtarget->hasV5TOps()) CallOpc = ARMISD::CALL_NOLINK; else if (doesNotRet && isDirect && Subtarget->hasRAS() && // Emit regular call when code size is the priority !HasMinSizeAttr) // "mov lr, pc; b _foo" to avoid confusing the RSP CallOpc = ARMISD::CALL_NOLINK; else CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL; } std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. const uint32_t *Mask; const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); const ARMBaseRegisterInfo *ARI = static_cast(TRI); if (isThisReturn) { // For 'this' returns, use the R0-preserving mask if applicable Mask = ARI->getThisReturnPreservedMask(CallConv); if (!Mask) { // Set isThisReturn to false if the calling convention is not one that // allows 'returned' to be modeled in this way, so LowerCallResult does // not try to pass 'this' straight through isThisReturn = false; Mask = ARI->getCallPreservedMask(CallConv); } } else Mask = ARI->getCallPreservedMask(CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); if (isTailCall) return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); // Returns a chain and a flag for retval copy to use. Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag, dl); if (!Ins.empty()) InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals, isThisReturn, isThisReturn ? OutVals[0] : SDValue()); } /// HandleByVal - Every parameter *after* a byval parameter is passed /// on the stack. Remember the next parameter register to allocate, /// and then confiscate the rest of the parameter registers to insure /// this. void ARMTargetLowering::HandleByVal( CCState *State, unsigned &size, unsigned Align) const { unsigned reg = State->AllocateReg(GPRArgRegs, 4); assert((State->getCallOrPrologue() == Prologue || State->getCallOrPrologue() == Call) && "unhandled ParmContext"); // For in-prologue parameters handling, we also introduce stack offset // for byval registers: see CallingConvLower.cpp, CCState::HandleByVal. // This behaviour outsides AAPCS rules (5.5 Parameters Passing) of how // NSAA should be evaluted (NSAA means "next stacked argument address"). // So: NextStackOffset = NSAAOffset + SizeOfByValParamsStoredInRegs. // Then: NSAAOffset = NextStackOffset - SizeOfByValParamsStoredInRegs. unsigned NSAAOffset = State->getNextStackOffset(); if (State->getCallOrPrologue() != Call) { for (unsigned i = 0, e = State->getInRegsParamsCount(); i != e; ++i) { unsigned RB, RE; State->getInRegsParamInfo(i, RB, RE); assert(NSAAOffset >= (RE-RB)*4 && "Stack offset for byval regs doesn't introduced anymore?"); NSAAOffset -= (RE-RB)*4; } } if ((ARM::R0 <= reg) && (reg <= ARM::R3)) { if (Subtarget->isAAPCS_ABI() && Align > 4) { unsigned AlignInRegs = Align / 4; unsigned Waste = (ARM::R4 - reg) % AlignInRegs; for (unsigned i = 0; i < Waste; ++i) reg = State->AllocateReg(GPRArgRegs, 4); } if (reg != 0) { unsigned excess = 4 * (ARM::R4 - reg); // Special case when NSAA != SP and parameter size greater than size of // all remained GPR regs. In that case we can't split parameter, we must // send it to stack. We also must set NCRN to R4, so waste all // remained registers. if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) { while (State->AllocateReg(GPRArgRegs, 4)) ; return; } // First register for byval parameter is the first register that wasn't // allocated before this method call, so it would be "reg". // If parameter is small enough to be saved in range [reg, r4), then // the end (first after last) register would be reg + param-size-in-regs, // else parameter would be splitted between registers and stack, // end register would be r4 in this case. unsigned ByValRegBegin = reg; unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4; State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd); // Note, first register is allocated in the beginning of function already, // allocate remained amount of registers we need. for (unsigned i = reg+1; i != ByValRegEnd; ++i) State->AllocateReg(GPRArgRegs, 4); // At a call site, a byval parameter that is split between // registers and memory needs its size truncated here. In a // function prologue, such byval parameters are reassembled in // memory, and are not truncated. if (State->getCallOrPrologue() == Call) { // Make remained size equal to 0 in case, when // the whole structure may be stored into registers. if (size < excess) size = 0; else size -= excess; } } } } /// MatchingStackOffset - Return true if the given stack call argument is /// already available in the same position (relatively) of the caller's /// incoming argument stack. static bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, const TargetInstrInfo *TII) { unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; int FI = INT_MAX; if (Arg.getOpcode() == ISD::CopyFromReg) { unsigned VR = cast(Arg.getOperand(1))->getReg(); if (!TargetRegisterInfo::isVirtualRegister(VR)) return false; MachineInstr *Def = MRI->getVRegDef(VR); if (!Def) return false; if (!Flags.isByVal()) { if (!TII->isLoadFromStackSlot(Def, FI)) return false; } else { return false; } } else if (LoadSDNode *Ld = dyn_cast(Arg)) { if (Flags.isByVal()) // ByVal argument is passed in as a pointer but it's now being // dereferenced. e.g. // define @foo(%struct.X* %A) { // tail call @bar(%struct.X* byval %A) // } return false; SDValue Ptr = Ld->getBasePtr(); FrameIndexSDNode *FINode = dyn_cast(Ptr); if (!FINode) return false; FI = FINode->getIndex(); } else return false; assert(FI != INT_MAX); if (!MFI->isFixedObjectIndex(FI)) return false; return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG& DAG) const { const Function *CallerF = DAG.getMachineFunction().getFunction(); CallingConv::ID CallerCC = CallerF->getCallingConv(); bool CCMatch = CallerCC == CalleeCC; // Look for obvious safe cases to perform tail call optimization that do not // require ABI changes. This is what gcc calls sibcall. // Do not sibcall optimize vararg calls unless the call site is not passing // any arguments. if (isVarArg && !Outs.empty()) return false; // Also avoid sibcall optimization if either caller or callee uses struct // return semantics. if (isCalleeStructRet || isCallerStructRet) return false; // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo:: // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation // support in the assembler and linker to be used. This would need to be // fixed to fully support tail calls in Thumb1. // // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take // LR. This means if we need to reload LR, it takes an extra instructions, // which outweighs the value of the tail call; but here we don't know yet // whether LR is going to be used. Probably the right approach is to // generate the tail call here and turn it back into CALL/RET in // emitEpilogue if LR is used. // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, // but we need to make sure there are enough registers; the only valid // registers are the 4 used for parameters. We don't currently do this // case. if (Subtarget->isThumb1Only()) return false; // If the calling conventions do not match, then we'd better make sure the // results are returned in the same way as what the caller expects. if (!CCMatch) { SmallVector RVLocs1; ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), getTargetMachine(), RVLocs1, *DAG.getContext(), Call); CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg)); SmallVector RVLocs2; ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), getTargetMachine(), RVLocs2, *DAG.getContext(), Call); CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg)); if (RVLocs1.size() != RVLocs2.size()) return false; for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) return false; if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) return false; if (RVLocs1[i].isRegLoc()) { if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) return false; } else { if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) return false; } } } // If Caller's vararg or byval argument has been split between registers and // stack, do not perform tail call, since part of the argument is in caller's // local frame. const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction(). getInfo(); if (AFI_Caller->getArgRegsSaveSize()) return false; // If the callee takes no arguments then go on to check the results of the // call. if (!Outs.empty()) { // Check if stack adjustment is needed. For now, do not do this if any // argument is passed on the stack. SmallVector ArgLocs; ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext(), Call); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC, false, isVarArg)); if (CCInfo.getNextStackOffset()) { MachineFunction &MF = DAG.getMachineFunction(); // Check if the arguments are already laid out in the right way as // the caller's fixed stack objects. MachineFrameInfo *MFI = MF.getFrameInfo(); const MachineRegisterInfo *MRI = &MF.getRegInfo(); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; EVT RegVT = VA.getLocVT(); SDValue Arg = OutVals[realArgIdx]; ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; if (VA.getLocInfo() == CCValAssign::Indirect) return false; if (VA.needsCustom()) { // f64 and vector types are split into multiple registers or // register/stack-slot combinations. The types will not match // the registers; give up on memory f64 refs until we figure // out what to do about this. if (!VA.isRegLoc()) return false; if (!ArgLocs[++i].isRegLoc()) return false; if (RegVT == MVT::v2f64) { if (!ArgLocs[++i].isRegLoc()) return false; if (!ArgLocs[++i].isRegLoc()) return false; } } else if (!VA.isRegLoc()) { if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI, TII)) return false; } } } } return true; } bool ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context); return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true, isVarArg)); } SDValue ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc dl, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to a location. SmallVector RVLocs; // CCState - Info about the registers and stack slots. ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext(), Call); // Analyze outgoing return values. CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true, isVarArg)); SDValue Flag; SmallVector RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) // Copy the result values into the output registers. for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); ++i, ++realRVLocIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = OutVals[realRVLocIdx]; switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); break; } if (VA.needsCustom()) { if (VA.getLocVT() == MVT::v2f64) { // Extract the first half and return it in two registers. SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(0, MVT::i32)); SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), Half); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); VA = RVLocs[++i]; // skip ahead to next loc Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs.getValue(1), Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); VA = RVLocs[++i]; // skip ahead to next loc // Extract the 2nd half and fall through to handle it as an f64 value. Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, DAG.getConstant(1, MVT::i32)); } // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is // available. SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); VA = RVLocs[++i]; // skip ahead to next loc Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1), Flag); } else Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); // Guarantee that all emitted copies are // stuck together, avoiding something bad. Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // Update chain and glue. RetOps[0] = Chain; if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps.data(), RetOps.size()); } bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { if (N->getNumValues() != 1) return false; if (!N->hasNUsesOfValue(1, 0)) return false; SDValue TCChain = Chain; SDNode *Copy = *N->use_begin(); if (Copy->getOpcode() == ISD::CopyToReg) { // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else if (Copy->getOpcode() == ARMISD::VMOVRRD) { SDNode *VMov = Copy; // f64 returned in a pair of GPRs. SmallPtrSet Copies; for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); UI != UE; ++UI) { if (UI->getOpcode() != ISD::CopyToReg) return false; Copies.insert(*UI); } if (Copies.size() > 2) return false; for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); UI != UE; ++UI) { SDValue UseChain = UI->getOperand(0); if (Copies.count(UseChain.getNode())) // Second CopyToReg Copy = *UI; else // First CopyToReg TCChain = UseChain; } } else if (Copy->getOpcode() == ISD::BITCAST) { // f32 returned in a single GPR. if (!Copy->hasOneUse()) return false; Copy = *Copy->use_begin(); if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0)) return false; TCChain = Copy->getOperand(0); } else { return false; } bool HasRet = false; for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); UI != UE; ++UI) { if (UI->getOpcode() != ARMISD::RET_FLAG) return false; HasRet = true; } if (!HasRet) return false; Chain = TCChain; return true; } bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { if (!EnableARMTailCalls && !Subtarget->supportsTailCall()) return false; if (!CI->isTailCall()) return false; return !Subtarget->isThumb1Only(); } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOVi. static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { EVT PtrVT = Op.getValueType(); // FIXME there is no actual debug info here SDLoc dl(Op); ConstantPoolSDNode *CP = cast(Op); SDValue Res; if (CP->isMachineConstantPoolEntry()) Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlignment()); else Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment()); return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); } unsigned ARMTargetLowering::getJumpTableEncoding() const { return MachineJumpTableInfo::EK_Inline; } SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned ARMPCLabelIndex = 0; SDLoc DL(Op); EVT PtrVT = getPointerTy(); const BlockAddress *BA = cast(Op)->getBlockAddress(); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); SDValue CPAddr; if (RelocM == Reloc::Static) { CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4); } else { unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex, ARMCP::CPBlockAddress, PCAdj); CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); } CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); if (RelocM == Reloc::Static) return Result; SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); } // Lower ISD::GlobalTLSAddress using the "general dynamic" model SDValue ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const { SDLoc dl(GA); EVT PtrVT = getPointerTy(); unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true); SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, MachinePointerInfo::getConstantPool(), false, false, false, 0); SDValue Chain = Argument.getValue(1); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); // call __tls_get_addr. ArgListTy Args; ArgListEntry Entry; Entry.Node = Argument; Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); Args.push_back(Entry); // FIXME: is there useful debug info available here? TargetLowering::CallLoweringInfo CLI(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()), false, false, false, false, 0, CallingConv::C, /*isTailCall=*/false, /*doesNotRet=*/false, /*isReturnValueUsed=*/true, DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl); std::pair CallResult = LowerCallTo(CLI); return CallResult.first; } // Lower ISD::GlobalTLSAddress using the "initial exec" or // "local exec" model. SDValue ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, SelectionDAG &DAG, TLSModel::Model model) const { const GlobalValue *GV = GA->getGlobal(); SDLoc dl(GA); SDValue Offset; SDValue Chain = DAG.getEntryNode(); EVT PtrVT = getPointerTy(); // Get the Thread Pointer SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); if (model == TLSModel::InitialExec) { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); // Initial exec model. unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true); Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, MachinePointerInfo::getConstantPool(), false, false, false, 0); Chain = Offset.getValue(1); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, MachinePointerInfo::getConstantPool(), false, false, false, 0); } else { // local exec model assert(model == TLSModel::LocalExec); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF); Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, MachinePointerInfo::getConstantPool(), false, false, false, 0); } // The address of the thread local variable is the add of the thread // pointer with the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); } SDValue ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { // TODO: implement the "local dynamic" model assert(Subtarget->isTargetELF() && "TLS not implemented for non-ELF targets"); GlobalAddressSDNode *GA = cast(Op); TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal()); switch (model) { case TLSModel::GeneralDynamic: case TLSModel::LocalDynamic: return LowerToTLSGeneralDynamicModel(GA, DAG); case TLSModel::InitialExec: case TLSModel::LocalExec: return LowerToTLSExecModels(GA, DAG, model); } llvm_unreachable("bogus TLS model"); } SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(); SDLoc dl(Op); const GlobalValue *GV = cast(Op)->getGlobal(); if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); SDValue Chain = Result.getValue(1); SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT); if (!UseGOTOFF) Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(), false, false, false, 0); return Result; } // If we have T2 ops, we can materialize the address directly via movt/movw // pair. This is always cheaper. if (Subtarget->useMovt()) { ++NumMovwMovt; // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into two nodes. return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, DAG.getTargetGlobalAddress(GV, dl, PtrVT)); } else { SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); } } SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(); SDLoc dl(Op); const GlobalValue *GV = cast(Op)->getGlobal(); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); // FIXME: Enable this for static codegen when tool issues are fixed. Also // update ARMFastISel::ARMMaterializeGV. if (Subtarget->useMovt() && RelocM != Reloc::Static) { ++NumMovwMovt; // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into two nodes. if (RelocM == Reloc::Static) return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, DAG.getTargetGlobalAddress(GV, dl, PtrVT)); unsigned Wrapper = (RelocM == Reloc::PIC_) ? ARMISD::WrapperPIC : ARMISD::WrapperDYN; SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, DAG.getTargetGlobalAddress(GV, dl, PtrVT)); if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(), false, false, false, 0); return Result; } unsigned ARMPCLabelIndex = 0; SDValue CPAddr; if (RelocM == Reloc::Static) { CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); } else { ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo(); ARMPCLabelIndex = AFI->createPICLabelUId(); unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj); CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); } CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); SDValue Chain = Result.getValue(1); if (RelocM == Reloc::PIC_) { SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); } if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(), false, false, false, 0); return Result; } SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetELF() && "GLOBAL OFFSET TABLE not implemented for non-ELF targets"); MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); EVT PtrVT = getPointerTy(); SDLoc dl(Op); unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_", ARMPCLabelIndex, PCAdj); SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); } SDValue ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Val = DAG.getConstant(0, MVT::i32); return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1), Val); } SDValue ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), Op.getOperand(1), DAG.getConstant(0, MVT::i32)); } SDValue ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const { unsigned IntNo = cast(Op.getOperand(0))->getZExtValue(); SDLoc dl(Op); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::arm_thread_pointer: { EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); } case Intrinsic::eh_sjlj_lsda: { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); EVT PtrVT = getPointerTy(); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); SDValue CPAddr; unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8); ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex, ARMCP::CPLSDA, PCAdj); CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, MachinePointerInfo::getConstantPool(), false, false, false, 0); if (RelocM == Reloc::PIC_) { SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); } return Result; } case Intrinsic::arm_neon_vmulls: case Intrinsic::arm_neon_vmullu: { unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls) ? ARMISD::VMULLs : ARMISD::VMULLu; return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } } } static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { // FIXME: handle "fence singlethread" more efficiently. SDLoc dl(Op); if (!Subtarget->hasDataBarrier()) { // Some ARMv6 cpus can support data barriers with an mcr instruction. // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get // here. assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && "Unexpected ISD::MEMBARRIER encountered. Should be libcall!"); return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), DAG.getConstant(0, MVT::i32)); } ConstantSDNode *OrdN = cast(Op.getOperand(1)); AtomicOrdering Ord = static_cast(OrdN->getZExtValue()); unsigned Domain = ARM_MB::ISH; if (Subtarget->isSwift() && Ord == Release) { // Swift happens to implement ISHST barriers in a way that's compatible with // Release semantics but weaker than ISH so we'd be fools not to use // it. Beware: other processors probably don't! Domain = ARM_MB::ISHST; } return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0), DAG.getConstant(Domain, MVT::i32)); } static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { // ARM pre v5TE and Thumb1 does not have preload instructions. if (!(Subtarget->isThumb2() || (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps()))) // Just preserve the chain. return Op.getOperand(0); SDLoc dl(Op); unsigned isRead = ~cast(Op.getOperand(2))->getZExtValue() & 1; if (!isRead && (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension())) // ARMv7 with MP extension has PLDW. return Op.getOperand(0); unsigned isData = cast(Op.getOperand(4))->getZExtValue(); if (Subtarget->isThumb()) { // Invert the bits. isRead = ~isRead & 1; isData = ~isData & 1; } return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0), Op.getOperand(1), DAG.getConstant(isRead, MVT::i32), DAG.getConstant(isData, MVT::i32)); } static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *FuncInfo = MF.getInfo(); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDLoc dl(Op); EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, SDValue &Root, SelectionDAG &DAG, SDLoc dl) const { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); const TargetRegisterClass *RC; if (AFI->isThumb1OnlyFunction()) RC = &ARM::tGPRRegClass; else RC = &ARM::GPRRegClass; // Transform the arguments stored in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); SDValue ArgValue2; if (NextVA.isMemLoc()) { MachineFrameInfo *MFI = MF.getFrameInfo(); int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true); // Create load node to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); } else { Reg = MF.addLiveIn(NextVA.getLocReg(), RC); ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); } return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); } void ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF, unsigned InRegsParamRecordIdx, unsigned ArgSize, unsigned &ArgRegsSize, unsigned &ArgRegsSaveSize) const { unsigned NumGPRs; if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { unsigned RBegin, REnd; CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); NumGPRs = REnd - RBegin; } else { unsigned int firstUnalloced; firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0])); NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0; } unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment(); ArgRegsSize = NumGPRs * 4; // If parameter is split between stack and GPRs... if (NumGPRs && Align == 8 && (ArgRegsSize < ArgSize || InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) { // Add padding for part of param recovered from GPRs, so // its last byte must be at address K*8 - 1. // We need to do it, since remained (stack) part of parameter has // stack alignment, and we need to "attach" "GPRs head" without gaps // to it: // Stack: // |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes... // [ [padding] [GPRs head] ] [ Tail passed via stack .... // ARMFunctionInfo *AFI = MF.getInfo(); unsigned Padding = ((ArgRegsSize + AFI->getArgRegsSaveSize() + Align - 1) & ~(Align-1)) - (ArgRegsSize + AFI->getArgRegsSaveSize()); ArgRegsSaveSize = ArgRegsSize + Padding; } else // We don't need to extend regs save size for byval parameters if they // are passed via GPRs only. ArgRegsSaveSize = ArgRegsSize; } // The remaining GPRs hold either the beginning of variable-argument // data, or the beginning of an aggregate passed by value (usually // byval). Either way, we allocate stack slots adjacent to the data // provided by our caller, and store the unallocated registers there. // If this is a variadic function, the va_list pointer will begin with // these values; otherwise, this reassembles a (byval) structure that // was split between registers and memory. // Return: The frame index registers were stored into. int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, const Value *OrigArg, unsigned InRegsParamRecordIdx, unsigned OffsetFromOrigArg, unsigned ArgOffset, unsigned ArgSize, bool ForceMutable) const { // Currently, two use-cases possible: // Case #1. Non var-args function, and we meet first byval parameter. // Setup first unallocated register as first byval register; // eat all remained registers // (these two actions are performed by HandleByVal method). // Then, here, we initialize stack frame with // "store-reg" instructions. // Case #2. Var-args function, that doesn't contain byval parameters. // The same: eat all remained unallocated registers, // initialize stack frame. MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned firstRegToSaveIndex, lastRegToSaveIndex; unsigned RBegin, REnd; if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); firstRegToSaveIndex = RBegin - ARM::R0; lastRegToSaveIndex = REnd - ARM::R0; } else { firstRegToSaveIndex = CCInfo.getFirstUnallocated (GPRArgRegs, array_lengthof(GPRArgRegs)); lastRegToSaveIndex = 4; } unsigned ArgRegsSize, ArgRegsSaveSize; computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize, ArgRegsSize, ArgRegsSaveSize); // Store any by-val regs to their spots on the stack so that they may be // loaded by deferencing the result of formal parameter pointer or va_next. // Note: once stack area for byval/varargs registers // was initialized, it can't be initialized again. if (ArgRegsSaveSize) { unsigned Padding = ArgRegsSaveSize - ArgRegsSize; if (Padding) { assert(AFI->getStoredByValParamsPadding() == 0 && "The only parameter may be padded."); AFI->setStoredByValParamsPadding(Padding); } int FrameIndex = MFI->CreateFixedObject( ArgRegsSaveSize, Padding + ArgOffset, false); SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy()); SmallVector MemOps; for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex; ++firstRegToSaveIndex, ++i) { const TargetRegisterClass *RC; if (AFI->isThumb1OnlyFunction()) RC = &ARM::tGPRRegClass; else RC = &ARM::GPRRegClass; unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i), false, false, 0); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, DAG.getConstant(4, getPointerTy())); } AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize()); if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], MemOps.size()); return FrameIndex; } else // This will point to the next argument passed via stack. return MFI->CreateFixedObject( 4, AFI->getStoredByValParamsPadding() + ArgOffset, !ForceMutable); } // Setup stack frame, the va_list pointer will start from. void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, unsigned ArgOffset, bool ForceMutable) const { MachineFunction &MF = DAG.getMachineFunction(); ARMFunctionInfo *AFI = MF.getInfo(); // Try to store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing // the result of va_next. // If there is no regs to be stored, just point address after last // argument passed via stack. int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, 0, CCInfo.getInRegsParamsCount(), 0, ArgOffset, 0, ForceMutable); AFI->setVarArgsFrameIndex(FrameIndex); } SDValue ARMTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue); CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv, /* Return*/ false, isVarArg)); SmallVector ArgValues; int lastInsIndex = -1; SDValue ArgValue; Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); unsigned CurArgIdx = 0; // Initially ArgRegsSaveSize is zero. // Then we increase this value each time we meet byval parameter. // We also increase this value in case of varargs function. AFI->setArgRegsSaveSize(0); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx); CurArgIdx = Ins[VA.getValNo()].OrigArgIndex; // Arguments stored in registers. if (VA.isRegLoc()) { EVT RegVT = VA.getLocVT(); if (VA.needsCustom()) { // f64 and vector types are split up into multiple registers or // combinations of registers and stack slots. if (VA.getLocVT() == MVT::v2f64) { SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); VA = ArgLocs[++i]; // skip ahead to next loc SDValue ArgValue2; if (VA.isMemLoc()) { int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); } else { ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); } ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue, ArgValue1, DAG.getIntPtrConstant(0)); ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue, ArgValue2, DAG.getIntPtrConstant(1)); } else ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); } else { const TargetRegisterClass *RC; if (RegVT == MVT::f32) RC = &ARM::SPRRegClass; else if (RegVT == MVT::f64) RC = &ARM::DPRRegClass; else if (RegVT == MVT::v2f64) RC = &ARM::QPRRegClass; else if (RegVT == MVT::i32) RC = AFI->isThumb1OnlyFunction() ? (const TargetRegisterClass*)&ARM::tGPRRegClass : (const TargetRegisterClass*)&ARM::GPRRegClass; else llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); // Transform the arguments in physical registers into virtual ones. unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); } // If this is an 8 or 16-bit value, it is really passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); break; case CCValAssign::SExt: ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); break; case CCValAssign::ZExt: ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); break; } InVals.push_back(ArgValue); } else { // VA.isRegLoc() // sanity check assert(VA.isMemLoc()); assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); int index = ArgLocs[i].getValNo(); // Some Ins[] entries become multiple ArgLoc[] entries. // Process them only once. if (index != lastInsIndex) { ISD::ArgFlagsTy Flags = Ins[index].Flags; // FIXME: For now, all byval parameter objects are marked mutable. // This can be changed with more analysis. // In case of tail call optimization mark all arguments mutable. // Since they could be overwritten by lowering of arguments in case of // a tail call. if (Flags.isByVal()) { unsigned CurByValIndex = CCInfo.getInRegsParamsProceed(); int FrameIndex = StoreByValRegs( CCInfo, DAG, dl, Chain, CurOrigArg, CurByValIndex, Ins[VA.getValNo()].PartOffset, VA.getLocMemOffset(), Flags.getByValSize(), true /*force mutable frames*/); InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy())); CCInfo.nextInRegsParam(); } else { unsigned FIOffset = VA.getLocMemOffset() + AFI->getStoredByValParamsPadding(); int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, FIOffset, true); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0)); } lastInsIndex = index; } } } // varargs if (isVarArg) VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset()); return Chain; } /// isFloatingPointZero - Return true if this is +0.0. static bool isFloatingPointZero(SDValue Op) { if (ConstantFPSDNode *CFP = dyn_cast(Op)) return CFP->getValueAPF().isPosZero(); else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { // Maybe this has already been legalized into the constant pool? if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { SDValue WrapperOp = Op.getOperand(1).getOperand(0); if (ConstantPoolSDNode *CP = dyn_cast(WrapperOp)) if (const ConstantFP *CFP = dyn_cast(CP->getConstVal())) return CFP->getValueAPF().isPosZero(); } } return false; } /// Returns appropriate ARM CMP (cmp) and corresponding condition code for /// the given operands. SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &ARMcc, SelectionDAG &DAG, SDLoc dl) const { if (ConstantSDNode *RHSC = dyn_cast(RHS.getNode())) { unsigned C = RHSC->getZExtValue(); if (!isLegalICmpImmediate(C)) { // Constant does not fit, try adjusting it by one? switch (CC) { default: break; case ISD::SETLT: case ISD::SETGE: if (C != 0x80000000 && isLegalICmpImmediate(C-1)) { CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; RHS = DAG.getConstant(C-1, MVT::i32); } break; case ISD::SETULT: case ISD::SETUGE: if (C != 0 && isLegalICmpImmediate(C-1)) { CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; RHS = DAG.getConstant(C-1, MVT::i32); } break; case ISD::SETLE: case ISD::SETGT: if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) { CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; RHS = DAG.getConstant(C+1, MVT::i32); } break; case ISD::SETULE: case ISD::SETUGT: if (C != 0xffffffff && isLegalICmpImmediate(C+1)) { CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; RHS = DAG.getConstant(C+1, MVT::i32); } break; } } } ARMCC::CondCodes CondCode = IntCCToARMCC(CC); ARMISD::NodeType CompareType; switch (CondCode) { default: CompareType = ARMISD::CMP; break; case ARMCC::EQ: case ARMCC::NE: // Uses only Z Flag CompareType = ARMISD::CMPZ; break; } ARMcc = DAG.getConstant(CondCode, MVT::i32); return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS); } /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, SDLoc dl) const { SDValue Cmp; if (!isFloatingPointZero(RHS)) Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS); else Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS); return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp); } /// duplicateCmp - Glue values can have only one use, so this function /// duplicates a comparison node. SDValue ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const { unsigned Opc = Cmp.getOpcode(); SDLoc DL(Cmp); if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ) return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation"); Cmp = Cmp.getOperand(0); Opc = Cmp.getOpcode(); if (Opc == ARMISD::CMPFP) Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); else { assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"); Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0)); } return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp); } SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { SDValue Cond = Op.getOperand(0); SDValue SelectTrue = Op.getOperand(1); SDValue SelectFalse = Op.getOperand(2); SDLoc dl(Op); // Convert: // // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond) // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond) // if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) { const ConstantSDNode *CMOVTrue = dyn_cast(Cond.getOperand(0)); const ConstantSDNode *CMOVFalse = dyn_cast(Cond.getOperand(1)); if (CMOVTrue && CMOVFalse) { unsigned CMOVTrueVal = CMOVTrue->getZExtValue(); unsigned CMOVFalseVal = CMOVFalse->getZExtValue(); SDValue True; SDValue False; if (CMOVTrueVal == 1 && CMOVFalseVal == 0) { True = SelectTrue; False = SelectFalse; } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) { True = SelectFalse; False = SelectTrue; } if (True.getNode() && False.getNode()) { EVT VT = Op.getValueType(); SDValue ARMcc = Cond.getOperand(2); SDValue CCR = Cond.getOperand(3); SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG); assert(True.getValueType() == VT); return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp); } } } // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the // undefined bits before doing a full-word comparison with zero. Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond, DAG.getConstant(1, Cond.getValueType())); return DAG.getSelectCC(dl, Cond, DAG.getConstant(0, Cond.getValueType()), SelectTrue, SelectFalse, ISD::SETNE); } SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDValue TrueVal = Op.getOperand(2); SDValue FalseVal = Op.getOperand(3); SDLoc dl(Op); if (LHS.getValueType() == MVT::i32) { SDValue ARMcc; SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp); } ARMCC::CondCodes CondCode, CondCode2; FPCCToARMCC(CC, CondCode, CondCode2); SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32); SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp); if (CondCode2 != ARMCC::AL) { SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32); // FIXME: Needs another CMP because flag can have but one use. SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); Result = DAG.getNode(ARMISD::CMOV, dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2); } return Result; } /// canChangeToInt - Given the fp compare operand, return true if it is suitable /// to morph to an integer compare sequence. static bool canChangeToInt(SDValue Op, bool &SeenZero, const ARMSubtarget *Subtarget) { SDNode *N = Op.getNode(); if (!N->hasOneUse()) // Otherwise it requires moving the value from fp to integer registers. return false; if (!N->getNumValues()) return false; EVT VT = Op.getValueType(); if (VT != MVT::f32 && !Subtarget->isFPBrccSlow()) // f32 case is generally profitable. f64 case only makes sense when vcmpe + // vmrs are very slow, e.g. cortex-a8. return false; if (isFloatingPointZero(Op)) { SeenZero = true; return true; } return ISD::isNormalLoad(N); } static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) { if (isFloatingPointZero(Op)) return DAG.getConstant(0, MVT::i32); if (LoadSDNode *Ld = dyn_cast(Op)) return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); llvm_unreachable("Unknown VFP cmp argument!"); } static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, SDValue &RetVal1, SDValue &RetVal2) { if (isFloatingPointZero(Op)) { RetVal1 = DAG.getConstant(0, MVT::i32); RetVal2 = DAG.getConstant(0, MVT::i32); return; } if (LoadSDNode *Ld = dyn_cast(Op)) { SDValue Ptr = Ld->getBasePtr(); RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ptr, Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), Ld->getAlignment()); EVT PtrType = Ptr.getValueType(); unsigned NewAlign = MinAlign(Ld->getAlignment(), 4); SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op), PtrType, Ptr, DAG.getConstant(4, PtrType)); RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), NewPtr, Ld->getPointerInfo().getWithOffset(4), Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), NewAlign); return; } llvm_unreachable("Unknown VFP cmp argument!"); } /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some /// f32 and even f64 comparisons to integer ones. SDValue ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); bool LHSSeenZero = false; bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget); bool RHSSeenZero = false; bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget); if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) { // If unsafe fp math optimization is enabled and there are no other uses of // the CMP operands, and the condition code is EQ or NE, we can optimize it // to an integer comparison. if (CC == ISD::SETOEQ) CC = ISD::SETEQ; else if (CC == ISD::SETUNE) CC = ISD::SETNE; SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32); SDValue ARMcc; if (LHS.getValueType() == MVT::f32) { LHS = DAG.getNode(ISD::AND, dl, MVT::i32, bitcastf32Toi32(LHS, DAG), Mask); RHS = DAG.getNode(ISD::AND, dl, MVT::i32, bitcastf32Toi32(RHS, DAG), Mask); SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, Cmp); } SDValue LHS1, LHS2; SDValue RHS1, RHS2; expandf64Toi32(LHS, DAG, LHS1, LHS2); expandf64Toi32(RHS, DAG, RHS1, RHS2); LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask); RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask); ARMCC::CondCodes CondCode = IntCCToARMCC(CC); ARMcc = DAG.getConstant(CondCode, MVT::i32); SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest }; return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7); } return SDValue(); } SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); if (LHS.getValueType() == MVT::i32) { SDValue ARMcc; SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR, Cmp); } assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); if (getTargetMachine().Options.UnsafeFPMath && (CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETNE || CC == ISD::SETUNE)) { SDValue Result = OptimizeVFPBrcond(Op, DAG); if (Result.getNode()) return Result; } ARMCC::CondCodes CondCode, CondCode2; FPCCToARMCC(CC, CondCode, CondCode2); SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32); SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp }; SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); if (CondCode2 != ARMCC::AL) { ARMcc = DAG.getConstant(CondCode2, MVT::i32); SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) }; Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); } return Res; } SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Table = Op.getOperand(1); SDValue Index = Op.getOperand(2); SDLoc dl(Op); EVT PTy = getPointerTy(); JumpTableSDNode *JT = cast(Table); ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo(); SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId); Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy)); SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); if (Subtarget->isThumb2()) { // Thumb2 uses a two-level jump. That is, it jumps into the jump table // which does another jump to the destination. This also makes it easier // to translate it to TBB / TBH later. // FIXME: This might not work if the function is extremely large. return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, Addr, Op.getOperand(2), JTI, UId); } if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, MachinePointerInfo::getJumpTable(), false, false, false, 0); Chain = Addr.getValue(1); Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); } else { Addr = DAG.getLoad(PTy, dl, Chain, Addr, MachinePointerInfo::getJumpTable(), false, false, false, 0); Chain = Addr.getValue(1); return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); } } static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); SDLoc dl(Op); if (Op.getValueType().getVectorElementType() == MVT::i32) { if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32) return Op; return DAG.UnrollVectorOp(Op.getNode()); } assert(Op.getOperand(0).getValueType() == MVT::v4f32 && "Invalid type for custom lowering!"); if (VT != MVT::v4i16) return DAG.UnrollVectorOp(Op.getNode()); Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Op); } static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); if (VT.isVector()) return LowerVectorFP_TO_INT(Op, DAG); SDLoc dl(Op); unsigned Opc; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid opcode!"); case ISD::FP_TO_SINT: Opc = ARMISD::FTOSI; break; case ISD::FP_TO_UINT: Opc = ARMISD::FTOUI; break; } Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0)); return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); } static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); SDLoc dl(Op); if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) { if (VT.getVectorElementType() == MVT::f32) return Op; return DAG.UnrollVectorOp(Op.getNode()); } assert(Op.getOperand(0).getValueType() == MVT::v4i16 && "Invalid type for custom lowering!"); if (VT != MVT::v4f32) return DAG.UnrollVectorOp(Op.getNode()); unsigned CastOpc; unsigned Opc; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid opcode!"); case ISD::SINT_TO_FP: CastOpc = ISD::SIGN_EXTEND; Opc = ISD::SINT_TO_FP; break; case ISD::UINT_TO_FP: CastOpc = ISD::ZERO_EXTEND; Opc = ISD::UINT_TO_FP; break; } Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0)); return DAG.getNode(Opc, dl, VT, Op); } static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); if (VT.isVector()) return LowerVectorINT_TO_FP(Op, DAG); SDLoc dl(Op); unsigned Opc; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid opcode!"); case ISD::SINT_TO_FP: Opc = ARMISD::SITOF; break; case ISD::UINT_TO_FP: Opc = ARMISD::UITOF; break; } Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0)); return DAG.getNode(Opc, dl, VT, Op); } SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { // Implement fcopysign with a fabs and a conditional fneg. SDValue Tmp0 = Op.getOperand(0); SDValue Tmp1 = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); EVT SrcVT = Tmp1.getValueType(); bool InGPR = Tmp0.getOpcode() == ISD::BITCAST || Tmp0.getOpcode() == ARMISD::VMOVDRR; bool UseNEON = !InGPR && Subtarget->hasNEON(); if (UseNEON) { // Use VBSL to copy the sign bit. unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80); SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32, DAG.getTargetConstant(EncodedVal, MVT::i32)); EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64; if (VT == MVT::f64) Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT, DAG.getNode(ISD::BITCAST, dl, OpVT, Mask), DAG.getConstant(32, MVT::i32)); else /*if (VT == MVT::f32)*/ Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0); if (SrcVT == MVT::f32) { Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1); if (VT == MVT::f64) Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT, DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1), DAG.getConstant(32, MVT::i32)); } else if (VT == MVT::f32) Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64, DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1), DAG.getConstant(32, MVT::i32)); Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0); Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1); SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff), MVT::i32); AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes); SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask, DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes)); SDValue Res = DAG.getNode(ISD::OR, dl, OpVT, DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask), DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot)); if (VT == MVT::f32) { Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res); Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res, DAG.getConstant(0, MVT::i32)); } else { Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res); } return Res; } // Bitcast operand 1 to i32. if (SrcVT == MVT::f64) Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), &Tmp1, 1).getValue(1); Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1); // Or in the signbit with integer operations. SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32); SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32); Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1); if (VT == MVT::f32) { Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1)); } // f64: Or the high part with signbit and then combine two parts. Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), &Tmp0, 1); SDValue Lo = Tmp0.getValue(0); SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2); Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1); return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); } SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MFI->setReturnAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(4, MVT::i32); return DAG.getLoad(VT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), MachinePointerInfo(), false, false, false, 0); } // Return LR, which contains the return address. Mark it an implicit live-in. unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); } SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc dl(Op); // FIXME probably not meaningful unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin()) ? ARM::R7 : ARM::R11; SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo(), false, false, false, 0); return FrameAddr; } /// Custom Expand long vector extensions, where size(DestVec) > 2*size(SrcVec), /// and size(DestVec) > 128-bits. /// This is achieved by doing the one extension from the SrcVec, splitting the /// result, extending these parts, and then concatenating these into the /// destination. static SDValue ExpandVectorExtension(SDNode *N, SelectionDAG &DAG) { SDValue Op = N->getOperand(0); EVT SrcVT = Op.getValueType(); EVT DestVT = N->getValueType(0); assert(DestVT.getSizeInBits() > 128 && "Custom sext/zext expansion needs >128-bit vector."); // If this is a normal length extension, use the default expansion. if (SrcVT.getSizeInBits()*4 != DestVT.getSizeInBits() && SrcVT.getSizeInBits()*8 != DestVT.getSizeInBits()) return SDValue(); SDLoc dl(N); unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits(); unsigned DestEltSize = DestVT.getVectorElementType().getSizeInBits(); unsigned NumElts = SrcVT.getVectorNumElements(); LLVMContext &Ctx = *DAG.getContext(); SDValue Mid, SplitLo, SplitHi, ExtLo, ExtHi; EVT MidVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2), NumElts); EVT SplitVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2), NumElts/2); EVT ExtVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, DestEltSize), NumElts/2); Mid = DAG.getNode(N->getOpcode(), dl, MidVT, Op); SplitLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid, DAG.getIntPtrConstant(0)); SplitHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid, DAG.getIntPtrConstant(NumElts/2)); ExtLo = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitLo); ExtHi = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitHi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, ExtLo, ExtHi); } /// ExpandBITCAST - If the target supports VFP, this function is called to /// expand a bit convert where either the source or destination type is i64 to /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 /// operand type is illegal (e.g., v2f32 for a target that doesn't support /// vectors), since the legalizer won't know what to do with that. static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc dl(N); SDValue Op = N->getOperand(0); // This function is only supposed to be called for i64 types, either as the // source or destination of the bit convert. EVT SrcVT = Op.getValueType(); EVT DstVT = N->getValueType(0); assert((SrcVT == MVT::i64 || DstVT == MVT::i64) && "ExpandBITCAST called for non-i64 type"); // Turn i64->f64 into VMOVDRR. if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, DAG.getConstant(0, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, DAG.getConstant(1, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, DstVT, DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); } // Turn f64->i64 into VMOVRRD. if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), &Op, 1); // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); } return SDValue(); } /// getZeroVector - Returns a vector of specified type with all zero elements. /// Zero vectors are used to represent vector negation and in those cases /// will be implemented with the NEON VNEG instruction. However, VNEG does /// not support i64 elements, so sometimes the zero vectors will need to be /// explicitly constructed. Regardless, use a canonical VMOV to create the /// zero vector. static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) { assert(VT.isVector() && "Expected a vector type"); // The canonical modified immediate encoding of a zero vector is....0! SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32); EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal); return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); } /// LowerShiftRightParts - Lower SRA_PARTS, which returns two /// i32 values and take a 2 x i32 value to shift plus a shift amount. SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue ARMcc; unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, MVT::i32), ShAmt); SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, DAG.getConstant(VTBits, MVT::i32)); SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, ARMcc, DAG, dl); SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, 2, dl); } /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two /// i32 values and take a 2 x i32 value to shift plus a shift amount. SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); SDValue ARMcc; assert(Op.getOpcode() == ISD::SHL_PARTS); SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, MVT::i32), ShAmt); SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, DAG.getConstant(VTBits, MVT::i32)); SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, ARMcc, DAG, dl); SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc, CCR, Cmp); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, 2, dl); } SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const { // The rounding mode is in bits 23:22 of the FPSCR. // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) // so that the shift + and get folded into a bitfield extract. SDLoc dl(Op); SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32, DAG.getConstant(Intrinsic::arm_get_fpscr, MVT::i32)); SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR, DAG.getConstant(1U << 22, MVT::i32)); SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, DAG.getConstant(22, MVT::i32)); return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, DAG.getConstant(3, MVT::i32)); } static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); SDLoc dl(N); if (!ST->hasV6T2Ops()) return SDValue(); SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0)); return DAG.getNode(ISD::CTLZ, dl, VT, rbit); } /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count /// for each 16-bit element from operand, repeated. The basic idea is to /// leverage vcnt to get the 8-bit counts, gather and add the results. /// /// Trace for v4i16: /// input = [v0 v1 v2 v3 ] (vi 16-bit element) /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element) /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi) /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6] /// [b0 b1 b2 b3 b4 b5 b6 b7] /// +[b1 b0 b3 b2 b5 b4 b7 b6] /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0, /// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits) static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDLoc DL(N); EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0)); SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0); SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1); SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2); return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3); } /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the /// bit-count for each 16-bit element from the operand. We need slightly /// different sequencing for v4i16 and v8i16 to stay within NEON's available /// 64/128-bit registers. /// /// Trace for v4i16: /// input = [v0 v1 v2 v3 ] (vi 16-bit element) /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi) /// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ] /// v4i16:Extracted = [k0 k1 k2 k3 ] static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDLoc DL(N); SDValue BitCounts = getCTPOP16BitCounts(N, DAG); if (VT.is64BitVector()) { SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended, DAG.getIntPtrConstant(0)); } else { SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, BitCounts, DAG.getIntPtrConstant(0)); return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted); } } /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the /// bit-count for each 32-bit element from the operand. The idea here is /// to split the vector into 16-bit elements, leverage the 16-bit count /// routine, and then combine the results. /// /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged): /// input = [v0 v1 ] (vi: 32-bit elements) /// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1]) /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi) /// vrev: N0 = [k1 k0 k3 k2 ] /// [k0 k1 k2 k3 ] /// N1 =+[k1 k0 k3 k2 ] /// [k0 k2 k1 k3 ] /// N2 =+[k1 k3 k0 k2 ] /// [k0 k2 k1 k3 ] /// Extended =+[k1 k3 k0 k2 ] /// [k0 k2 ] /// Extracted=+[k1 k3 ] /// static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDLoc DL(N); EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16; SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0)); SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG); SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16); SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0); SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1); if (VT.is64BitVector()) { SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended, DAG.getIntPtrConstant(0)); } else { SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2, DAG.getIntPtrConstant(0)); return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted); } } static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); assert(ST->hasNEON() && "Custom ctpop lowering requires NEON."); assert((VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering"); if (VT.getVectorElementType() == MVT::i32) return lowerCTPOP32BitElements(N, DAG); else return lowerCTPOP16BitElements(N, DAG); } static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); SDLoc dl(N); if (!VT.isVector()) return SDValue(); // Lower vector shifts on NEON to use VSHL. assert(ST->hasNEON() && "unexpected vector shift"); // Left shifts translate directly to the vshiftu intrinsic. if (N->getOpcode() == ISD::SHL) return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32), N->getOperand(0), N->getOperand(1)); assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); // NEON uses the same intrinsics for both left and right shifts. For // right shifts, the shift amounts are negative, so negate the vector of // shift amounts. EVT ShiftVT = N->getOperand(1).getValueType(); SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1)); Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? Intrinsic::arm_neon_vshifts : Intrinsic::arm_neon_vshiftu); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(vshiftInt, MVT::i32), N->getOperand(0), NegatedCount); } static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); SDLoc dl(N); // We can get here for a node like i32 = ISD::SHL i32, i64 if (VT != MVT::i64) return SDValue(); assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && "Unknown shift to lower!"); // We only lower SRA, SRL of 1 here, all others use generic lowering. if (!isa(N->getOperand(1)) || cast(N->getOperand(1))->getZExtValue() != 1) return SDValue(); // If we are in thumb mode, we don't have RRX. if (ST->isThumb1Only()) return SDValue(); // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(0, MVT::i32)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), DAG.getConstant(1, MVT::i32)); // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and // captures the result into a carry flag. unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1); // The low part is an ARMISD::RRX operand, which shifts the carry in. Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); } static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { SDValue TmpOp0, TmpOp1; bool Invert = false; bool Swap = false; unsigned Opc = 0; SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); EVT VT = Op.getValueType(); ISD::CondCode SetCCOpcode = cast(CC)->get(); SDLoc dl(Op); if (Op.getOperand(1).getValueType().isFloatingPoint()) { switch (SetCCOpcode) { default: llvm_unreachable("Illegal FP comparison"); case ISD::SETUNE: case ISD::SETNE: Invert = true; // Fallthrough case ISD::SETOEQ: case ISD::SETEQ: Opc = ARMISD::VCEQ; break; case ISD::SETOLT: case ISD::SETLT: Swap = true; // Fallthrough case ISD::SETOGT: case ISD::SETGT: Opc = ARMISD::VCGT; break; case ISD::SETOLE: case ISD::SETLE: Swap = true; // Fallthrough case ISD::SETOGE: case ISD::SETGE: Opc = ARMISD::VCGE; break; case ISD::SETUGE: Swap = true; // Fallthrough case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; case ISD::SETUGT: Swap = true; // Fallthrough case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; case ISD::SETUEQ: Invert = true; // Fallthrough case ISD::SETONE: // Expand this to (OLT | OGT). TmpOp0 = Op0; TmpOp1 = Op1; Opc = ISD::OR; Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1); break; case ISD::SETUO: Invert = true; // Fallthrough case ISD::SETO: // Expand this to (OLT | OGE). TmpOp0 = Op0; TmpOp1 = Op1; Opc = ISD::OR; Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1); break; } } else { // Integer comparisons. switch (SetCCOpcode) { default: llvm_unreachable("Illegal integer comparison"); case ISD::SETNE: Invert = true; case ISD::SETEQ: Opc = ARMISD::VCEQ; break; case ISD::SETLT: Swap = true; case ISD::SETGT: Opc = ARMISD::VCGT; break; case ISD::SETLE: Swap = true; case ISD::SETGE: Opc = ARMISD::VCGE; break; case ISD::SETULT: Swap = true; case ISD::SETUGT: Opc = ARMISD::VCGTU; break; case ISD::SETULE: Swap = true; case ISD::SETUGE: Opc = ARMISD::VCGEU; break; } // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). if (Opc == ARMISD::VCEQ) { SDValue AndOp; if (ISD::isBuildVectorAllZeros(Op1.getNode())) AndOp = Op0; else if (ISD::isBuildVectorAllZeros(Op0.getNode())) AndOp = Op1; // Ignore bitconvert. if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST) AndOp = AndOp.getOperand(0); if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { Opc = ARMISD::VTST; Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0)); Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1)); Invert = !Invert; } } } if (Swap) std::swap(Op0, Op1); // If one of the operands is a constant vector zero, attempt to fold the // comparison to a specialized compare-against-zero form. SDValue SingleOp; if (ISD::isBuildVectorAllZeros(Op1.getNode())) SingleOp = Op0; else if (ISD::isBuildVectorAllZeros(Op0.getNode())) { if (Opc == ARMISD::VCGE) Opc = ARMISD::VCLEZ; else if (Opc == ARMISD::VCGT) Opc = ARMISD::VCLTZ; SingleOp = Op1; } SDValue Result; if (SingleOp.getNode()) { switch (Opc) { case ARMISD::VCEQ: Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break; case ARMISD::VCGE: Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break; case ARMISD::VCLEZ: Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break; case ARMISD::VCGT: Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break; case ARMISD::VCLTZ: Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break; default: Result = DAG.getNode(Opc, dl, VT, Op0, Op1); } } else { Result = DAG.getNode(Opc, dl, VT, Op0, Op1); } if (Invert) Result = DAG.getNOT(dl, Result, VT); return Result; } /// isNEONModifiedImm - Check if the specified splat value corresponds to a /// valid vector constant for a NEON instruction with a "modified immediate" /// operand (e.g., VMOV). If so, return the encoded value. static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, unsigned SplatBitSize, SelectionDAG &DAG, EVT &VT, bool is128Bits, NEONModImmType type) { unsigned OpCmode, Imm; // SplatBitSize is set to the smallest size that splats the vector, so a // zero vector will always have SplatBitSize == 8. However, NEON modified // immediate instructions others than VMOV do not support the 8-bit encoding // of a zero vector, and the default encoding of zero is supposed to be the // 32-bit version. if (SplatBits == 0) SplatBitSize = 32; switch (SplatBitSize) { case 8: if (type != VMOVModImm) return SDValue(); // Any 1-byte value is OK. Op=0, Cmode=1110. assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); OpCmode = 0xe; Imm = SplatBits; VT = is128Bits ? MVT::v16i8 : MVT::v8i8; break; case 16: // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. VT = is128Bits ? MVT::v8i16 : MVT::v4i16; if ((SplatBits & ~0xff) == 0) { // Value = 0x00nn: Op=x, Cmode=100x. OpCmode = 0x8; Imm = SplatBits; break; } if ((SplatBits & ~0xff00) == 0) { // Value = 0xnn00: Op=x, Cmode=101x. OpCmode = 0xa; Imm = SplatBits >> 8; break; } return SDValue(); case 32: // NEON's 32-bit VMOV supports splat values where: // * only one byte is nonzero, or // * the least significant byte is 0xff and the second byte is nonzero, or // * the least significant 2 bytes are 0xff and the third is nonzero. VT = is128Bits ? MVT::v4i32 : MVT::v2i32; if ((SplatBits & ~0xff) == 0) { // Value = 0x000000nn: Op=x, Cmode=000x. OpCmode = 0; Imm = SplatBits; break; } if ((SplatBits & ~0xff00) == 0) { // Value = 0x0000nn00: Op=x, Cmode=001x. OpCmode = 0x2; Imm = SplatBits >> 8; break; } if ((SplatBits & ~0xff0000) == 0) { // Value = 0x00nn0000: Op=x, Cmode=010x. OpCmode = 0x4; Imm = SplatBits >> 16; break; } if ((SplatBits & ~0xff000000) == 0) { // Value = 0xnn000000: Op=x, Cmode=011x. OpCmode = 0x6; Imm = SplatBits >> 24; break; } // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC if (type == OtherModImm) return SDValue(); if ((SplatBits & ~0xffff) == 0 && ((SplatBits | SplatUndef) & 0xff) == 0xff) { // Value = 0x0000nnff: Op=x, Cmode=1100. OpCmode = 0xc; Imm = SplatBits >> 8; SplatBits |= 0xff; break; } if ((SplatBits & ~0xffffff) == 0 && ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { // Value = 0x00nnffff: Op=x, Cmode=1101. OpCmode = 0xd; Imm = SplatBits >> 16; SplatBits |= 0xffff; break; } // Note: there are a few 32-bit splat values (specifically: 00ffff00, // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not // VMOV.I32. A (very) minor optimization would be to replicate the value // and fall through here to test for a valid 64-bit splat. But, then the // caller would also need to check and handle the change in size. return SDValue(); case 64: { if (type != VMOVModImm) return SDValue(); // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. uint64_t BitMask = 0xff; uint64_t Val = 0; unsigned ImmMask = 1; Imm = 0; for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { if (((SplatBits | SplatUndef) & BitMask) == BitMask) { Val |= BitMask; Imm |= ImmMask; } else if ((SplatBits & BitMask) != 0) { return SDValue(); } BitMask <<= 8; ImmMask <<= 1; } // Op=1, Cmode=1110. OpCmode = 0x1e; SplatBits = Val; VT = is128Bits ? MVT::v2i64 : MVT::v1i64; break; } default: llvm_unreachable("unexpected size for isNEONModifiedImm"); } unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm); return DAG.getTargetConstant(EncodedVal, MVT::i32); } SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const { if (!ST->hasVFP3()) return SDValue(); bool IsDouble = Op.getValueType() == MVT::f64; ConstantFPSDNode *CFP = cast(Op); // Try splatting with a VMOV.f32... APFloat FPVal = CFP->getValueAPF(); int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal); if (ImmVal != -1) { if (IsDouble || !ST->useNEONForSinglePrecisionFP()) { // We have code in place to select a valid ConstantFP already, no need to // do any mangling. return Op; } // It's a float and we are trying to use NEON operations where // possible. Lower it to a splat followed by an extract. SDLoc DL(Op); SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32); SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32, NewVal); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant, DAG.getConstant(0, MVT::i32)); } // The rest of our options are NEON only, make sure that's allowed before // proceeding.. if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP())) return SDValue(); EVT VMovVT; uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue(); // It wouldn't really be worth bothering for doubles except for one very // important value, which does happen to match: 0.0. So make sure we don't do // anything stupid. if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32)) return SDValue(); // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too). SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, VMovVT, false, VMOVModImm); if (NewVal != SDValue()) { SDLoc DL(Op); SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT, NewVal); if (IsDouble) return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); // It's a float: cast and extract a vector element. SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, VecConstant); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, DAG.getConstant(0, MVT::i32)); } // Finally, try a VMVN.i32 NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, VMovVT, false, VMVNModImm); if (NewVal != SDValue()) { SDLoc DL(Op); SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal); if (IsDouble) return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); // It's a float: cast and extract a vector element. SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, VecConstant); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, DAG.getConstant(0, MVT::i32)); } return SDValue(); } // check if an VEXT instruction can handle the shuffle mask when the // vector sources of the shuffle are the same. static bool isSingletonVEXTMask(ArrayRef M, EVT VT, unsigned &Imm) { unsigned NumElts = VT.getVectorNumElements(); // Assume that the first shuffle index is not UNDEF. Fail if it is. if (M[0] < 0) return false; Imm = M[0]; // If this is a VEXT shuffle, the immediate value is the index of the first // element. The other shuffle indices must be the successive elements after // the first one. unsigned ExpectedElt = Imm; for (unsigned i = 1; i < NumElts; ++i) { // Increment the expected index. If it wraps around, just follow it // back to index zero and keep going. ++ExpectedElt; if (ExpectedElt == NumElts) ExpectedElt = 0; if (M[i] < 0) continue; // ignore UNDEF indices if (ExpectedElt != static_cast(M[i])) return false; } return true; } static bool isVEXTMask(ArrayRef M, EVT VT, bool &ReverseVEXT, unsigned &Imm) { unsigned NumElts = VT.getVectorNumElements(); ReverseVEXT = false; // Assume that the first shuffle index is not UNDEF. Fail if it is. if (M[0] < 0) return false; Imm = M[0]; // If this is a VEXT shuffle, the immediate value is the index of the first // element. The other shuffle indices must be the successive elements after // the first one. unsigned ExpectedElt = Imm; for (unsigned i = 1; i < NumElts; ++i) { // Increment the expected index. If it wraps around, it may still be // a VEXT but the source vectors must be swapped. ExpectedElt += 1; if (ExpectedElt == NumElts * 2) { ExpectedElt = 0; ReverseVEXT = true; } if (M[i] < 0) continue; // ignore UNDEF indices if (ExpectedElt != static_cast(M[i])) return false; } // Adjust the index value if the source operands will be swapped. if (ReverseVEXT) Imm -= NumElts; return true; } /// isVREVMask - Check if a vector shuffle corresponds to a VREV /// instruction with the specified blocksize. (The order of the elements /// within each block of the vector is reversed.) static bool isVREVMask(ArrayRef M, EVT VT, unsigned BlockSize) { assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && "Only possible block sizes for VREV are: 16, 32, 64"); unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); unsigned BlockElts = M[0] + 1; // If the first shuffle index is UNDEF, be optimistic. if (M[0] < 0) BlockElts = BlockSize / EltSz; if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) return false; for (unsigned i = 0; i < NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) return false; } return true; } static bool isVTBLMask(ArrayRef M, EVT VT) { // We can handle <8 x i8> vector shuffles. If the index in the mask is out of // range, then 0 is placed into the resulting vector. So pretty much any mask // of 8 elements can work here. return VT == MVT::v8i8 && M.size() == 8; } static bool isVTRNMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i < NumElts; i += 2) { if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) || (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult)) return false; } return true; } /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. static bool isVTRN_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult){ unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i < NumElts; i += 2) { if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) || (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult)) return false; } return true; } static bool isVUZPMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i != NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned) M[i] != 2 * i + WhichResult) return false; } // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, static bool isVUZP_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult){ unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned Half = VT.getVectorNumElements() / 2; WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned j = 0; j != 2; ++j) { unsigned Idx = WhichResult; for (unsigned i = 0; i != Half; ++i) { int MIdx = M[i + j * Half]; if (MIdx >= 0 && (unsigned) MIdx != Idx) return false; Idx += 2; } } // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } static bool isVZIPMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); unsigned Idx = WhichResult * NumElts / 2; for (unsigned i = 0; i != NumElts; i += 2) { if ((M[i] >= 0 && (unsigned) M[i] != Idx) || (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts)) return false; Idx += 1; } // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. static bool isVZIP_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult){ unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); unsigned Idx = WhichResult * NumElts / 2; for (unsigned i = 0; i != NumElts; i += 2) { if ((M[i] >= 0 && (unsigned) M[i] != Idx) || (M[i+1] >= 0 && (unsigned) M[i+1] != Idx)) return false; Idx += 1; } // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. if (VT.is64BitVector() && EltSz == 32) return false; return true; } /// \return true if this is a reverse operation on an vector. static bool isReverseMask(ArrayRef M, EVT VT) { unsigned NumElts = VT.getVectorNumElements(); // Make sure the mask has the right size. if (NumElts != M.size()) return false; // Look for <15, ..., 3, -1, 1, 0>. for (unsigned i = 0; i != NumElts; ++i) if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i)) return false; return true; } // If N is an integer constant that can be moved into a register in one // instruction, return an SDValue of such a constant (will become a MOV // instruction). Otherwise return null. static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, const ARMSubtarget *ST, SDLoc dl) { uint64_t Val; if (!isa(N)) return SDValue(); Val = cast(N)->getZExtValue(); if (ST->isThumb1Only()) { if (Val <= 255 || ~Val <= 255) return DAG.getConstant(Val, MVT::i32); } else { if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1) return DAG.getConstant(Val, MVT::i32); } return SDValue(); } // If this is a case we can't handle, return null and let the default // expansion code take care of it. SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const { BuildVectorSDNode *BVN = cast(Op.getNode()); SDLoc dl(Op); EVT VT = Op.getValueType(); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { if (SplatBitSize <= 64) { // Check if an immediate VMOV works. EVT VmovVT; SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG, VmovVT, VT.is128BitVector(), VMOVModImm); if (Val.getNode()) { SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); } // Try an immediate VMVN. uint64_t NegatedImm = (~SplatBits).getZExtValue(); Val = isNEONModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, VmovVT, VT.is128BitVector(), VMVNModImm); if (Val.getNode()) { SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); } // Use vmov.f32 to materialize other v2f32 and v4f32 splats. if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) { int ImmVal = ARM_AM::getFP32Imm(SplatBits); if (ImmVal != -1) { SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32); return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val); } } } } // Scan through the operands to see if only one value is used. // // As an optimisation, even if more than one value is used it may be more // profitable to splat with one value then change some lanes. // // Heuristically we decide to do this if the vector has a "dominant" value, // defined as splatted to more than half of the lanes. unsigned NumElts = VT.getVectorNumElements(); bool isOnlyLowElement = true; bool usesOnlyOneValue = true; bool hasDominantValue = false; bool isConstant = true; // Map of the number of times a particular SDValue appears in the // element list. DenseMap ValueCounts; SDValue Value; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; if (i > 0) isOnlyLowElement = false; if (!isa(V) && !isa(V)) isConstant = false; ValueCounts.insert(std::make_pair(V, 0)); unsigned &Count = ValueCounts[V]; // Is this value dominant? (takes up more than half of the lanes) if (++Count > (NumElts / 2)) { hasDominantValue = true; Value = V; } } if (ValueCounts.size() != 1) usesOnlyOneValue = false; if (!Value.getNode() && ValueCounts.size() > 0) Value = ValueCounts.begin()->first; if (ValueCounts.size() == 0) return DAG.getUNDEF(VT); // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR. // Keep going if we are hitting this case. if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode())) return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); unsigned EltSize = VT.getVectorElementType().getSizeInBits(); // Use VDUP for non-constant splats. For f32 constant splats, reduce to // i32 and try again. if (hasDominantValue && EltSize <= 32) { if (!isConstant) { SDValue N; // If we are VDUPing a value that comes directly from a vector, that will // cause an unnecessary move to and from a GPR, where instead we could // just use VDUPLANE. We can only do this if the lane being extracted // is at a constant index, as the VDUP from lane instructions only have // constant-index forms. if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT && isa(Value->getOperand(1))) { // We need to create a new undef vector to use for the VDUPLANE if the // size of the vector from which we get the value is different than the // size of the vector that we need to create. We will insert the element // such that the register coalescer will remove unnecessary copies. if (VT != Value->getOperand(0).getValueType()) { ConstantSDNode *constIndex; constIndex = dyn_cast(Value->getOperand(1)); assert(constIndex && "The index is not a constant!"); unsigned index = constIndex->getAPIntValue().getLimitedValue() % VT.getVectorNumElements(); N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT), Value, DAG.getConstant(index, MVT::i32)), DAG.getConstant(index, MVT::i32)); } else N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, Value->getOperand(0), Value->getOperand(1)); } else N = DAG.getNode(ARMISD::VDUP, dl, VT, Value); if (!usesOnlyOneValue) { // The dominant value was splatted as 'N', but we now have to insert // all differing elements. for (unsigned I = 0; I < NumElts; ++I) { if (Op.getOperand(I) == Value) continue; SmallVector Ops; Ops.push_back(N); Ops.push_back(Op.getOperand(I)); Ops.push_back(DAG.getConstant(I, MVT::i32)); N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3); } } return N; } if (VT.getVectorElementType().isFloatingPoint()) { SmallVector Ops; for (unsigned i = 0; i < NumElts; ++i) Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op.getOperand(i))); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts); Val = LowerBUILD_VECTOR(Val, DAG, ST); if (Val.getNode()) return DAG.getNode(ISD::BITCAST, dl, VT, Val); } if (usesOnlyOneValue) { SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl); if (isConstant && Val.getNode()) return DAG.getNode(ARMISD::VDUP, dl, VT, Val); } } // If all elements are constants and the case above didn't get hit, fall back // to the default expansion, which will generate a load from the constant // pool. if (isConstant) return SDValue(); // Empirical tests suggest this is rarely worth it for vectors of length <= 2. if (NumElts >= 4) { SDValue shuffle = ReconstructShuffle(Op, DAG); if (shuffle != SDValue()) return shuffle; } // Vectors with 32- or 64-bit elements can be built by directly assigning // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands // will be legalized. if (EltSize >= 32) { // Do the expansion with floating-point types, since that is what the VFP // registers are defined to use, and since i64 is not legal. EVT EltVT = EVT::getFloatingPointVT(EltSize); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); SmallVector Ops; for (unsigned i = 0; i < NumElts; ++i) Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i))); SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts); return DAG.getNode(ISD::BITCAST, dl, VT, Val); } // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we // know the default expansion would otherwise fall back on something even // worse. For a vector with one or two non-undef values, that's // scalar_to_vector for the elements followed by a shuffle (provided the // shuffle is valid for the target) and materialization element by element // on the stack followed by a load for everything else. if (!isConstant && !usesOnlyOneValue) { SDValue Vec = DAG.getUNDEF(VT); for (unsigned i = 0 ; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; SDValue LaneIdx = DAG.getConstant(i, MVT::i32); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); } return Vec; } return SDValue(); } // Gather data to see if the operation can be modelled as a // shuffle in combination with VEXTs. SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); unsigned NumElts = VT.getVectorNumElements(); SmallVector SourceVecs; SmallVector MinElts; SmallVector MaxElts; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { // A shuffle can only come from building a vector from various // elements of other vectors. return SDValue(); } else if (V.getOperand(0).getValueType().getVectorElementType() != VT.getVectorElementType()) { // This code doesn't know how to handle shuffles where the vector // element types do not match (this happens because type legalization // promotes the return type of EXTRACT_VECTOR_ELT). // FIXME: It might be appropriate to extend this code to handle // mismatched types. return SDValue(); } // Record this extraction against the appropriate vector if possible... SDValue SourceVec = V.getOperand(0); // If the element number isn't a constant, we can't effectively // analyze what's going on. if (!isa(V.getOperand(1))) return SDValue(); unsigned EltNo = cast(V.getOperand(1))->getZExtValue(); bool FoundSource = false; for (unsigned j = 0; j < SourceVecs.size(); ++j) { if (SourceVecs[j] == SourceVec) { if (MinElts[j] > EltNo) MinElts[j] = EltNo; if (MaxElts[j] < EltNo) MaxElts[j] = EltNo; FoundSource = true; break; } } // Or record a new source if not... if (!FoundSource) { SourceVecs.push_back(SourceVec); MinElts.push_back(EltNo); MaxElts.push_back(EltNo); } } // Currently only do something sane when at most two source vectors // involved. if (SourceVecs.size() > 2) return SDValue(); SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) }; int VEXTOffsets[2] = {0, 0}; // This loop extracts the usage patterns of the source vectors // and prepares appropriate SDValues for a shuffle if possible. for (unsigned i = 0; i < SourceVecs.size(); ++i) { if (SourceVecs[i].getValueType() == VT) { // No VEXT necessary ShuffleSrcs[i] = SourceVecs[i]; VEXTOffsets[i] = 0; continue; } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) { // It probably isn't worth padding out a smaller vector just to // break it down again in a shuffle. return SDValue(); } // Since only 64-bit and 128-bit vectors are legal on ARM and // we've eliminated the other cases... assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts && "unexpected vector sizes in ReconstructShuffle"); if (MaxElts[i] - MinElts[i] >= NumElts) { // Span too large for a VEXT to cope return SDValue(); } if (MinElts[i] >= NumElts) { // The extraction can just take the second half VEXTOffsets[i] = NumElts; ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i], DAG.getIntPtrConstant(NumElts)); } else if (MaxElts[i] < NumElts) { // The extraction can just take the first half VEXTOffsets[i] = 0; ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i], DAG.getIntPtrConstant(0)); } else { // An actual VEXT is needed VEXTOffsets[i] = MinElts[i]; SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i], DAG.getIntPtrConstant(0)); SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SourceVecs[i], DAG.getIntPtrConstant(NumElts)); ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2, DAG.getConstant(VEXTOffsets[i], MVT::i32)); } } SmallVector Mask; for (unsigned i = 0; i < NumElts; ++i) { SDValue Entry = Op.getOperand(i); if (Entry.getOpcode() == ISD::UNDEF) { Mask.push_back(-1); continue; } SDValue ExtractVec = Entry.getOperand(0); int ExtractElt = cast(Op.getOperand(i) .getOperand(1))->getSExtValue(); if (ExtractVec == SourceVecs[0]) { Mask.push_back(ExtractElt - VEXTOffsets[0]); } else { Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]); } } // Final check before we try to produce nonsense... if (isShuffleMaskLegal(Mask, VT)) return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1], &Mask[0]); return SDValue(); } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. bool ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl &M, EVT VT) const { if (VT.getVectorNumElements() == 4 && (VT.is128BitVector() || VT.is64BitVector())) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (M[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = M[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); if (Cost <= 4) return true; } bool ReverseVEXT; unsigned Imm, WhichResult; unsigned EltSize = VT.getVectorElementType().getSizeInBits(); return (EltSize >= 32 || ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isVREVMask(M, VT, 64) || isVREVMask(M, VT, 32) || isVREVMask(M, VT, 16) || isVEXTMask(M, VT, ReverseVEXT, Imm) || isVTBLMask(M, VT) || isVTRNMask(M, VT, WhichResult) || isVUZPMask(M, VT, WhichResult) || isVZIPMask(M, VT, WhichResult) || isVTRN_v_undef_Mask(M, VT, WhichResult) || isVUZP_v_undef_Mask(M, VT, WhichResult) || isVZIP_v_undef_Mask(M, VT, WhichResult) || ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT))); } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, SDLoc dl) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); enum { OP_COPY = 0, // Copy, used for things like to say it is <0,1,2,3> OP_VREV, OP_VDUP0, OP_VDUP1, OP_VDUP2, OP_VDUP3, OP_VEXT1, OP_VEXT2, OP_VEXT3, OP_VUZPL, // VUZP, left result OP_VUZPR, // VUZP, right result OP_VZIPL, // VZIP, left result OP_VZIPR, // VZIP, right result OP_VTRNL, // VTRN, left result OP_VTRNR // VTRN, right result }; if (OpNum == OP_COPY) { if (LHSID == (1*9+2)*9+3) return LHS; assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); return RHS; } SDValue OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); EVT VT = OpLHS.getValueType(); switch (OpNum) { default: llvm_unreachable("Unknown shuffle opcode!"); case OP_VREV: // VREV divides the vector in half and swaps within the half. if (VT.getVectorElementType() == MVT::i32 || VT.getVectorElementType() == MVT::f32) return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); // vrev <4 x i16> -> VREV32 if (VT.getVectorElementType() == MVT::i16) return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS); // vrev <4 x i8> -> VREV16 assert(VT.getVectorElementType() == MVT::i8); return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS); case OP_VDUP0: case OP_VDUP1: case OP_VDUP2: case OP_VDUP3: return DAG.getNode(ARMISD::VDUPLANE, dl, VT, OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32)); case OP_VEXT1: case OP_VEXT2: case OP_VEXT3: return DAG.getNode(ARMISD::VEXT, dl, VT, OpLHS, OpRHS, DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32)); case OP_VUZPL: case OP_VUZPR: return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); case OP_VZIPL: case OP_VZIPR: return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); case OP_VTRNL: case OP_VTRNR: return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); } } static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, ArrayRef ShuffleMask, SelectionDAG &DAG) { // Check to see if we can use the VTBL instruction. SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc DL(Op); SmallVector VTBLMask; for (ArrayRef::iterator I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I) VTBLMask.push_back(DAG.getConstant(*I, MVT::i32)); if (V2.getNode()->getOpcode() == ISD::UNDEF) return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, &VTBLMask[0], 8)); return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2, DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, &VTBLMask[0], 8)); } static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); SDValue OpLHS = Op.getOperand(0); EVT VT = OpLHS.getValueType(); assert((VT == MVT::v8i16 || VT == MVT::v16i8) && "Expect an v8i16/v16i8 type"); OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS); // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now, // extract the first 8 bytes into the top double word and the last 8 bytes // into the bottom double word. The v8i16 case is similar. unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4; return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS, DAG.getConstant(ExtractNum, MVT::i32)); } static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); ShuffleVectorSDNode *SVN = cast(Op.getNode()); // Convert shuffles that are directly supported on NEON to target-specific // DAG nodes, instead of keeping them as shuffles and matching them again // during code selection. This is more efficient and avoids the possibility // of inconsistencies between legalization and selection. // FIXME: floating-point vectors should be canonicalized to integer vectors // of the same time so that they get CSEd properly. ArrayRef ShuffleMask = SVN->getMask(); unsigned EltSize = VT.getVectorElementType().getSizeInBits(); if (EltSize <= 32) { if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { int Lane = SVN->getSplatIndex(); // If this is undef splat, generate it via "just" vdup, if possible. if (Lane == -1) Lane = 0; // Test if V1 is a SCALAR_TO_VECTOR. if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); } // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR // (and probably will turn into a SCALAR_TO_VECTOR once legalization // reaches it). if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && !isa(V1.getOperand(0))) { bool IsScalarToVector = true; for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) if (V1.getOperand(i).getOpcode() != ISD::UNDEF) { IsScalarToVector = false; break; } if (IsScalarToVector) return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); } return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, DAG.getConstant(Lane, MVT::i32)); } bool ReverseVEXT; unsigned Imm; if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { if (ReverseVEXT) std::swap(V1, V2); return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, DAG.getConstant(Imm, MVT::i32)); } if (isVREVMask(ShuffleMask, VT, 64)) return DAG.getNode(ARMISD::VREV64, dl, VT, V1); if (isVREVMask(ShuffleMask, VT, 32)) return DAG.getNode(ARMISD::VREV32, dl, VT, V1); if (isVREVMask(ShuffleMask, VT, 16)) return DAG.getNode(ARMISD::VREV16, dl, VT, V1); if (V2->getOpcode() == ISD::UNDEF && isSingletonVEXTMask(ShuffleMask, VT, Imm)) { return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1, DAG.getConstant(Imm, MVT::i32)); } // Check for Neon shuffles that modify both input vectors in place. // If both results are used, i.e., if there are two shuffles with the same // source operands and with masks corresponding to both results of one of // these operations, DAG memoization will ensure that a single node is // used for both shuffles. unsigned WhichResult; if (isVTRNMask(ShuffleMask, VT, WhichResult)) return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), V1, V2).getValue(WhichResult); if (isVUZPMask(ShuffleMask, VT, WhichResult)) return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), V1, V2).getValue(WhichResult); if (isVZIPMask(ShuffleMask, VT, WhichResult)) return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), V1, V2).getValue(WhichResult); if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), V1, V1).getValue(WhichResult); if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), V1, V1).getValue(WhichResult); if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), V1, V1).getValue(WhichResult); } // If the shuffle is not directly supported and it has 4 elements, use // the PerfectShuffle-generated table to synthesize it from other shuffles. unsigned NumElts = VT.getVectorNumElements(); if (NumElts == 4) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (ShuffleMask[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = ShuffleMask[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); if (Cost <= 4) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); } // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. if (EltSize >= 32) { // Do the expansion with floating-point types, since that is what the VFP // registers are defined to use, and since i64 is not legal. EVT EltVT = EVT::getFloatingPointVT(EltSize); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1); V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2); SmallVector Ops; for (unsigned i = 0; i < NumElts; ++i) { if (ShuffleMask[i] < 0) Ops.push_back(DAG.getUNDEF(EltVT)); else Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ShuffleMask[i] < (int)NumElts ? V1 : V2, DAG.getConstant(ShuffleMask[i] & (NumElts-1), MVT::i32))); } SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts); return DAG.getNode(ISD::BITCAST, dl, VT, Val); } if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT)) return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG); if (VT == MVT::v8i8) { SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG); if (NewOp.getNode()) return NewOp; } return SDValue(); } static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { // INSERT_VECTOR_ELT is legal only for immediate indexes. SDValue Lane = Op.getOperand(2); if (!isa(Lane)) return SDValue(); return Op; } static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { // EXTRACT_VECTOR_ELT is legal only for immediate indexes. SDValue Lane = Op.getOperand(1); if (!isa(Lane)) return SDValue(); SDValue Vec = Op.getOperand(0); if (Op.getValueType() == MVT::i32 && Vec.getValueType().getVectorElementType().getSizeInBits() < 32) { SDLoc dl(Op); return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); } return Op; } static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { // The only time a CONCAT_VECTORS operation can have legal types is when // two 64-bit vectors are concatenated to a 128-bit vector. assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && "unexpected CONCAT_VECTORS"); SDLoc dl(Op); SDValue Val = DAG.getUNDEF(MVT::v2f64); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); if (Op0.getOpcode() != ISD::UNDEF) Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0), DAG.getIntPtrConstant(0)); if (Op1.getOpcode() != ISD::UNDEF) Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1), DAG.getIntPtrConstant(1)); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val); } /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each /// element has been zero/sign-extended, depending on the isSigned parameter, /// from an integer type half its size. static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, bool isSigned) { // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32. EVT VT = N->getValueType(0); if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) { SDNode *BVN = N->getOperand(0).getNode(); if (BVN->getValueType(0) != MVT::v4i32 || BVN->getOpcode() != ISD::BUILD_VECTOR) return false; unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0; unsigned HiElt = 1 - LoElt; ConstantSDNode *Lo0 = dyn_cast(BVN->getOperand(LoElt)); ConstantSDNode *Hi0 = dyn_cast(BVN->getOperand(HiElt)); ConstantSDNode *Lo1 = dyn_cast(BVN->getOperand(LoElt+2)); ConstantSDNode *Hi1 = dyn_cast(BVN->getOperand(HiElt+2)); if (!Lo0 || !Hi0 || !Lo1 || !Hi1) return false; if (isSigned) { if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 && Hi1->getSExtValue() == Lo1->getSExtValue() >> 32) return true; } else { if (Hi0->isNullValue() && Hi1->isNullValue()) return true; } return false; } if (N->getOpcode() != ISD::BUILD_VECTOR) return false; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDNode *Elt = N->getOperand(i).getNode(); if (ConstantSDNode *C = dyn_cast(Elt)) { unsigned EltSize = VT.getVectorElementType().getSizeInBits(); unsigned HalfSize = EltSize / 2; if (isSigned) { if (!isIntN(HalfSize, C->getSExtValue())) return false; } else { if (!isUIntN(HalfSize, C->getZExtValue())) return false; } continue; } return false; } return true; } /// isSignExtended - Check if a node is a vector value that is sign-extended /// or a constant BUILD_VECTOR with sign-extended elements. static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N)) return true; if (isExtendedBUILD_VECTOR(N, DAG, true)) return true; return false; } /// isZeroExtended - Check if a node is a vector value that is zero-extended /// or a constant BUILD_VECTOR with zero-extended elements. static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N)) return true; if (isExtendedBUILD_VECTOR(N, DAG, false)) return true; return false; } static EVT getExtensionTo64Bits(const EVT &OrigVT) { if (OrigVT.getSizeInBits() >= 64) return OrigVT; assert(OrigVT.isSimple() && "Expecting a simple value type"); MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; switch (OrigSimpleTy) { default: llvm_unreachable("Unexpected Vector Type"); case MVT::v2i8: case MVT::v2i16: return MVT::v2i32; case MVT::v4i8: return MVT::v4i16; } } /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL. /// We insert the required extension here to get the vector to fill a D register. static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, const EVT &OrigTy, const EVT &ExtTy, unsigned ExtOpcode) { // The vector originally had a size of OrigTy. It was then extended to ExtTy. // We expect the ExtTy to be 128-bits total. If the OrigTy is less than // 64-bits we need to insert a new extension so that it will be 64-bits. assert(ExtTy.is128BitVector() && "Unexpected extension size"); if (OrigTy.getSizeInBits() >= 64) return N; // Must extend size to at least 64 bits to be used as an operand for VMULL. EVT NewVT = getExtensionTo64Bits(OrigTy); return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); } /// SkipLoadExtensionForVMULL - return a load of the original vector size that /// does not do any sign/zero extension. If the original vector is less /// than 64 bits, an appropriate extension will be added after the load to /// reach a total size of 64 bits. We have to add the extension separately /// because ARM does not have a sign/zero extending load for vectors. static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) { EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT()); // The load already has the right type. if (ExtendedTy == LD->getMemoryVT()) return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), LD->getAlignment()); // We need to create a zextload/sextload. We cannot just create a load // followed by a zext/zext node because LowerMUL is also run during normal // operation legalization where we can't create illegal types. return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy, LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment()); } /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND, /// extending load, or BUILD_VECTOR with extended elements, return the /// unextended value. The unextended vector should be 64 bits so that it can /// be used as an operand to a VMULL instruction. If the original vector size /// before extension is less than 64 bits we add a an extension to resize /// the vector to 64 bits. static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) return AddRequiredExtensionForVMULL(N->getOperand(0), DAG, N->getOperand(0)->getValueType(0), N->getValueType(0), N->getOpcode()); if (LoadSDNode *LD = dyn_cast(N)) return SkipLoadExtensionForVMULL(LD, DAG); // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will // have been legalized as a BITCAST from v4i32. if (N->getOpcode() == ISD::BITCAST) { SDNode *BVN = N->getOperand(0).getNode(); assert(BVN->getOpcode() == ISD::BUILD_VECTOR && BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"); unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0; return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32, BVN->getOperand(LowElt), BVN->getOperand(LowElt+2)); } // Construct a new BUILD_VECTOR with elements truncated to half the size. assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); EVT VT = N->getValueType(0); unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2; unsigned NumElts = VT.getVectorNumElements(); MVT TruncVT = MVT::getIntegerVT(EltSize); SmallVector Ops; for (unsigned i = 0; i != NumElts; ++i) { ConstantSDNode *C = cast(N->getOperand(i)); const APInt &CInt = C->getAPIntValue(); // Element types smaller than 32 bits are not legal, so use i32 elements. // The values are implicitly truncated so sext vs. zext doesn't matter. Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32)); } return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts); } static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { unsigned Opcode = N->getOpcode(); if (Opcode == ISD::ADD || Opcode == ISD::SUB) { SDNode *N0 = N->getOperand(0).getNode(); SDNode *N1 = N->getOperand(1).getNode(); return N0->hasOneUse() && N1->hasOneUse() && isSignExtended(N0, DAG) && isSignExtended(N1, DAG); } return false; } static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { unsigned Opcode = N->getOpcode(); if (Opcode == ISD::ADD || Opcode == ISD::SUB) { SDNode *N0 = N->getOperand(0).getNode(); SDNode *N1 = N->getOperand(1).getNode(); return N0->hasOneUse() && N1->hasOneUse() && isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); } return false; } static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { // Multiplications are only custom-lowered for 128-bit vectors so that // VMULL can be detected. Otherwise v2i64 multiplications are not legal. EVT VT = Op.getValueType(); assert(VT.is128BitVector() && VT.isInteger() && "unexpected type for custom-lowering ISD::MUL"); SDNode *N0 = Op.getOperand(0).getNode(); SDNode *N1 = Op.getOperand(1).getNode(); unsigned NewOpc = 0; bool isMLA = false; bool isN0SExt = isSignExtended(N0, DAG); bool isN1SExt = isSignExtended(N1, DAG); if (isN0SExt && isN1SExt) NewOpc = ARMISD::VMULLs; else { bool isN0ZExt = isZeroExtended(N0, DAG); bool isN1ZExt = isZeroExtended(N1, DAG); if (isN0ZExt && isN1ZExt) NewOpc = ARMISD::VMULLu; else if (isN1SExt || isN1ZExt) { // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these // into (s/zext A * s/zext C) + (s/zext B * s/zext C) if (isN1SExt && isAddSubSExt(N0, DAG)) { NewOpc = ARMISD::VMULLs; isMLA = true; } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { NewOpc = ARMISD::VMULLu; isMLA = true; } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { std::swap(N0, N1); NewOpc = ARMISD::VMULLu; isMLA = true; } } if (!NewOpc) { if (VT == MVT::v2i64) // Fall through to expand this. It is not legal. return SDValue(); else // Other vector multiplications are legal. return Op; } } // Legalize to a VMULL instruction. SDLoc DL(Op); SDValue Op0; SDValue Op1 = SkipExtensionForVMULL(N1, DAG); if (!isMLA) { Op0 = SkipExtensionForVMULL(N0, DAG); assert(Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && "unexpected types for extended operands to VMULL"); return DAG.getNode(NewOpc, DL, VT, Op0, Op1); } // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during // isel lowering to take advantage of no-stall back to back vmul + vmla. // vmull q0, d4, d6 // vmlal q0, d5, d6 // is faster than // vaddl q0, d4, d5 // vmovl q1, d6 // vmul q0, q0, q1 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG); SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG); EVT Op1VT = Op1.getValueType(); return DAG.getNode(N0->getOpcode(), DL, VT, DAG.getNode(NewOpc, DL, VT, DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), DAG.getNode(NewOpc, DL, VT, DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); } static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) { // Convert to float // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo)); // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo)); X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X); Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y); X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X); Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y); // Get reciprocal estimate. // float4 recip = vrecpeq_f32(yf); Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y); // Because char has a smaller range than uchar, we can actually get away // without any newton steps. This requires that we use a weird bias // of 0xb000, however (again, this has been exhaustively tested). // float4 result = as_float4(as_int4(xf*recip) + 0xb000); X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y); X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X); Y = DAG.getConstant(0xb000, MVT::i32); Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y); X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y); X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X); // Convert back to short. X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X); X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X); return X; } static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) { SDValue N2; // Convert to float. // float4 yf = vcvt_f32_s32(vmovl_s16(y)); // float4 xf = vcvt_f32_s32(vmovl_s16(x)); N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0); N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1); N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); // Use reciprocal estimate and one refinement step. // float4 recip = vrecpeq_f32(yf); // recip *= vrecpsq_f32(yf, recip); N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1); N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), N1, N2); N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); // Because short has a smaller range than ushort, we can actually get away // with only a single newton step. This requires that we use a weird bias // of 89, however (again, this has been exhaustively tested). // float4 result = as_float4(as_int4(xf*recip) + 0x89); N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); N1 = DAG.getConstant(0x89, MVT::i32); N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); // Convert back to integer and return. // return vmovn_s32(vcvt_s32_f32(result)); N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); return N0; } static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); assert((VT == MVT::v4i16 || VT == MVT::v8i8) && "unexpected type for custom-lowering ISD::SDIV"); SDLoc dl(Op); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2, N3; if (VT == MVT::v8i8) { N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0); N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1); N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(4)); N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(4)); N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(0)); N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(0)); N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); N0 = LowerCONCAT_VECTORS(N0, DAG); N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0); return N0; } return LowerSDIV_v4i16(N0, N1, dl, DAG); } static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); assert((VT == MVT::v4i16 || VT == MVT::v8i8) && "unexpected type for custom-lowering ISD::UDIV"); SDLoc dl(Op); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2, N3; if (VT == MVT::v8i8) { N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0); N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1); N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(4)); N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(4)); N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, DAG.getIntPtrConstant(0)); N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, DAG.getIntPtrConstant(0)); N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); N0 = LowerCONCAT_VECTORS(N0, DAG); N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8, DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32), N0); return N0; } // v4i16 sdiv ... Convert to float. // float4 yf = vcvt_f32_s32(vmovl_u16(y)); // float4 xf = vcvt_f32_s32(vmovl_u16(x)); N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0); N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1); N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); // Use reciprocal estimate and two refinement steps. // float4 recip = vrecpeq_f32(yf); // recip *= vrecpsq_f32(yf, recip); // recip *= vrecpsq_f32(yf, recip); N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1); N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), BN1, N2); N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), BN1, N2); N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); // Simply multiplying by the reciprocal estimate can leave us a few ulps // too low, so we add 2 ulps (exhaustive testing shows that this is enough, // and that it will never cause us to return an answer too large). // float4 result = as_float4(as_int4(xf*recip) + 2); N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); N1 = DAG.getConstant(2, MVT::i32); N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); // Convert back to integer and return. // return vmovn_u32(vcvt_s32_f32(result)); N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); return N0; } static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getNode()->getValueType(0); SDVTList VTs = DAG.getVTList(VT, MVT::i32); unsigned Opc; bool ExtraOp = false; switch (Op.getOpcode()) { default: llvm_unreachable("Invalid code"); case ISD::ADDC: Opc = ARMISD::ADDC; break; case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break; case ISD::SUBC: Opc = ARMISD::SUBC; break; case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break; } if (!ExtraOp) return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), Op.getOperand(2)); } static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) { // Monotonic load/store is legal for all targets if (cast(Op)->getOrdering() <= Monotonic) return Op; // Aquire/Release load/store is not legal for targets without a // dmb or equivalent available. return SDValue(); } static void ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl& Results, SelectionDAG &DAG, unsigned NewOp) { SDLoc dl(Node); assert (Node->getValueType(0) == MVT::i64 && "Only know how to expand i64 atomics"); SmallVector Ops; Ops.push_back(Node->getOperand(0)); // Chain Ops.push_back(Node->getOperand(1)); // Ptr // Low part of Val1 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Node->getOperand(2), DAG.getIntPtrConstant(0))); // High part of Val1 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Node->getOperand(2), DAG.getIntPtrConstant(1))); if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) { // High part of Val1 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Node->getOperand(3), DAG.getIntPtrConstant(0))); // High part of Val2 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Node->getOperand(3), DAG.getIntPtrConstant(1))); } SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); SDValue Result = DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64, cast(Node)->getMemOperand()); SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) }; Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); Results.push_back(Result.getValue(2)); } static void ReplaceREADCYCLECOUNTER(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG, const ARMSubtarget *Subtarget) { SDLoc DL(N); SDValue Cycles32, OutChain; if (Subtarget->hasPerfMon()) { // Under Power Management extensions, the cycle-count is: // mrc p15, #0, , c9, c13, #0 SDValue Ops[] = { N->getOperand(0), // Chain DAG.getConstant(Intrinsic::arm_mrc, MVT::i32), DAG.getConstant(15, MVT::i32), DAG.getConstant(0, MVT::i32), DAG.getConstant(9, MVT::i32), DAG.getConstant(13, MVT::i32), DAG.getConstant(0, MVT::i32) }; Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, DAG.getVTList(MVT::i32, MVT::Other), &Ops[0], array_lengthof(Ops)); OutChain = Cycles32.getValue(1); } else { // Intrinsic is defined to return 0 on unsupported platforms. Technically // there are older ARM CPUs that have implementation-specific ways of // obtaining this information (FIXME!). Cycles32 = DAG.getConstant(0, MVT::i32); OutChain = DAG.getEntryNode(); } SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32, DAG.getConstant(0, MVT::i32)); Results.push_back(Cycles64); Results.push_back(OutChain); } SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Don't know how to custom lower this!"); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::GlobalAddress: return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) : LowerGlobalAddressELF(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget); case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, Subtarget); case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG); case ISD::SHL: case ISD::SRL: case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); case ISD::SRL_PARTS: case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget); case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget); case ISD::SETCC: return LowerVSETCC(Op, DAG); case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); case ISD::SDIV: return LowerSDIV(Op, DAG); case ISD::UDIV: return LowerUDIV(Op, DAG); case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); case ISD::ATOMIC_LOAD: case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG); case ISD::SDIVREM: case ISD::UDIVREM: return LowerDivRem(Op, DAG); } } /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. void ARMTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const { SDValue Res; switch (N->getOpcode()) { default: llvm_unreachable("Don't know how to custom expand this!"); case ISD::BITCAST: Res = ExpandBITCAST(N, DAG); break; case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: Res = ExpandVectorExtension(N, DAG); break; case ISD::SRL: case ISD::SRA: Res = Expand64BitShift(N, DAG, Subtarget); break; case ISD::READCYCLECOUNTER: ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget); return; case ISD::ATOMIC_LOAD_ADD: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG); return; case ISD::ATOMIC_LOAD_AND: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG); return; case ISD::ATOMIC_LOAD_NAND: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG); return; case ISD::ATOMIC_LOAD_OR: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG); return; case ISD::ATOMIC_LOAD_SUB: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG); return; case ISD::ATOMIC_LOAD_XOR: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG); return; case ISD::ATOMIC_SWAP: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG); return; case ISD::ATOMIC_CMP_SWAP: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG); return; case ISD::ATOMIC_LOAD_MIN: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMIN64_DAG); return; case ISD::ATOMIC_LOAD_UMIN: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMIN64_DAG); return; case ISD::ATOMIC_LOAD_MAX: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMAX64_DAG); return; case ISD::ATOMIC_LOAD_UMAX: ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMAX64_DAG); return; } if (Res.getNode()) Results.push_back(Res); } //===----------------------------------------------------------------------===// // ARM Scheduler Hooks //===----------------------------------------------------------------------===// MachineBasicBlock * ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size) const { unsigned dest = MI->getOperand(0).getReg(); unsigned ptr = MI->getOperand(1).getReg(); unsigned oldval = MI->getOperand(2).getReg(); unsigned newval = MI->getOperand(3).getReg(); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); bool isThumb2 = Subtarget->isThumb2(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); unsigned scratch = MRI.createVirtualRegister(isThumb2 ? (const TargetRegisterClass*)&ARM::rGPRRegClass : (const TargetRegisterClass*)&ARM::GPRRegClass); if (isThumb2) { MRI.constrainRegClass(dest, &ARM::rGPRRegClass); MRI.constrainRegClass(oldval, &ARM::rGPRRegClass); MRI.constrainRegClass(newval, &ARM::rGPRRegClass); } unsigned ldrOpc, strOpc; switch (Size) { default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); case 1: ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; break; case 2: ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; break; case 4: ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; break; } MachineFunction *MF = BB->getParent(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // insert the new blocks after the current block MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, loop1MBB); MF->insert(It, loop2MBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); // thisMBB: // ... // fallthrough --> loop1MBB BB->addSuccessor(loop1MBB); // loop1MBB: // ldrex dest, [ptr] // cmp dest, oldval // bne exitMBB BB = loop1MBB; MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); if (ldrOpc == ARM::t2LDREX) MIB.addImm(0); AddDefaultPred(MIB); AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) .addReg(dest).addReg(oldval)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); BB->addSuccessor(loop2MBB); BB->addSuccessor(exitMBB); // loop2MBB: // strex scratch, newval, [ptr] // cmp scratch, #0 // bne loop1MBB BB = loop2MBB; MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr); if (strOpc == ARM::t2STREX) MIB.addImm(0); AddDefaultPred(MIB); AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(scratch).addImm(0)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR); BB->addSuccessor(loop1MBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; MI->eraseFromParent(); // The instruction is gone now. return BB; } MachineBasicBlock * ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode) const { // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *MF = BB->getParent(); MachineFunction::iterator It = BB; ++It; unsigned dest = MI->getOperand(0).getReg(); unsigned ptr = MI->getOperand(1).getReg(); unsigned incr = MI->getOperand(2).getReg(); DebugLoc dl = MI->getDebugLoc(); bool isThumb2 = Subtarget->isThumb2(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); if (isThumb2) { MRI.constrainRegClass(dest, &ARM::rGPRRegClass); MRI.constrainRegClass(ptr, &ARM::rGPRRegClass); } unsigned ldrOpc, strOpc; switch (Size) { default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); case 1: ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; break; case 2: ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; break; case 4: ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; break; } MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, loopMBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); const TargetRegisterClass *TRC = isThumb2 ? (const TargetRegisterClass*)&ARM::rGPRRegClass : (const TargetRegisterClass*)&ARM::GPRRegClass; unsigned scratch = MRI.createVirtualRegister(TRC); unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // loopMBB: // ldrex dest, ptr // scratch2, dest, incr // strex scratch, scratch2, ptr // cmp scratch, #0 // bne- loopMBB // fallthrough --> exitMBB BB = loopMBB; MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); if (ldrOpc == ARM::t2LDREX) MIB.addImm(0); AddDefaultPred(MIB); if (BinOpcode) { // operand order needs to go the other way for NAND if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr) AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). addReg(incr).addReg(dest)).addReg(0); else AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). addReg(dest).addReg(incr)).addReg(0); } MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr); if (strOpc == ARM::t2STREX) MIB.addImm(0); AddDefaultPred(MIB); AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(scratch).addImm(0)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; MI->eraseFromParent(); // The instruction is gone now. return BB; } MachineBasicBlock * ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, bool signExtend, ARMCC::CondCodes Cond) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *MF = BB->getParent(); MachineFunction::iterator It = BB; ++It; unsigned dest = MI->getOperand(0).getReg(); unsigned ptr = MI->getOperand(1).getReg(); unsigned incr = MI->getOperand(2).getReg(); unsigned oldval = dest; DebugLoc dl = MI->getDebugLoc(); bool isThumb2 = Subtarget->isThumb2(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); if (isThumb2) { MRI.constrainRegClass(dest, &ARM::rGPRRegClass); MRI.constrainRegClass(ptr, &ARM::rGPRRegClass); } unsigned ldrOpc, strOpc, extendOpc; switch (Size) { default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); case 1: ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB; break; case 2: ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH; break; case 4: ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; extendOpc = 0; break; } MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, loopMBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); const TargetRegisterClass *TRC = isThumb2 ? (const TargetRegisterClass*)&ARM::rGPRRegClass : (const TargetRegisterClass*)&ARM::GPRRegClass; unsigned scratch = MRI.createVirtualRegister(TRC); unsigned scratch2 = MRI.createVirtualRegister(TRC); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // loopMBB: // ldrex dest, ptr // (sign extend dest, if required) // cmp dest, incr // cmov.cond scratch2, incr, dest // strex scratch, scratch2, ptr // cmp scratch, #0 // bne- loopMBB // fallthrough --> exitMBB BB = loopMBB; MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); if (ldrOpc == ARM::t2LDREX) MIB.addImm(0); AddDefaultPred(MIB); // Sign extend the value, if necessary. if (signExtend && extendOpc) { oldval = MRI.createVirtualRegister(&ARM::GPRRegClass); AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval) .addReg(dest) .addImm(0)); } // Build compare and cmov instructions. AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) .addReg(oldval).addReg(incr)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2) .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR); MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr); if (strOpc == ARM::t2STREX) MIB.addImm(0); AddDefaultPred(MIB); AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(scratch).addImm(0)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; MI->eraseFromParent(); // The instruction is gone now. return BB; } MachineBasicBlock * ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB, unsigned Op1, unsigned Op2, bool NeedsCarry, bool IsCmpxchg, bool IsMinMax, ARMCC::CondCodes CC) const { // This also handles ATOMIC_SWAP, indicated by Op1==0. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *MF = BB->getParent(); MachineFunction::iterator It = BB; ++It; unsigned destlo = MI->getOperand(0).getReg(); unsigned desthi = MI->getOperand(1).getReg(); unsigned ptr = MI->getOperand(2).getReg(); unsigned vallo = MI->getOperand(3).getReg(); unsigned valhi = MI->getOperand(4).getReg(); DebugLoc dl = MI->getDebugLoc(); bool isThumb2 = Subtarget->isThumb2(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); if (isThumb2) { MRI.constrainRegClass(destlo, &ARM::rGPRRegClass); MRI.constrainRegClass(desthi, &ARM::rGPRRegClass); MRI.constrainRegClass(ptr, &ARM::rGPRRegClass); } MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *contBB = 0, *cont2BB = 0; if (IsCmpxchg || IsMinMax) contBB = MF->CreateMachineBasicBlock(LLVM_BB); if (IsCmpxchg) cont2BB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, loopMBB); if (IsCmpxchg || IsMinMax) MF->insert(It, contBB); if (IsCmpxchg) MF->insert(It, cont2BB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); const TargetRegisterClass *TRC = isThumb2 ? (const TargetRegisterClass*)&ARM::tGPRRegClass : (const TargetRegisterClass*)&ARM::GPRRegClass; unsigned storesuccess = MRI.createVirtualRegister(TRC); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // loopMBB: // ldrexd r2, r3, ptr // r0, r2, incr // r1, r3, incr // strexd storesuccess, r0, r1, ptr // cmp storesuccess, #0 // bne- loopMBB // fallthrough --> exitMBB BB = loopMBB; // Load if (isThumb2) { AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2LDREXD)) .addReg(destlo, RegState::Define) .addReg(desthi, RegState::Define) .addReg(ptr)); } else { unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass); AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDREXD)) .addReg(GPRPair0, RegState::Define).addReg(ptr)); // Copy r2/r3 into dest. (This copy will normally be coalesced.) BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo) .addReg(GPRPair0, 0, ARM::gsub_0); BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi) .addReg(GPRPair0, 0, ARM::gsub_1); } unsigned StoreLo, StoreHi; if (IsCmpxchg) { // Add early exit for (unsigned i = 0; i < 2; i++) { AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) .addReg(i == 0 ? destlo : desthi) .addReg(i == 0 ? vallo : valhi)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); BB->addSuccessor(exitMBB); BB->addSuccessor(i == 0 ? contBB : cont2BB); BB = (i == 0 ? contBB : cont2BB); } // Copy to physregs for strexd StoreLo = MI->getOperand(5).getReg(); StoreHi = MI->getOperand(6).getReg(); } else if (Op1) { // Perform binary operation unsigned tmpRegLo = MRI.createVirtualRegister(TRC); AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo) .addReg(destlo).addReg(vallo)) .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry)); unsigned tmpRegHi = MRI.createVirtualRegister(TRC); AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi) .addReg(desthi).addReg(valhi)) .addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax)); StoreLo = tmpRegLo; StoreHi = tmpRegHi; } else { // Copy to physregs for strexd StoreLo = vallo; StoreHi = valhi; } if (IsMinMax) { // Compare and branch to exit block. BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR); BB->addSuccessor(exitMBB); BB->addSuccessor(contBB); BB = contBB; StoreLo = vallo; StoreHi = valhi; } // Store if (isThumb2) { AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2STREXD), storesuccess) .addReg(StoreLo).addReg(StoreHi).addReg(ptr)); } else { // Marshal a pair... unsigned StorePair = MRI.createVirtualRegister(&ARM::GPRPairRegClass); unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass); unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass); BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair); BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1) .addReg(UndefPair) .addReg(StoreLo) .addImm(ARM::gsub_0); BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), StorePair) .addReg(r1) .addReg(StoreHi) .addImm(ARM::gsub_1); // ...and store it AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::STREXD), storesuccess) .addReg(StorePair).addReg(ptr)); } // Cmp+jump AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(storesuccess).addImm(0)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; MI->eraseFromParent(); // The instruction is gone now. return BB; } /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and /// registers the function context. void ARMTargetLowering:: SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *DispatchBB, int FI) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo *MRI = &MF->getRegInfo(); MachineConstantPool *MCP = MF->getConstantPool(); ARMFunctionInfo *AFI = MF->getInfo(); const Function *F = MF->getFunction(); bool isThumb = Subtarget->isThumb(); bool isThumb2 = Subtarget->isThumb2(); unsigned PCLabelId = AFI->createPICLabelUId(); unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8; ARMConstantPoolValue *CPV = ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj); unsigned CPI = MCP->getConstantPoolIndex(CPV, 4); const TargetRegisterClass *TRC = isThumb ? (const TargetRegisterClass*)&ARM::tGPRRegClass : (const TargetRegisterClass*)&ARM::GPRRegClass; // Grab constant pool and fixed stack memory operands. MachineMemOperand *CPMMO = MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 4, 4); MachineMemOperand *FIMMOSt = MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), MachineMemOperand::MOStore, 4, 4); // Load the address of the dispatch MBB into the jump buffer. if (isThumb2) { // Incoming value: jbuf // ldr.n r5, LCPI1_1 // orr r5, r5, #1 // add r5, pc // str r5, [$jbuf, #+4] ; &jbuf[1] unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1) .addConstantPoolIndex(CPI) .addMemOperand(CPMMO)); // Set the low bit because of thumb mode. unsigned NewVReg2 = MRI->createVirtualRegister(TRC); AddDefaultCC( AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2) .addReg(NewVReg1, RegState::Kill) .addImm(0x01))); unsigned NewVReg3 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3) .addReg(NewVReg2, RegState::Kill) .addImm(PCLabelId); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12)) .addReg(NewVReg3, RegState::Kill) .addFrameIndex(FI) .addImm(36) // &jbuf[1] :: pc .addMemOperand(FIMMOSt)); } else if (isThumb) { // Incoming value: jbuf // ldr.n r1, LCPI1_4 // add r1, pc // mov r2, #1 // orrs r1, r2 // add r2, $jbuf, #+4 ; &jbuf[1] // str r1, [r2] unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1) .addConstantPoolIndex(CPI) .addMemOperand(CPMMO)); unsigned NewVReg2 = MRI->createVirtualRegister(TRC); BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2) .addReg(NewVReg1, RegState::Kill) .addImm(PCLabelId); // Set the low bit because of thumb mode. unsigned NewVReg3 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3) .addReg(ARM::CPSR, RegState::Define) .addImm(1)); unsigned NewVReg4 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg2, RegState::Kill) .addReg(NewVReg3, RegState::Kill)); unsigned NewVReg5 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5) .addFrameIndex(FI) .addImm(36)); // &jbuf[1] :: pc AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi)) .addReg(NewVReg4, RegState::Kill) .addReg(NewVReg5, RegState::Kill) .addImm(0) .addMemOperand(FIMMOSt)); } else { // Incoming value: jbuf // ldr r1, LCPI1_1 // add r1, pc, r1 // str r1, [$jbuf, #+4] ; &jbuf[1] unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1) .addConstantPoolIndex(CPI) .addImm(0) .addMemOperand(CPMMO)); unsigned NewVReg2 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2) .addReg(NewVReg1, RegState::Kill) .addImm(PCLabelId)); AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12)) .addReg(NewVReg2, RegState::Kill) .addFrameIndex(FI) .addImm(36) // &jbuf[1] :: pc .addMemOperand(FIMMOSt)); } } MachineBasicBlock *ARMTargetLowering:: EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo *MRI = &MF->getRegInfo(); ARMFunctionInfo *AFI = MF->getInfo(); MachineFrameInfo *MFI = MF->getFrameInfo(); int FI = MFI->getFunctionContextIndex(); const TargetRegisterClass *TRC = Subtarget->isThumb() ? (const TargetRegisterClass*)&ARM::tGPRRegClass : (const TargetRegisterClass*)&ARM::GPRnopcRegClass; // Get a mapping of the call site numbers to all of the landing pads they're // associated with. DenseMap > CallSiteNumToLPad; unsigned MaxCSNum = 0; MachineModuleInfo &MMI = MF->getMMI(); for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) { if (!BB->isLandingPad()) continue; // FIXME: We should assert that the EH_LABEL is the first MI in the landing // pad. for (MachineBasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { if (!II->isEHLabel()) continue; MCSymbol *Sym = II->getOperand(0).getMCSymbol(); if (!MMI.hasCallSiteLandingPad(Sym)) continue; SmallVectorImpl &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym); for (SmallVectorImpl::iterator CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end(); CSI != CSE; ++CSI) { CallSiteNumToLPad[*CSI].push_back(BB); MaxCSNum = std::max(MaxCSNum, *CSI); } break; } } // Get an ordered list of the machine basic blocks for the jump table. std::vector LPadList; SmallPtrSet InvokeBBs; LPadList.reserve(CallSiteNumToLPad.size()); for (unsigned I = 1; I <= MaxCSNum; ++I) { SmallVectorImpl &MBBList = CallSiteNumToLPad[I]; for (SmallVectorImpl::iterator II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) { LPadList.push_back(*II); InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end()); } } assert(!LPadList.empty() && "No landing pad destinations for the dispatch jump table!"); // Create the jump table and associated information. MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline); unsigned MJTI = JTI->createJumpTableIndex(LPadList); unsigned UId = AFI->createJumpTableUId(); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); // Create the MBBs for the dispatch code. // Shove the dispatch's address into the return slot in the function context. MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); DispatchBB->setIsLandingPad(); MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); unsigned trap_opcode; if (Subtarget->isThumb()) trap_opcode = ARM::tTRAP; else trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; BuildMI(TrapBB, dl, TII->get(trap_opcode)); DispatchBB->addSuccessor(TrapBB); MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); DispatchBB->addSuccessor(DispContBB); // Insert and MBBs. MF->insert(MF->end(), DispatchBB); MF->insert(MF->end(), DispContBB); MF->insert(MF->end(), TrapBB); // Insert code into the entry block that creates and registers the function // context. SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI); MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4); MachineInstrBuilder MIB; MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup)); const ARMBaseInstrInfo *AII = static_cast(TII); const ARMBaseRegisterInfo &RI = AII->getRegisterInfo(); // Add a register mask with no preserved registers. This results in all // registers being marked as clobbered. MIB.addRegMask(RI.getNoPreservedMask()); unsigned NumLPads = LPadList.size(); if (Subtarget->isThumb2()) { unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1) .addFrameIndex(FI) .addImm(4) .addMemOperand(FIMMOLd)); if (NumLPads < 256) { AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri)) .addReg(NewVReg1) .addImm(LPadList.size())); } else { unsigned VReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1) .addImm(NumLPads & 0xFFFF)); unsigned VReg2 = VReg1; if ((NumLPads & 0xFFFF0000) != 0) { VReg2 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2) .addReg(VReg1) .addImm(NumLPads >> 16)); } AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr)) .addReg(NewVReg1) .addReg(VReg2)); } BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc)) .addMBB(TrapBB) .addImm(ARMCC::HI) .addReg(ARM::CPSR); unsigned NewVReg3 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3) .addJumpTableIndex(MJTI) .addImm(UId)); unsigned NewVReg4 = MRI->createVirtualRegister(TRC); AddDefaultCC( AddDefaultPred( BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4) .addReg(NewVReg3, RegState::Kill) .addReg(NewVReg1) .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT)) .addReg(NewVReg4, RegState::Kill) .addReg(NewVReg1) .addJumpTableIndex(MJTI) .addImm(UId); } else if (Subtarget->isThumb()) { unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1) .addFrameIndex(FI) .addImm(1) .addMemOperand(FIMMOLd)); if (NumLPads < 256) { AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8)) .addReg(NewVReg1) .addImm(NumLPads)); } else { MachineConstantPool *ConstantPool = MF->getConstantPool(); Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); const Constant *C = ConstantInt::get(Int32Ty, NumLPads); // MachineConstantPool wants an explicit alignment. unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); if (Align == 0) Align = getDataLayout()->getTypeAllocSize(C->getType()); unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); unsigned VReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci)) .addReg(VReg1, RegState::Define) .addConstantPoolIndex(Idx)); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr)) .addReg(NewVReg1) .addReg(VReg1)); } BuildMI(DispatchBB, dl, TII->get(ARM::tBcc)) .addMBB(TrapBB) .addImm(ARMCC::HI) .addReg(ARM::CPSR); unsigned NewVReg2 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg1) .addImm(2)); unsigned NewVReg3 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3) .addJumpTableIndex(MJTI) .addImm(UId)); unsigned NewVReg4 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg2, RegState::Kill) .addReg(NewVReg3)); MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(), MachineMemOperand::MOLoad, 4, 4); unsigned NewVReg5 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5) .addReg(NewVReg4, RegState::Kill) .addImm(0) .addMemOperand(JTMMOLd)); unsigned NewVReg6 = NewVReg5; if (RelocM == Reloc::PIC_) { NewVReg6 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6) .addReg(ARM::CPSR, RegState::Define) .addReg(NewVReg5, RegState::Kill) .addReg(NewVReg3)); } BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr)) .addReg(NewVReg6, RegState::Kill) .addJumpTableIndex(MJTI) .addImm(UId); } else { unsigned NewVReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1) .addFrameIndex(FI) .addImm(4) .addMemOperand(FIMMOLd)); if (NumLPads < 256) { AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri)) .addReg(NewVReg1) .addImm(NumLPads)); } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) { unsigned VReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1) .addImm(NumLPads & 0xFFFF)); unsigned VReg2 = VReg1; if ((NumLPads & 0xFFFF0000) != 0) { VReg2 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2) .addReg(VReg1) .addImm(NumLPads >> 16)); } AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) .addReg(NewVReg1) .addReg(VReg2)); } else { MachineConstantPool *ConstantPool = MF->getConstantPool(); Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); const Constant *C = ConstantInt::get(Int32Ty, NumLPads); // MachineConstantPool wants an explicit alignment. unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); if (Align == 0) Align = getDataLayout()->getTypeAllocSize(C->getType()); unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); unsigned VReg1 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp)) .addReg(VReg1, RegState::Define) .addConstantPoolIndex(Idx) .addImm(0)); AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) .addReg(NewVReg1) .addReg(VReg1, RegState::Kill)); } BuildMI(DispatchBB, dl, TII->get(ARM::Bcc)) .addMBB(TrapBB) .addImm(ARMCC::HI) .addReg(ARM::CPSR); unsigned NewVReg3 = MRI->createVirtualRegister(TRC); AddDefaultCC( AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3) .addReg(NewVReg1) .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); unsigned NewVReg4 = MRI->createVirtualRegister(TRC); AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4) .addJumpTableIndex(MJTI) .addImm(UId)); MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(), MachineMemOperand::MOLoad, 4, 4); unsigned NewVReg5 = MRI->createVirtualRegister(TRC); AddDefaultPred( BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5) .addReg(NewVReg3, RegState::Kill) .addReg(NewVReg4) .addImm(0) .addMemOperand(JTMMOLd)); if (RelocM == Reloc::PIC_) { BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd)) .addReg(NewVReg5, RegState::Kill) .addReg(NewVReg4) .addJumpTableIndex(MJTI) .addImm(UId); } else { BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr)) .addReg(NewVReg5, RegState::Kill) .addJumpTableIndex(MJTI) .addImm(UId); } } // Add the jump table entries as successors to the MBB. SmallPtrSet SeenMBBs; for (std::vector::iterator I = LPadList.begin(), E = LPadList.end(); I != E; ++I) { MachineBasicBlock *CurMBB = *I; if (SeenMBBs.insert(CurMBB)) DispContBB->addSuccessor(CurMBB); } // N.B. the order the invoke BBs are processed in doesn't matter here. const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF); SmallVector MBBLPads; for (SmallPtrSet::iterator I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) { MachineBasicBlock *BB = *I; // Remove the landing pad successor from the invoke block and replace it // with the new dispatch block. SmallVector Successors(BB->succ_begin(), BB->succ_end()); while (!Successors.empty()) { MachineBasicBlock *SMBB = Successors.pop_back_val(); if (SMBB->isLandingPad()) { BB->removeSuccessor(SMBB); MBBLPads.push_back(SMBB); } } BB->addSuccessor(DispatchBB); // Find the invoke call and mark all of the callee-saved registers as // 'implicit defined' so that they're spilled. This prevents code from // moving instructions to before the EH block, where they will never be // executed. for (MachineBasicBlock::reverse_iterator II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { if (!II->isCall()) continue; DenseMap DefRegs; for (MachineInstr::mop_iterator OI = II->operands_begin(), OE = II->operands_end(); OI != OE; ++OI) { if (!OI->isReg()) continue; DefRegs[OI->getReg()] = true; } MachineInstrBuilder MIB(*MF, &*II); for (unsigned i = 0; SavedRegs[i] != 0; ++i) { unsigned Reg = SavedRegs[i]; if (Subtarget->isThumb2() && !ARM::tGPRRegClass.contains(Reg) && !ARM::hGPRRegClass.contains(Reg)) continue; if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg)) continue; if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg)) continue; if (!DefRegs[Reg]) MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); } break; } } // Mark all former landing pads as non-landing pads. The dispatch is the only // landing pad now. for (SmallVectorImpl::iterator I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I) (*I)->setIsLandingPad(false); // The instruction is gone now. MI->eraseFromParent(); return MBB; } static MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) if (*I != Succ) return *I; llvm_unreachable("Expecting a BB with two successors!"); } MachineBasicBlock *ARMTargetLowering:: EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const { // This pseudo instruction has 3 operands: dst, src, size // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold(). // Otherwise, we will generate unrolled scalar copies. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; unsigned dest = MI->getOperand(0).getReg(); unsigned src = MI->getOperand(1).getReg(); unsigned SizeVal = MI->getOperand(2).getImm(); unsigned Align = MI->getOperand(3).getImm(); DebugLoc dl = MI->getDebugLoc(); bool isThumb2 = Subtarget->isThumb2(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned ldrOpc, strOpc, UnitSize = 0; const TargetRegisterClass *TRC = isThumb2 ? (const TargetRegisterClass*)&ARM::tGPRRegClass : (const TargetRegisterClass*)&ARM::GPRRegClass; const TargetRegisterClass *TRC_Vec = 0; if (Align & 1) { ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM; strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM; UnitSize = 1; } else if (Align & 2) { ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST; strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST; UnitSize = 2; } else { // Check whether we can use NEON instructions. if (!MF->getFunction()->getAttributes(). hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat) && Subtarget->hasNEON()) { if ((Align % 16 == 0) && SizeVal >= 16) { ldrOpc = ARM::VLD1q32wb_fixed; strOpc = ARM::VST1q32wb_fixed; UnitSize = 16; TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass; } else if ((Align % 8 == 0) && SizeVal >= 8) { ldrOpc = ARM::VLD1d32wb_fixed; strOpc = ARM::VST1d32wb_fixed; UnitSize = 8; TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass; } } // Can't use NEON instructions. if (UnitSize == 0) { ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM; UnitSize = 4; } } unsigned BytesLeft = SizeVal % UnitSize; unsigned LoopSize = SizeVal - BytesLeft; if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) { // Use LDR and STR to copy. // [scratch, srcOut] = LDR_POST(srcIn, UnitSize) // [destOut] = STR_POST(scratch, destIn, UnitSize) unsigned srcIn = src; unsigned destIn = dest; for (unsigned i = 0; i < LoopSize; i+=UnitSize) { unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC); unsigned srcOut = MRI.createVirtualRegister(TRC); unsigned destOut = MRI.createVirtualRegister(TRC); if (UnitSize >= 8) { AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ldrOpc), scratch) .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0)); AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) .addReg(destIn).addImm(0).addReg(scratch)); } else if (isThumb2) { AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ldrOpc), scratch) .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize)); AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) .addReg(scratch).addReg(destIn) .addImm(UnitSize)); } else { AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ldrOpc), scratch) .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0) .addImm(UnitSize)); AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) .addReg(scratch).addReg(destIn) .addReg(0).addImm(UnitSize)); } srcIn = srcOut; destIn = destOut; } // Handle the leftover bytes with LDRB and STRB. // [scratch, srcOut] = LDRB_POST(srcIn, 1) // [destOut] = STRB_POST(scratch, destIn, 1) ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM; strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM; for (unsigned i = 0; i < BytesLeft; i++) { unsigned scratch = MRI.createVirtualRegister(TRC); unsigned srcOut = MRI.createVirtualRegister(TRC); unsigned destOut = MRI.createVirtualRegister(TRC); if (isThumb2) { AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ldrOpc),scratch) .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1)); AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) .addReg(scratch).addReg(destIn) .addReg(0).addImm(1)); } else { AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ldrOpc),scratch) .addReg(srcOut, RegState::Define).addReg(srcIn) .addReg(0).addImm(1)); AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) .addReg(scratch).addReg(destIn) .addReg(0).addImm(1)); } srcIn = srcOut; destIn = destOut; } MI->eraseFromParent(); // The instruction is gone now. return BB; } // Expand the pseudo op to a loop. // thisMBB: // ... // movw varEnd, # --> with thumb2 // movt varEnd, # // ldrcp varEnd, idx --> without thumb2 // fallthrough --> loopMBB // loopMBB: // PHI varPhi, varEnd, varLoop // PHI srcPhi, src, srcLoop // PHI destPhi, dst, destLoop // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) // [destLoop] = STR_POST(scratch, destPhi, UnitSize) // subs varLoop, varPhi, #UnitSize // bne loopMBB // fallthrough --> exitMBB // exitMBB: // epilogue to handle left-over bytes // [scratch, srcOut] = LDRB_POST(srcLoop, 1) // [destOut] = STRB_POST(scratch, destLoop, 1) MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, loopMBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); // Load an immediate to varEnd. unsigned varEnd = MRI.createVirtualRegister(TRC); if (isThumb2) { unsigned VReg1 = varEnd; if ((LoopSize & 0xFFFF0000) != 0) VReg1 = MRI.createVirtualRegister(TRC); AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1) .addImm(LoopSize & 0xFFFF)); if ((LoopSize & 0xFFFF0000) != 0) AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd) .addReg(VReg1) .addImm(LoopSize >> 16)); } else { MachineConstantPool *ConstantPool = MF->getConstantPool(); Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); const Constant *C = ConstantInt::get(Int32Ty, LoopSize); // MachineConstantPool wants an explicit alignment. unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); if (Align == 0) Align = getDataLayout()->getTypeAllocSize(C->getType()); unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp)) .addReg(varEnd, RegState::Define) .addConstantPoolIndex(Idx) .addImm(0)); } BB->addSuccessor(loopMBB); // Generate the loop body: // varPhi = PHI(varLoop, varEnd) // srcPhi = PHI(srcLoop, src) // destPhi = PHI(destLoop, dst) MachineBasicBlock *entryBB = BB; BB = loopMBB; unsigned varLoop = MRI.createVirtualRegister(TRC); unsigned varPhi = MRI.createVirtualRegister(TRC); unsigned srcLoop = MRI.createVirtualRegister(TRC); unsigned srcPhi = MRI.createVirtualRegister(TRC); unsigned destLoop = MRI.createVirtualRegister(TRC); unsigned destPhi = MRI.createVirtualRegister(TRC); BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi) .addReg(varLoop).addMBB(loopMBB) .addReg(varEnd).addMBB(entryBB); BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi) .addReg(srcLoop).addMBB(loopMBB) .addReg(src).addMBB(entryBB); BuildMI(BB, dl, TII->get(ARM::PHI), destPhi) .addReg(destLoop).addMBB(loopMBB) .addReg(dest).addMBB(entryBB); // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) // [destLoop] = STR_POST(scratch, destPhi, UnitSiz) unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC); if (UnitSize >= 8) { AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch) .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0)); AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop) .addReg(destPhi).addImm(0).addReg(scratch)); } else if (isThumb2) { AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch) .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize)); AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop) .addReg(scratch).addReg(destPhi) .addImm(UnitSize)); } else { AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch) .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0) .addImm(UnitSize)); AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop) .addReg(scratch).addReg(destPhi) .addReg(0).addImm(UnitSize)); } // Decrement loop variable by UnitSize. MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop); AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize))); MIB->getOperand(5).setReg(ARM::CPSR); MIB->getOperand(5).setIsDef(true); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); // loopMBB can loop back to loopMBB or fall through to exitMBB. BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // Add epilogue to handle BytesLeft. BB = exitMBB; MachineInstr *StartOfExit = exitMBB->begin(); ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM; strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM; // [scratch, srcOut] = LDRB_POST(srcLoop, 1) // [destOut] = STRB_POST(scratch, destLoop, 1) unsigned srcIn = srcLoop; unsigned destIn = destLoop; for (unsigned i = 0; i < BytesLeft; i++) { unsigned scratch = MRI.createVirtualRegister(TRC); unsigned srcOut = MRI.createVirtualRegister(TRC); unsigned destOut = MRI.createVirtualRegister(TRC); if (isThumb2) { AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(ldrOpc),scratch) .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1)); AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut) .addReg(scratch).addReg(destIn) .addImm(1)); } else { AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(ldrOpc),scratch) .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1)); AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut) .addReg(scratch).addReg(destIn) .addReg(0).addImm(1)); } srcIn = srcOut; destIn = destOut; } MI->eraseFromParent(); // The instruction is gone now. return BB; } MachineBasicBlock * ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); bool isThumb2 = Subtarget->isThumb2(); switch (MI->getOpcode()) { default: { MI->dump(); llvm_unreachable("Unexpected instr type to insert"); } // The Thumb2 pre-indexed stores have the same MI operands, they just // define them differently in the .td files from the isel patterns, so // they need pseudos. case ARM::t2STR_preidx: MI->setDesc(TII->get(ARM::t2STR_PRE)); return BB; case ARM::t2STRB_preidx: MI->setDesc(TII->get(ARM::t2STRB_PRE)); return BB; case ARM::t2STRH_preidx: MI->setDesc(TII->get(ARM::t2STRH_PRE)); return BB; case ARM::STRi_preidx: case ARM::STRBi_preidx: { unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM; // Decode the offset. unsigned Offset = MI->getOperand(4).getImm(); bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub; Offset = ARM_AM::getAM2Offset(Offset); if (isSub) Offset = -Offset; MachineMemOperand *MMO = *MI->memoperands_begin(); BuildMI(*BB, MI, dl, TII->get(NewOpc)) .addOperand(MI->getOperand(0)) // Rn_wb .addOperand(MI->getOperand(1)) // Rt .addOperand(MI->getOperand(2)) // Rn .addImm(Offset) // offset (skip GPR==zero_reg) .addOperand(MI->getOperand(5)) // pred .addOperand(MI->getOperand(6)) .addMemOperand(MMO); MI->eraseFromParent(); return BB; } case ARM::STRr_preidx: case ARM::STRBr_preidx: case ARM::STRH_preidx: { unsigned NewOpc; switch (MI->getOpcode()) { default: llvm_unreachable("unexpected opcode!"); case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break; case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break; case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break; } MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc)); for (unsigned i = 0; i < MI->getNumOperands(); ++i) MIB.addOperand(MI->getOperand(i)); MI->eraseFromParent(); return BB; } case ARM::ATOMIC_LOAD_ADD_I8: return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); case ARM::ATOMIC_LOAD_ADD_I16: return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); case ARM::ATOMIC_LOAD_ADD_I32: return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); case ARM::ATOMIC_LOAD_AND_I8: return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); case ARM::ATOMIC_LOAD_AND_I16: return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); case ARM::ATOMIC_LOAD_AND_I32: return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); case ARM::ATOMIC_LOAD_OR_I8: return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); case ARM::ATOMIC_LOAD_OR_I16: return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); case ARM::ATOMIC_LOAD_OR_I32: return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); case ARM::ATOMIC_LOAD_XOR_I8: return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr); case ARM::ATOMIC_LOAD_XOR_I16: return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr); case ARM::ATOMIC_LOAD_XOR_I32: return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr); case ARM::ATOMIC_LOAD_NAND_I8: return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr); case ARM::ATOMIC_LOAD_NAND_I16: return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr); case ARM::ATOMIC_LOAD_NAND_I32: return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr); case ARM::ATOMIC_LOAD_SUB_I8: return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); case ARM::ATOMIC_LOAD_SUB_I16: return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); case ARM::ATOMIC_LOAD_SUB_I32: return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); case ARM::ATOMIC_LOAD_MIN_I8: return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT); case ARM::ATOMIC_LOAD_MIN_I16: return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT); case ARM::ATOMIC_LOAD_MIN_I32: return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT); case ARM::ATOMIC_LOAD_MAX_I8: return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT); case ARM::ATOMIC_LOAD_MAX_I16: return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT); case ARM::ATOMIC_LOAD_MAX_I32: return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT); case ARM::ATOMIC_LOAD_UMIN_I8: return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO); case ARM::ATOMIC_LOAD_UMIN_I16: return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO); case ARM::ATOMIC_LOAD_UMIN_I32: return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO); case ARM::ATOMIC_LOAD_UMAX_I8: return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI); case ARM::ATOMIC_LOAD_UMAX_I16: return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI); case ARM::ATOMIC_LOAD_UMAX_I32: return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI); case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0); case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0); case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0); case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1); case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2); case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4); case ARM::ATOMADD6432: return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr, isThumb2 ? ARM::t2ADCrr : ARM::ADCrr, /*NeedsCarry*/ true); case ARM::ATOMSUB6432: return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, /*NeedsCarry*/ true); case ARM::ATOMOR6432: return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); case ARM::ATOMXOR6432: return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr, isThumb2 ? ARM::t2EORrr : ARM::EORrr); case ARM::ATOMAND6432: return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); case ARM::ATOMSWAP6432: return EmitAtomicBinary64(MI, BB, 0, 0, false); case ARM::ATOMCMPXCHG6432: return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, /*NeedsCarry*/ false, /*IsCmpxchg*/true); case ARM::ATOMMIN6432: return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, /*NeedsCarry*/ true, /*IsCmpxchg*/false, /*IsMinMax*/ true, ARMCC::LT); case ARM::ATOMMAX6432: return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, /*NeedsCarry*/ true, /*IsCmpxchg*/false, /*IsMinMax*/ true, ARMCC::GE); case ARM::ATOMUMIN6432: return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, /*NeedsCarry*/ true, /*IsCmpxchg*/false, /*IsMinMax*/ true, ARMCC::LO); case ARM::ATOMUMAX6432: return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, /*NeedsCarry*/ true, /*IsCmpxchg*/false, /*IsMinMax*/ true, ARMCC::HS); case ARM::tMOVCCr_pseudo: { // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } case ARM::BCCi64: case ARM::BCCZi64: { // If there is an unconditional branch to the other successor, remove it. BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); // Compare both parts that make up the double comparison separately for // equality. bool RHSisZero = MI->getOpcode() == ARM::BCCZi64; unsigned LHS1 = MI->getOperand(1).getReg(); unsigned LHS2 = MI->getOperand(2).getReg(); if (RHSisZero) { AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(LHS1).addImm(0)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(LHS2).addImm(0) .addImm(ARMCC::EQ).addReg(ARM::CPSR); } else { unsigned RHS1 = MI->getOperand(3).getReg(); unsigned RHS2 = MI->getOperand(4).getReg(); AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) .addReg(LHS1).addReg(RHS1)); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) .addReg(LHS2).addReg(RHS2) .addImm(ARMCC::EQ).addReg(ARM::CPSR); } MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB(); MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB); if (MI->getOperand(0).getImm() == ARMCC::NE) std::swap(destMBB, exitMBB); BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR); if (isThumb2) AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB)); else BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } case ARM::Int_eh_sjlj_setjmp: case ARM::Int_eh_sjlj_setjmp_nofp: case ARM::tInt_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp_nofp: EmitSjLjDispatchBlock(MI, BB); return BB; case ARM::ABS: case ARM::t2ABS: { // To insert an ABS instruction, we have to insert the // diamond control-flow pattern. The incoming instruction knows the // source vreg to test against 0, the destination vreg to set, // the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. // It transforms // V1 = ABS V0 // into // V2 = MOVS V0 // BCC (branch to SinkBB if V0 >= 0) // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0) // SinkBB: V1 = PHI(V2, V3) const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator BBI = BB; ++BBI; MachineFunction *Fn = BB->getParent(); MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB); Fn->insert(BBI, RSBBB); Fn->insert(BBI, SinkBB); unsigned int ABSSrcReg = MI->getOperand(1).getReg(); unsigned int ABSDstReg = MI->getOperand(0).getReg(); bool isThumb2 = Subtarget->isThumb2(); MachineRegisterInfo &MRI = Fn->getRegInfo(); // In Thumb mode S must not be specified if source register is the SP or // PC and if destination register is the SP, so restrict register class unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ? (const TargetRegisterClass*)&ARM::rGPRRegClass : (const TargetRegisterClass*)&ARM::GPRRegClass); // Transfer the remainder of BB and its successor edges to sinkMBB. SinkBB->splice(SinkBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); SinkBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(RSBBB); BB->addSuccessor(SinkBB); // fall through to SinkMBB RSBBB->addSuccessor(SinkBB); // insert a cmp at the end of BB AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) .addReg(ABSSrcReg).addImm(0)); // insert a bcc with opposite CC to ARMCC::MI at the end of BB BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB) .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR); // insert rsbri in RSBBB // Note: BCC and rsbri will be converted into predicated rsbmi // by if-conversion pass BuildMI(*RSBBB, RSBBB->begin(), dl, TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg) .addReg(ABSSrcReg, RegState::Kill) .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0); // insert PHI in SinkBB, // reuse ABSDstReg to not change uses of ABS instruction BuildMI(*SinkBB, SinkBB->begin(), dl, TII->get(ARM::PHI), ABSDstReg) .addReg(NewRsbDstReg).addMBB(RSBBB) .addReg(ABSSrcReg).addMBB(BB); // remove ABS instruction MI->eraseFromParent(); // return last added BB return SinkBB; } case ARM::COPY_STRUCT_BYVAL_I32: ++NumLoopByVals; return EmitStructByval(MI, BB); } } void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const { if (!MI->hasPostISelHook()) { assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'"); return; } const MCInstrDesc *MCID = &MI->getDesc(); // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB, // RSC. Coming out of isel, they have an implicit CPSR def, but the optional // operand is still set to noreg. If needed, set the optional operand's // register to CPSR, and remove the redundant implicit def. // // e.g. ADCS (..., CPSR) -> ADC (... opt:CPSR). // Rename pseudo opcodes. unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode()); if (NewOpc) { const ARMBaseInstrInfo *TII = static_cast(getTargetMachine().getInstrInfo()); MCID = &TII->get(NewOpc); assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 && "converted opcode should be the same except for cc_out"); MI->setDesc(*MCID); // Add the optional cc_out operand MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true)); } unsigned ccOutIdx = MCID->getNumOperands() - 1; // Any ARM instruction that sets the 's' bit should specify an optional // "cc_out" operand in the last operand position. if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) { assert(!NewOpc && "Optional cc_out operand required"); return; } // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it // since we already have an optional CPSR def. bool definesCPSR = false; bool deadCPSR = false; for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) { definesCPSR = true; if (MO.isDead()) deadCPSR = true; MI->RemoveOperand(i); break; } } if (!definesCPSR) { assert(!NewOpc && "Optional cc_out operand required"); return; } assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag"); if (deadCPSR) { assert(!MI->getOperand(ccOutIdx).getReg() && "expect uninitialized optional cc_out operand"); return; } // If this instruction was defined with an optional CPSR def and its dag node // had a live implicit CPSR def, then activate the optional CPSR def. MachineOperand &MO = MI->getOperand(ccOutIdx); MO.setReg(ARM::CPSR); MO.setIsDef(true); } //===----------------------------------------------------------------------===// // ARM Optimization Hooks //===----------------------------------------------------------------------===// // Helper function that checks if N is a null or all ones constant. static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { ConstantSDNode *C = dyn_cast(N); if (!C) return false; return AllOnes ? C->isAllOnesValue() : C->isNullValue(); } // Return true if N is conditionally 0 or all ones. // Detects these expressions where cc is an i1 value: // // (select cc 0, y) [AllOnes=0] // (select cc y, 0) [AllOnes=0] // (zext cc) [AllOnes=0] // (sext cc) [AllOnes=0/1] // (select cc -1, y) [AllOnes=1] // (select cc y, -1) [AllOnes=1] // // Invert is set when N is the null/all ones constant when CC is false. // OtherOp is set to the alternative value of N. static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, bool &Invert, SDValue &OtherOp, SelectionDAG &DAG) { switch (N->getOpcode()) { default: return false; case ISD::SELECT: { CC = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); if (isZeroOrAllOnes(N1, AllOnes)) { Invert = false; OtherOp = N2; return true; } if (isZeroOrAllOnes(N2, AllOnes)) { Invert = true; OtherOp = N1; return true; } return false; } case ISD::ZERO_EXTEND: // (zext cc) can never be the all ones value. if (AllOnes) return false; // Fall through. case ISD::SIGN_EXTEND: { EVT VT = N->getValueType(0); CC = N->getOperand(0); if (CC.getValueType() != MVT::i1) return false; Invert = !AllOnes; if (AllOnes) // When looking for an AllOnes constant, N is an sext, and the 'other' // value is 0. OtherOp = DAG.getConstant(0, VT); else if (N->getOpcode() == ISD::ZERO_EXTEND) // When looking for a 0 constant, N can be zext or sext. OtherOp = DAG.getConstant(1, VT); else OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT); return true; } } } // Combine a constant select operand into its use: // // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) // // The transform is rejected if the select doesn't have a constant operand that // is null, or all ones when AllOnes is set. // // Also recognize sext/zext from i1: // // (add (zext cc), x) -> (select cc (add x, 1), x) // (add (sext cc), x) -> (select cc (add x, -1), x) // // These transformations eventually create predicated instructions. // // @param N The node to transform. // @param Slct The N operand that is a select. // @param OtherOp The other N operand (x above). // @param DCI Context. // @param AllOnes Require the select constant to be all ones instead of null. // @returns The new node, or SDValue() on failure. static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, TargetLowering::DAGCombinerInfo &DCI, bool AllOnes = false) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDValue NonConstantVal; SDValue CCOp; bool SwapSelectOps; if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, NonConstantVal, DAG)) return SDValue(); // Slct is now know to be the desired identity constant when CC is true. SDValue TrueVal = OtherOp; SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); // Unless SwapSelectOps says CC should be false. if (SwapSelectOps) std::swap(TrueVal, FalseVal); return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); } // Attempt combineSelectAndUse on each operand of a commutative operator N. static SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, TargetLowering::DAGCombinerInfo &DCI) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (N0.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes); if (Result.getNode()) return Result; } if (N1.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes); if (Result.getNode()) return Result; } return SDValue(); } // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction // (only after legalization). static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Only perform optimization if after legalize, and if NEON is available. We // also expected both operands to be BUILD_VECTORs. if (DCI.isBeforeLegalize() || !Subtarget->hasNEON() || N0.getOpcode() != ISD::BUILD_VECTOR || N1.getOpcode() != ISD::BUILD_VECTOR) return SDValue(); // Check output type since VPADDL operand elements can only be 8, 16, or 32. EVT VT = N->getValueType(0); if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64) return SDValue(); // Check that the vector operands are of the right form. // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR // operands, where N is the size of the formed vector. // Each EXTRACT_VECTOR should have the same input vector and odd or even // index such that we have a pair wise add pattern. // Grab the vector that all EXTRACT_VECTOR nodes should be referencing. if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue Vec = N0->getOperand(0)->getOperand(0); SDNode *V = Vec.getNode(); unsigned nextIndex = 0; // For each operands to the ADD which are BUILD_VECTORs, // check to see if each of their operands are an EXTRACT_VECTOR with // the same vector and appropriate index. for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) { if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { SDValue ExtVec0 = N0->getOperand(i); SDValue ExtVec1 = N1->getOperand(i); // First operand is the vector, verify its the same. if (V != ExtVec0->getOperand(0).getNode() || V != ExtVec1->getOperand(0).getNode()) return SDValue(); // Second is the constant, verify its correct. ConstantSDNode *C0 = dyn_cast(ExtVec0->getOperand(1)); ConstantSDNode *C1 = dyn_cast(ExtVec1->getOperand(1)); // For the constant, we want to see all the even or all the odd. if (!C0 || !C1 || C0->getZExtValue() != nextIndex || C1->getZExtValue() != nextIndex+1) return SDValue(); // Increment index. nextIndex+=2; } else return SDValue(); } // Create VPADDL node. SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Build operand list. SmallVector Ops; Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, TLI.getPointerTy())); // Input is the vector. Ops.push_back(Vec); // Get widened type and narrowed type. MVT widenType; unsigned numElem = VT.getVectorNumElements(); switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break; case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break; case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break; default: llvm_unreachable("Invalid vector element type for padd optimization."); } SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), widenType, &Ops[0], Ops.size()); return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, tmp); } static SDValue findMUL_LOHI(SDValue V) { if (V->getOpcode() == ISD::UMUL_LOHI || V->getOpcode() == ISD::SMUL_LOHI) return V; return SDValue(); } static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (Subtarget->isThumb1Only()) return SDValue(); // Only perform the checks after legalize when the pattern is available. if (DCI.isBeforeLegalize()) return SDValue(); // Look for multiply add opportunities. // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where // each add nodes consumes a value from ISD::UMUL_LOHI and there is // a glue link from the first add to the second add. // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by // a S/UMLAL instruction. // loAdd UMUL_LOHI // \ / :lo \ :hi // \ / \ [no multiline comment] // ADDC | hiAdd // \ :glue / / // \ / / // ADDE // assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC"); SDValue AddcOp0 = AddcNode->getOperand(0); SDValue AddcOp1 = AddcNode->getOperand(1); // Check if the two operands are from the same mul_lohi node. if (AddcOp0.getNode() == AddcOp1.getNode()) return SDValue(); assert(AddcNode->getNumValues() == 2 && AddcNode->getValueType(0) == MVT::i32 && "Expect ADDC with two result values. First: i32"); // Check that we have a glued ADDC node. if (AddcNode->getValueType(1) != MVT::Glue) return SDValue(); // Check that the ADDC adds the low result of the S/UMUL_LOHI. if (AddcOp0->getOpcode() != ISD::UMUL_LOHI && AddcOp0->getOpcode() != ISD::SMUL_LOHI && AddcOp1->getOpcode() != ISD::UMUL_LOHI && AddcOp1->getOpcode() != ISD::SMUL_LOHI) return SDValue(); // Look for the glued ADDE. SDNode* AddeNode = AddcNode->getGluedUser(); if (AddeNode == NULL) return SDValue(); // Make sure it is really an ADDE. if (AddeNode->getOpcode() != ISD::ADDE) return SDValue(); assert(AddeNode->getNumOperands() == 3 && AddeNode->getOperand(2).getValueType() == MVT::Glue && "ADDE node has the wrong inputs"); // Check for the triangle shape. SDValue AddeOp0 = AddeNode->getOperand(0); SDValue AddeOp1 = AddeNode->getOperand(1); // Make sure that the ADDE operands are not coming from the same node. if (AddeOp0.getNode() == AddeOp1.getNode()) return SDValue(); // Find the MUL_LOHI node walking up ADDE's operands. bool IsLeftOperandMUL = false; SDValue MULOp = findMUL_LOHI(AddeOp0); if (MULOp == SDValue()) MULOp = findMUL_LOHI(AddeOp1); else IsLeftOperandMUL = true; if (MULOp == SDValue()) return SDValue(); // Figure out the right opcode. unsigned Opc = MULOp->getOpcode(); unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL; // Figure out the high and low input values to the MLAL node. SDValue* HiMul = &MULOp; SDValue* HiAdd = NULL; SDValue* LoMul = NULL; SDValue* LowAdd = NULL; if (IsLeftOperandMUL) HiAdd = &AddeOp1; else HiAdd = &AddeOp0; if (AddcOp0->getOpcode() == Opc) { LoMul = &AddcOp0; LowAdd = &AddcOp1; } if (AddcOp1->getOpcode() == Opc) { LoMul = &AddcOp1; LowAdd = &AddcOp0; } if (LoMul == NULL) return SDValue(); if (LoMul->getNode() != HiMul->getNode()) return SDValue(); // Create the merged node. SelectionDAG &DAG = DCI.DAG; // Build operand list. SmallVector Ops; Ops.push_back(LoMul->getOperand(0)); Ops.push_back(LoMul->getOperand(1)); Ops.push_back(*LowAdd); Ops.push_back(*HiAdd); SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode), DAG.getVTList(MVT::i32, MVT::i32), &Ops[0], Ops.size()); // Replace the ADDs' nodes uses by the MLA node's values. SDValue HiMLALResult(MLALNode.getNode(), 1); DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult); SDValue LoMLALResult(MLALNode.getNode(), 0); DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult); // Return original node to notify the driver to stop replacing. SDValue resNode(AddcNode, 0); return resNode; } /// PerformADDCCombine - Target-specific dag combine transform from /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL. static SDValue PerformADDCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { return AddCombineTo64bitMLAL(N, DCI, Subtarget); } /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with /// operands N0 and N1. This is a helper for PerformADDCombine that is /// called with the default operands, and if that fails, with commuted /// operands. static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget){ // Attempt to create vpaddl for this add. SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget); if (Result.getNode()) return Result; // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) if (N0.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N0, N1, DCI); if (Result.getNode()) return Result; } return SDValue(); } /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. /// static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // First try with the default operand order. SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget); if (Result.getNode()) return Result; // If that didn't work, try again with the operands commuted. return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget); } /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. /// static SDValue PerformSUBCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) if (N1.getNode()->hasOneUse()) { SDValue Result = combineSelectAndUse(N, N1, N0, DCI); if (Result.getNode()) return Result; } return SDValue(); } /// PerformVMULCombine /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the /// special multiplier accumulator forwarding. /// vmul d3, d0, d2 /// vmla d3, d1, d2 /// is faster than /// vadd d3, d0, d1 /// vmul d3, d3, d2 static SDValue PerformVMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { if (!Subtarget->hasVMLxForwarding()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); unsigned Opcode = N0.getOpcode(); if (Opcode != ISD::ADD && Opcode != ISD::SUB && Opcode != ISD::FADD && Opcode != ISD::FSUB) { Opcode = N1.getOpcode(); if (Opcode != ISD::ADD && Opcode != ISD::SUB && Opcode != ISD::FADD && Opcode != ISD::FSUB) return SDValue(); std::swap(N0, N1); } EVT VT = N->getValueType(0); SDLoc DL(N); SDValue N00 = N0->getOperand(0); SDValue N01 = N0->getOperand(1); return DAG.getNode(Opcode, DL, VT, DAG.getNode(ISD::MUL, DL, VT, N00, N1), DAG.getNode(ISD::MUL, DL, VT, N01, N1)); } static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; if (Subtarget->isThumb1Only()) return SDValue(); if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); EVT VT = N->getValueType(0); if (VT.is64BitVector() || VT.is128BitVector()) return PerformVMULCombine(N, DCI, Subtarget); if (VT != MVT::i32) return SDValue(); ConstantSDNode *C = dyn_cast(N->getOperand(1)); if (!C) return SDValue(); int64_t MulAmt = C->getSExtValue(); unsigned ShiftAmt = countTrailingZeros(MulAmt); ShiftAmt = ShiftAmt & (32 - 1); SDValue V = N->getOperand(0); SDLoc DL(N); SDValue Res; MulAmt >>= ShiftAmt; if (MulAmt >= 0) { if (isPowerOf2_32(MulAmt - 1)) { // (mul x, 2^N + 1) => (add (shl x, N), x) Res = DAG.getNode(ISD::ADD, DL, VT, V, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmt - 1), MVT::i32))); } else if (isPowerOf2_32(MulAmt + 1)) { // (mul x, 2^N - 1) => (sub (shl x, N), x) Res = DAG.getNode(ISD::SUB, DL, VT, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmt + 1), MVT::i32)), V); } else return SDValue(); } else { uint64_t MulAmtAbs = -MulAmt; if (isPowerOf2_32(MulAmtAbs + 1)) { // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) Res = DAG.getNode(ISD::SUB, DL, VT, V, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmtAbs + 1), MVT::i32))); } else if (isPowerOf2_32(MulAmtAbs - 1)) { // (mul x, -(2^N + 1)) => - (add (shl x, N), x) Res = DAG.getNode(ISD::ADD, DL, VT, V, DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(Log2_32(MulAmtAbs-1), MVT::i32))); Res = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, MVT::i32),Res); } else return SDValue(); } if (ShiftAmt != 0) Res = DAG.getNode(ISD::SHL, DL, VT, Res, DAG.getConstant(ShiftAmt, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); return SDValue(); } static SDValue PerformANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Attempt to use immediate-form VBIC BuildVectorSDNode *BVN = dyn_cast(N->getOperand(1)); SDLoc dl(N); EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN && BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { if (SplatBitSize <= 64) { EVT VbicVT; SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG, VbicVT, VT.is128BitVector(), OtherModImm); if (Val.getNode()) { SDValue Input = DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0)); SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vbic); } } } if (!Subtarget->isThumb1Only()) { // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) SDValue Result = combineSelectAndUseCommutative(N, true, DCI); if (Result.getNode()) return Result; } return SDValue(); } /// PerformORCombine - Target-specific dag combine xforms for ISD::OR static SDValue PerformORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { // Attempt to use immediate-form VORR BuildVectorSDNode *BVN = dyn_cast(N->getOperand(1)); SDLoc dl(N); EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN && Subtarget->hasNEON() && BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { if (SplatBitSize <= 64) { EVT VorrVT; SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG, VorrVT, VT.is128BitVector(), OtherModImm); if (Val.getNode()) { SDValue Input = DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0)); SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val); return DAG.getNode(ISD::BITCAST, dl, VT, Vorr); } } } if (!Subtarget->isThumb1Only()) { // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) SDValue Result = combineSelectAndUseCommutative(N, false, DCI); if (Result.getNode()) return Result; } // The code below optimizes (or (and X, Y), Z). // The AND operand needs to have a single user to make these optimizations // profitable. SDValue N0 = N->getOperand(0); if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) return SDValue(); SDValue N1 = N->getOperand(1); // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) { APInt SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; APInt SplatBits0, SplatBits1; BuildVectorSDNode *BVN0 = dyn_cast(N0->getOperand(1)); BuildVectorSDNode *BVN1 = dyn_cast(N1->getOperand(1)); // Ensure that the second operand of both ands are constants if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, HasAnyUndefs) && !HasAnyUndefs) { if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, HasAnyUndefs) && !HasAnyUndefs) { // Ensure that the bit width of the constants are the same and that // the splat arguments are logical inverses as per the pattern we // are trying to simplify. if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() && SplatBits0 == ~SplatBits1) { // Canonicalize the vector type to make instruction selection // simpler. EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT, N0->getOperand(1), N0->getOperand(0), N1->getOperand(0)); return DAG.getNode(ISD::BITCAST, dl, VT, Result); } } } } // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when // reasonable. // BFI is only available on V6T2+ if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops()) return SDValue(); SDLoc DL(N); // 1) or (and A, mask), val => ARMbfi A, val, mask // iff (val & mask) == val // // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2) // && mask == ~mask2 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2) // && ~mask == mask2 // (i.e., copy a bitfield value into another bitfield of the same width) if (VT != MVT::i32) return SDValue(); SDValue N00 = N0.getOperand(0); // The value and the mask need to be constants so we can verify this is // actually a bitfield set. If the mask is 0xffff, we can do better // via a movt instruction, so don't use BFI in that case. SDValue MaskOp = N0.getOperand(1); ConstantSDNode *MaskC = dyn_cast(MaskOp); if (!MaskC) return SDValue(); unsigned Mask = MaskC->getZExtValue(); if (Mask == 0xffff) return SDValue(); SDValue Res; // Case (1): or (and A, mask), val => ARMbfi A, val, mask ConstantSDNode *N1C = dyn_cast(N1); if (N1C) { unsigned Val = N1C->getZExtValue(); if ((Val & ~Mask) != Val) return SDValue(); if (ARM::isBitFieldInvertedMask(Mask)) { Val >>= countTrailingZeros(~Mask); Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, DAG.getConstant(Val, MVT::i32), DAG.getConstant(Mask, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); return SDValue(); } } else if (N1.getOpcode() == ISD::AND) { // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask ConstantSDNode *N11C = dyn_cast(N1.getOperand(1)); if (!N11C) return SDValue(); unsigned Mask2 = N11C->getZExtValue(); // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern // as is to match. if (ARM::isBitFieldInvertedMask(Mask) && (Mask == ~Mask2)) { // The pack halfword instruction works better for masks that fit it, // so use that when it's available. if (Subtarget->hasT2ExtractPack() && (Mask == 0xffff || Mask == 0xffff0000)) return SDValue(); // 2a unsigned amt = countTrailingZeros(Mask2); Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0), DAG.getConstant(amt, MVT::i32)); Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res, DAG.getConstant(Mask, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); return SDValue(); } else if (ARM::isBitFieldInvertedMask(~Mask) && (~Mask == Mask2)) { // The pack halfword instruction works better for masks that fit it, // so use that when it's available. if (Subtarget->hasT2ExtractPack() && (Mask2 == 0xffff || Mask2 == 0xffff0000)) return SDValue(); // 2b unsigned lsb = countTrailingZeros(Mask); Res = DAG.getNode(ISD::SRL, DL, VT, N00, DAG.getConstant(lsb, MVT::i32)); Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res, DAG.getConstant(Mask2, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); return SDValue(); } } if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) && N00.getOpcode() == ISD::SHL && isa(N00.getOperand(1)) && ARM::isBitFieldInvertedMask(~Mask)) { // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask // where lsb(mask) == #shamt and masked bits of B are known zero. SDValue ShAmt = N00.getOperand(1); unsigned ShAmtC = cast(ShAmt)->getZExtValue(); unsigned LSB = countTrailingZeros(Mask); if (ShAmtC != LSB) return SDValue(); Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0), DAG.getConstant(~Mask, MVT::i32)); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, Res, false); } return SDValue(); } static SDValue PerformXORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); if (!Subtarget->isThumb1Only()) { // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) SDValue Result = combineSelectAndUseCommutative(N, false, DCI); if (Result.getNode()) return Result; } return SDValue(); } /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff /// the bits being cleared by the AND are not demanded by the BFI. static SDValue PerformBFICombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue N1 = N->getOperand(1); if (N1.getOpcode() == ISD::AND) { ConstantSDNode *N11C = dyn_cast(N1.getOperand(1)); if (!N11C) return SDValue(); unsigned InvMask = cast(N->getOperand(2))->getZExtValue(); unsigned LSB = countTrailingZeros(~InvMask); unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB; unsigned Mask = (1 << Width)-1; unsigned Mask2 = N11C->getZExtValue(); if ((Mask & (~Mask2)) == 0) return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0), N->getOperand(0), N1.getOperand(0), N->getOperand(2)); } return SDValue(); } /// PerformVMOVRRDCombine - Target-specific dag combine xforms for /// ARMISD::VMOVRRD. static SDValue PerformVMOVRRDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // vmovrrd(vmovdrr x, y) -> x,y SDValue InDouble = N->getOperand(0); if (InDouble.getOpcode() == ARMISD::VMOVDRR) return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); // vmovrrd(load f64) -> (load i32), (load i32) SDNode *InNode = InDouble.getNode(); if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() && InNode->getValueType(0) == MVT::f64 && InNode->getOperand(1).getOpcode() == ISD::FrameIndex && !cast(InNode)->isVolatile()) { // TODO: Should this be done for non-FrameIndex operands? LoadSDNode *LD = cast(InNode); SelectionDAG &DAG = DCI.DAG; SDLoc DL(LD); SDValue BasePtr = LD->getBasePtr(); SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), LD->getAlignment()); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, DAG.getConstant(4, MVT::i32)); SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), std::min(4U, LD->getAlignment() / 2)); DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1)); SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2); DCI.RemoveFromWorklist(LD); DAG.DeleteNode(LD); return Result; } return SDValue(); } /// PerformVMOVDRRCombine - Target-specific dag combine xforms for /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands. static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) { // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X) SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); if (Op0.getOpcode() == ISD::BITCAST) Op0 = Op0.getOperand(0); if (Op1.getOpcode() == ISD::BITCAST) Op1 = Op1.getOperand(0); if (Op0.getOpcode() == ARMISD::VMOVRRD && Op0.getNode() == Op1.getNode() && Op0.getResNo() == 0 && Op1.getResNo() == 1) return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op0.getOperand(0)); return SDValue(); } /// PerformSTORECombine - Target-specific dag combine xforms for /// ISD::STORE. static SDValue PerformSTORECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { StoreSDNode *St = cast(N); if (St->isVolatile()) return SDValue(); // Optimize trunc store (of multiple scalars) to shuffle and store. First, // pack all of the elements in one place. Next, store to memory in fewer // chunks. SDValue StVal = St->getValue(); EVT VT = StVal.getValueType(); if (St->isTruncatingStore() && VT.isVector()) { SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT StVT = St->getMemoryVT(); unsigned NumElems = VT.getVectorNumElements(); assert(StVT != VT && "Cannot truncate to the same type"); unsigned FromEltSz = VT.getVectorElementType().getSizeInBits(); unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits(); // From, To sizes and ElemCount must be pow of two if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue(); // We are going to use the original vector elt for storing. // Accumulated smaller vector elements must be a multiple of the store size. if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue(); unsigned SizeRatio = FromEltSz / ToEltSz; assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()); // Create a type on which we perform the shuffle. EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), NumElems*SizeRatio); assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); SDLoc DL(St); SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal); SmallVector ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio; // Can't shuffle using an illegal type. if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec.data()); // At this point all of the data is stored at the bottom of the // register. We now need to save it to mem. // Find the largest store unit MVT StoreType = MVT::i8; for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { MVT Tp = (MVT::SimpleValueType)tp; if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz) StoreType = Tp; } // Didn't find a legal store type. if (!TLI.isTypeLegal(StoreType)) return SDValue(); // Bitcast the original vector into a vector of store-size units EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits()); assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff); SmallVector Chains; SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, TLI.getPointerTy()); SDValue BasePtr = St->getBasePtr(); // Perform one or more big stores into memory. unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits(); for (unsigned I = 0; I < E; I++) { SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType, ShuffWide, DAG.getIntPtrConstant(I)); SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment); Chains.push_back(Ch); } return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0], Chains.size()); } if (!ISD::isNormalStore(St)) return SDValue(); // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and // ARM stores of arguments in the same cache line. if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR && StVal.getNode()->hasOneUse()) { SelectionDAG &DAG = DCI.DAG; SDLoc DL(St); SDValue BasePtr = St->getBasePtr(); SDValue NewST1 = DAG.getStore(St->getChain(), DL, StVal.getNode()->getOperand(0), BasePtr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment()); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, DAG.getConstant(4, MVT::i32)); return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1), OffsetPtr, St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), std::min(4U, St->getAlignment() / 2)); } if (StVal.getValueType() != MVT::i64 || StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); // Bitcast an i64 store extracted from a vector to f64. // Otherwise, the i64 value will be legalized to a pair of i32 values. SelectionDAG &DAG = DCI.DAG; SDLoc dl(StVal); SDValue IntVec = StVal.getOperand(0); EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, IntVec.getValueType().getVectorNumElements()); SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec); SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Vec, StVal.getOperand(1)); dl = SDLoc(N); SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(Vec.getNode()); DCI.AddToWorklist(ExtElt.getNode()); DCI.AddToWorklist(V.getNode()); return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(), St->getPointerInfo(), St->isVolatile(), St->isNonTemporal(), St->getAlignment(), St->getTBAAInfo()); } /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node /// are normal, non-volatile loads. If so, it is profitable to bitcast an /// i64 vector to have f64 elements, since the value can then be loaded /// directly into a VFP register. static bool hasNormalLoadOperand(SDNode *N) { unsigned NumElts = N->getValueType(0).getVectorNumElements(); for (unsigned i = 0; i < NumElts; ++i) { SDNode *Elt = N->getOperand(i).getNode(); if (ISD::isNormalLoad(Elt) && !cast(Elt)->isVolatile()) return true; } return false; } /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for /// ISD::BUILD_VECTOR. static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI){ // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X): // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value // into a pair of GPRs, which is fine when the value is used as a scalar, // but if the i64 value is converted to a vector, we need to undo the VMOVRRD. SelectionDAG &DAG = DCI.DAG; if (N->getNumOperands() == 2) { SDValue RV = PerformVMOVDRRCombine(N, DAG); if (RV.getNode()) return RV; } // Load i64 elements as f64 values so that type legalization does not split // them up into i32 values. EVT VT = N->getValueType(0); if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N)) return SDValue(); SDLoc dl(N); SmallVector Ops; unsigned NumElts = VT.getVectorNumElements(); for (unsigned i = 0; i < NumElts; ++i) { SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i)); Ops.push_back(V); // Make the DAGCombiner fold the bitcast. DCI.AddToWorklist(V.getNode()); } EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts); SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts); return DAG.getNode(ISD::BITCAST, dl, VT, BV); } /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR. static SDValue PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR. // At that time, we may have inserted bitcasts from integer to float. // If these bitcasts have survived DAGCombine, change the lowering of this // BUILD_VECTOR in something more vector friendly, i.e., that does not // force to use floating point types. // Make sure we can change the type of the vector. // This is possible iff: // 1. The vector is only used in a bitcast to a integer type. I.e., // 1.1. Vector is used only once. // 1.2. Use is a bit convert to an integer type. // 2. The size of its operands are 32-bits (64-bits are not legal). EVT VT = N->getValueType(0); EVT EltVT = VT.getVectorElementType(); // Check 1.1. and 2. if (EltVT.getSizeInBits() != 32 || !N->hasOneUse()) return SDValue(); // By construction, the input type must be float. assert(EltVT == MVT::f32 && "Unexpected type!"); // Check 1.2. SDNode *Use = *N->use_begin(); if (Use->getOpcode() != ISD::BITCAST || Use->getValueType(0).isFloatingPoint()) return SDValue(); // Check profitability. // Model is, if more than half of the relevant operands are bitcast from // i32, turn the build_vector into a sequence of insert_vector_elt. // Relevant operands are everything that is not statically // (i.e., at compile time) bitcasted. unsigned NumOfBitCastedElts = 0; unsigned NumElts = VT.getVectorNumElements(); unsigned NumOfRelevantElts = NumElts; for (unsigned Idx = 0; Idx < NumElts; ++Idx) { SDValue Elt = N->getOperand(Idx); if (Elt->getOpcode() == ISD::BITCAST) { // Assume only bit cast to i32 will go away. if (Elt->getOperand(0).getValueType() == MVT::i32) ++NumOfBitCastedElts; } else if (Elt.getOpcode() == ISD::UNDEF || isa(Elt)) // Constants are statically casted, thus do not count them as // relevant operands. --NumOfRelevantElts; } // Check if more than half of the elements require a non-free bitcast. if (NumOfBitCastedElts <= NumOfRelevantElts / 2) return SDValue(); SelectionDAG &DAG = DCI.DAG; // Create the new vector type. EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); // Check if the type is legal. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isTypeLegal(VecVT)) return SDValue(); // Combine: // ARMISD::BUILD_VECTOR E1, E2, ..., EN. // => BITCAST INSERT_VECTOR_ELT // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1), // (BITCAST EN), N. SDValue Vec = DAG.getUNDEF(VecVT); SDLoc dl(N); for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) { SDValue V = N->getOperand(Idx); if (V.getOpcode() == ISD::UNDEF) continue; if (V.getOpcode() == ISD::BITCAST && V->getOperand(0).getValueType() == MVT::i32) // Fold obvious case. V = V.getOperand(0); else { V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(V.getNode()); } SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx); } Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(Vec.getNode()); return Vec; } /// PerformInsertEltCombine - Target-specific dag combine xforms for /// ISD::INSERT_VECTOR_ELT. static SDValue PerformInsertEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // Bitcast an i64 load inserted into a vector to f64. // Otherwise, the i64 value will be legalized to a pair of i32 values. EVT VT = N->getValueType(0); SDNode *Elt = N->getOperand(1).getNode(); if (VT.getVectorElementType() != MVT::i64 || !ISD::isNormalLoad(Elt) || cast(Elt)->isVolatile()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VT.getVectorNumElements()); SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0)); SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1)); // Make the DAGCombiner fold the bitcasts. DCI.AddToWorklist(Vec.getNode()); DCI.AddToWorklist(V.getNode()); SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT, Vec, V, N->getOperand(2)); return DAG.getNode(ISD::BITCAST, dl, VT, InsElt); } /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for /// ISD::VECTOR_SHUFFLE. static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) { // The LLVM shufflevector instruction does not require the shuffle mask // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the // operands do not match the mask length, they are extended by concatenating // them with undef vectors. That is probably the right thing for other // targets, but for NEON it is better to concatenate two double-register // size vector operands into a single quad-register size vector. Do that // transformation here: // shuffle(concat(v1, undef), concat(v2, undef)) -> // shuffle(concat(v1, v2), undef) SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); if (Op0.getOpcode() != ISD::CONCAT_VECTORS || Op1.getOpcode() != ISD::CONCAT_VECTORS || Op0.getNumOperands() != 2 || Op1.getNumOperands() != 2) return SDValue(); SDValue Concat0Op1 = Op0.getOperand(1); SDValue Concat1Op1 = Op1.getOperand(1); if (Concat0Op1.getOpcode() != ISD::UNDEF || Concat1Op1.getOpcode() != ISD::UNDEF) return SDValue(); // Skip the transformation if any of the types are illegal. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT = N->getValueType(0); if (!TLI.isTypeLegal(VT) || !TLI.isTypeLegal(Concat0Op1.getValueType()) || !TLI.isTypeLegal(Concat1Op1.getValueType())) return SDValue(); SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Op0.getOperand(0), Op1.getOperand(0)); // Translate the shuffle mask. SmallVector NewMask; unsigned NumElts = VT.getVectorNumElements(); unsigned HalfElts = NumElts/2; ShuffleVectorSDNode *SVN = cast(N); for (unsigned n = 0; n < NumElts; ++n) { int MaskElt = SVN->getMaskElt(n); int NewElt = -1; if (MaskElt < (int)HalfElts) NewElt = MaskElt; else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts)) NewElt = HalfElts + MaskElt - NumElts; NewMask.push_back(NewElt); } return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat, DAG.getUNDEF(VT), NewMask.data()); } /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and /// NEON load/store intrinsics to merge base address updates. static SDValue CombineBaseUpdate(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); SelectionDAG &DAG = DCI.DAG; bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || N->getOpcode() == ISD::INTRINSIC_W_CHAIN); unsigned AddrOpIdx = (isIntrinsic ? 2 : 1); SDValue Addr = N->getOperand(AddrOpIdx); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // Check that the add is independent of the load/store. Otherwise, folding // it would create a cycle. if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) continue; // Find the new opcode for the updating load/store. bool isLoad = true; bool isLaneOp = false; unsigned NewOpc = 0; unsigned NumVecs = 0; if (isIntrinsic) { unsigned IntNo = cast(N->getOperand(1))->getZExtValue(); switch (IntNo) { default: llvm_unreachable("unexpected intrinsic for Neon base update"); case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD; NumVecs = 1; break; case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD; NumVecs = 2; break; case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD; NumVecs = 3; break; case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD; NumVecs = 4; break; case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD; NumVecs = 2; isLaneOp = true; break; case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD; NumVecs = 3; isLaneOp = true; break; case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD; NumVecs = 4; isLaneOp = true; break; case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD; NumVecs = 1; isLoad = false; break; case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD; NumVecs = 2; isLoad = false; break; case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD; NumVecs = 3; isLoad = false; break; case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD; NumVecs = 4; isLoad = false; break; case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD; NumVecs = 2; isLoad = false; isLaneOp = true; break; case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD; NumVecs = 3; isLoad = false; isLaneOp = true; break; case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD; NumVecs = 4; isLoad = false; isLaneOp = true; break; } } else { isLaneOp = true; switch (N->getOpcode()) { default: llvm_unreachable("unexpected opcode for Neon base update"); case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break; case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break; case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break; } } // Find the size of memory referenced by the load/store. EVT VecTy; if (isLoad) VecTy = N->getValueType(0); else VecTy = N->getOperand(AddrOpIdx+1).getValueType(); unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; if (isLaneOp) NumBytes /= VecTy.getVectorNumElements(); // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); if (ConstantSDNode *CInc = dyn_cast(Inc.getNode())) { uint64_t IncVal = CInc->getZExtValue(); if (IncVal != NumBytes) continue; } else if (NumBytes >= 3 * 16) { // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two // separate instructions that make it harder to use a non-constant update. continue; } // Create the new updating load/store node. EVT Tys[6]; unsigned NumResultVecs = (isLoad ? NumVecs : 0); unsigned n; for (n = 0; n < NumResultVecs; ++n) Tys[n] = VecTy; Tys[n++] = MVT::i32; Tys[n] = MVT::Other; SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2); SmallVector Ops; Ops.push_back(N->getOperand(0)); // incoming chain Ops.push_back(N->getOperand(AddrOpIdx)); Ops.push_back(Inc); for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) { Ops.push_back(N->getOperand(i)); } MemIntrinsicSDNode *MemInt = cast(N); SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops.data(), Ops.size(), MemInt->getMemoryVT(), MemInt->getMemOperand()); // Update the uses. std::vector NewResults; for (unsigned i = 0; i < NumResultVecs; ++i) { NewResults.push_back(SDValue(UpdN.getNode(), i)); } NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain DCI.CombineTo(N, NewResults); DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); break; } return SDValue(); } /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and /// return true. static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); // vldN-dup instructions only support 64-bit vectors for N > 1. if (!VT.is64BitVector()) return false; // Check if the VDUPLANE operand is a vldN-dup intrinsic. SDNode *VLD = N->getOperand(0).getNode(); if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) return false; unsigned NumVecs = 0; unsigned NewOpc = 0; unsigned IntNo = cast(VLD->getOperand(1))->getZExtValue(); if (IntNo == Intrinsic::arm_neon_vld2lane) { NumVecs = 2; NewOpc = ARMISD::VLD2DUP; } else if (IntNo == Intrinsic::arm_neon_vld3lane) { NumVecs = 3; NewOpc = ARMISD::VLD3DUP; } else if (IntNo == Intrinsic::arm_neon_vld4lane) { NumVecs = 4; NewOpc = ARMISD::VLD4DUP; } else { return false; } // First check that all the vldN-lane uses are VDUPLANEs and that the lane // numbers match the load. unsigned VLDLaneNo = cast(VLD->getOperand(NumVecs+3))->getZExtValue(); for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); UI != UE; ++UI) { // Ignore uses of the chain result. if (UI.getUse().getResNo() == NumVecs) continue; SDNode *User = *UI; if (User->getOpcode() != ARMISD::VDUPLANE || VLDLaneNo != cast(User->getOperand(1))->getZExtValue()) return false; } // Create the vldN-dup node. EVT Tys[5]; unsigned n; for (n = 0; n < NumVecs; ++n) Tys[n] = VT; Tys[n] = MVT::Other; SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1); SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; MemIntrinsicSDNode *VLDMemInt = cast(VLD); SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, 2, VLDMemInt->getMemoryVT(), VLDMemInt->getMemOperand()); // Update the uses. for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); UI != UE; ++UI) { unsigned ResNo = UI.getUse().getResNo(); // Ignore uses of the chain result. if (ResNo == NumVecs) continue; SDNode *User = *UI; DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); } // Now the vldN-lane intrinsic is dead except for its chain result. // Update uses of the chain. std::vector VLDDupResults; for (unsigned n = 0; n < NumVecs; ++n) VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); DCI.CombineTo(VLD, VLDDupResults); return true; } /// PerformVDUPLANECombine - Target-specific dag combine xforms for /// ARMISD::VDUPLANE. static SDValue PerformVDUPLANECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SDValue Op = N->getOperand(0); // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation. if (CombineVLDDUP(N, DCI)) return SDValue(N, 0); // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is // redundant. Ignore bit_converts for now; element sizes are checked below. while (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM) return SDValue(); // Make sure the VMOV element size is not bigger than the VDUPLANE elements. unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits(); // The canonical VMOV for a zero vector uses a 32-bit element size. unsigned Imm = cast(Op.getOperand(0))->getZExtValue(); unsigned EltBits; if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0) EltSize = 8; EVT VT = N->getValueType(0); if (EltSize > VT.getVectorElementType().getSizeInBits()) return SDValue(); return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); } // isConstVecPow2 - Return true if each vector element is a power of 2, all // elements are the same constant, C, and Log2(C) ranges from 1 to 32. static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C) { integerPart cN; integerPart c0 = 0; for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements(); I != E; I++) { ConstantFPSDNode *C = dyn_cast(ConstVec.getOperand(I)); if (!C) return false; bool isExact; APFloat APF = C->getValueAPF(); if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact) != APFloat::opOK || !isExact) return false; c0 = (I == 0) ? cN : c0; if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32) return false; } C = c0; return true; } /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) /// can replace combinations of VMUL and VCVT (floating-point to integer) /// when the VMUL has a constant operand that is a power of 2. /// /// Example (assume d17 = ): /// vmul.f32 d16, d17, d16 /// vcvt.s32.f32 d16, d16 /// becomes: /// vcvt.s32.f32 d16, d16, #3 static SDValue PerformVCVTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; SDValue Op = N->getOperand(0); if (!Subtarget->hasNEON() || !Op.getValueType().isVector() || Op.getOpcode() != ISD::FMUL) return SDValue(); uint64_t C; SDValue N0 = Op->getOperand(0); SDValue ConstVec = Op->getOperand(1); bool isSigned = N->getOpcode() == ISD::FP_TO_SINT; if (ConstVec.getOpcode() != ISD::BUILD_VECTOR || !isConstVecPow2(ConstVec, isSigned, C)) return SDValue(); MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) { // These instructions only exist converting from f32 to i32. We can handle // smaller integers by generating an extra truncate, but larger ones would // be lossy. return SDValue(); } unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs : Intrinsic::arm_neon_vcvtfp2fxu; unsigned NumLanes = Op.getValueType().getVectorNumElements(); SDValue FixConv = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, DAG.getConstant(IntrinsicOpcode, MVT::i32), N0, DAG.getConstant(Log2_64(C), MVT::i32)); if (IntTy.getSizeInBits() < FloatTy.getSizeInBits()) FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv); return FixConv; } /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD) /// can replace combinations of VCVT (integer to floating-point) and VDIV /// when the VDIV has a constant operand that is a power of 2. /// /// Example (assume d17 = ): /// vcvt.f32.s32 d16, d16 /// vdiv.f32 d16, d17, d16 /// becomes: /// vcvt.f32.s32 d16, d16, #3 static SDValue PerformVDIVCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; SDValue Op = N->getOperand(0); unsigned OpOpcode = Op.getNode()->getOpcode(); if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() || (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP)) return SDValue(); uint64_t C; SDValue ConstVec = N->getOperand(1); bool isSigned = OpOpcode == ISD::SINT_TO_FP; if (ConstVec.getOpcode() != ISD::BUILD_VECTOR || !isConstVecPow2(ConstVec, isSigned, C)) return SDValue(); MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) { // These instructions only exist converting from i32 to f32. We can handle // smaller integers by generating an extra extend, but larger ones would // be lossy. return SDValue(); } SDValue ConvInput = Op.getOperand(0); unsigned NumLanes = Op.getValueType().getVectorNumElements(); if (IntTy.getSizeInBits() < FloatTy.getSizeInBits()) ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, ConvInput); unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp : Intrinsic::arm_neon_vcvtfxu2fp; return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), Op.getValueType(), DAG.getConstant(IntrinsicOpcode, MVT::i32), ConvInput, DAG.getConstant(Log2_64(C), MVT::i32)); } /// Getvshiftimm - Check if this is a valid build_vector for the immediate /// operand of a vector shift operation, where all the elements of the /// build_vector must have the same constant integer value. static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { // Ignore bit_converts. while (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); BuildVectorSDNode *BVN = dyn_cast(Op.getNode()); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, ElementBits) || SplatBitSize > ElementBits) return false; Cnt = SplatBits.getSExtValue(); return true; } /// isVShiftLImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift left operation. That value must be in the range: /// 0 <= Value < ElementBits for a left shift; or /// 0 <= Value <= ElementBits for a long left shift. static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); if (! getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); } /// isVShiftRImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift right operation. For a shift opcode, the value /// is positive, but for an intrinsic the value count must be negative. The /// absolute value must be in the range: /// 1 <= |Value| <= ElementBits for a right shift; or /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); if (! getVShiftImm(Op, ElementBits, Cnt)) return false; if (isIntrinsic) Cnt = -Cnt; return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); } /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { unsigned IntNo = cast(N->getOperand(0))->getZExtValue(); switch (IntNo) { default: // Don't do anything for most intrinsics. break; // Vector shifts: check for immediate versions and lower them. // Note: This is done during DAG combining instead of DAG legalizing because // the build_vectors for 64-bit vector element shift counts are generally // not legal, and it is hard to see their values after they get legalized to // loads from a constant pool. case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: case Intrinsic::arm_neon_vshiftls: case Intrinsic::arm_neon_vshiftlu: case Intrinsic::arm_neon_vshiftn: case Intrinsic::arm_neon_vrshifts: case Intrinsic::arm_neon_vrshiftu: case Intrinsic::arm_neon_vrshiftn: case Intrinsic::arm_neon_vqshifts: case Intrinsic::arm_neon_vqshiftu: case Intrinsic::arm_neon_vqshiftsu: case Intrinsic::arm_neon_vqshiftns: case Intrinsic::arm_neon_vqshiftnu: case Intrinsic::arm_neon_vqshiftnsu: case Intrinsic::arm_neon_vqrshiftns: case Intrinsic::arm_neon_vqrshiftnu: case Intrinsic::arm_neon_vqrshiftnsu: { EVT VT = N->getOperand(1).getValueType(); int64_t Cnt; unsigned VShiftOpc = 0; switch (IntNo) { case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { VShiftOpc = ARMISD::VSHL; break; } if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRs : ARMISD::VSHRu); break; } return SDValue(); case Intrinsic::arm_neon_vshiftls: case Intrinsic::arm_neon_vshiftlu: if (isVShiftLImm(N->getOperand(2), VT, true, Cnt)) break; llvm_unreachable("invalid shift count for vshll intrinsic"); case Intrinsic::arm_neon_vrshifts: case Intrinsic::arm_neon_vrshiftu: if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) break; return SDValue(); case Intrinsic::arm_neon_vqshifts: case Intrinsic::arm_neon_vqshiftu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) break; return SDValue(); case Intrinsic::arm_neon_vqshiftsu: if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) break; llvm_unreachable("invalid shift count for vqshlu intrinsic"); case Intrinsic::arm_neon_vshiftn: case Intrinsic::arm_neon_vrshiftn: case Intrinsic::arm_neon_vqshiftns: case Intrinsic::arm_neon_vqshiftnu: case Intrinsic::arm_neon_vqshiftnsu: case Intrinsic::arm_neon_vqrshiftns: case Intrinsic::arm_neon_vqrshiftnu: case Intrinsic::arm_neon_vqrshiftnsu: // Narrowing shifts require an immediate right shift. if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) break; llvm_unreachable("invalid shift count for narrowing vector shift " "intrinsic"); default: llvm_unreachable("unhandled vector shift"); } switch (IntNo) { case Intrinsic::arm_neon_vshifts: case Intrinsic::arm_neon_vshiftu: // Opcode already set above. break; case Intrinsic::arm_neon_vshiftls: case Intrinsic::arm_neon_vshiftlu: if (Cnt == VT.getVectorElementType().getSizeInBits()) VShiftOpc = ARMISD::VSHLLi; else VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ? ARMISD::VSHLLs : ARMISD::VSHLLu); break; case Intrinsic::arm_neon_vshiftn: VShiftOpc = ARMISD::VSHRN; break; case Intrinsic::arm_neon_vrshifts: VShiftOpc = ARMISD::VRSHRs; break; case Intrinsic::arm_neon_vrshiftu: VShiftOpc = ARMISD::VRSHRu; break; case Intrinsic::arm_neon_vrshiftn: VShiftOpc = ARMISD::VRSHRN; break; case Intrinsic::arm_neon_vqshifts: VShiftOpc = ARMISD::VQSHLs; break; case Intrinsic::arm_neon_vqshiftu: VShiftOpc = ARMISD::VQSHLu; break; case Intrinsic::arm_neon_vqshiftsu: VShiftOpc = ARMISD::VQSHLsu; break; case Intrinsic::arm_neon_vqshiftns: VShiftOpc = ARMISD::VQSHRNs; break; case Intrinsic::arm_neon_vqshiftnu: VShiftOpc = ARMISD::VQSHRNu; break; case Intrinsic::arm_neon_vqshiftnsu: VShiftOpc = ARMISD::VQSHRNsu; break; case Intrinsic::arm_neon_vqrshiftns: VShiftOpc = ARMISD::VQRSHRNs; break; case Intrinsic::arm_neon_vqrshiftnu: VShiftOpc = ARMISD::VQRSHRNu; break; case Intrinsic::arm_neon_vqrshiftnsu: VShiftOpc = ARMISD::VQRSHRNsu; break; } return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0), N->getOperand(1), DAG.getConstant(Cnt, MVT::i32)); } case Intrinsic::arm_neon_vshiftins: { EVT VT = N->getOperand(1).getValueType(); int64_t Cnt; unsigned VShiftOpc = 0; if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) VShiftOpc = ARMISD::VSLI; else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) VShiftOpc = ARMISD::VSRI; else { llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); } return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), DAG.getConstant(Cnt, MVT::i32)); } case Intrinsic::arm_neon_vqrshifts: case Intrinsic::arm_neon_vqrshiftu: // No immediate versions of these to check for. break; } return SDValue(); } /// PerformShiftCombine - Checks for immediate versions of vector shifts and /// lowers them. As with the vector shift intrinsics, this is done during DAG /// combining instead of DAG legalizing because the build_vectors for 64-bit /// vector element shift counts are generally not legal, and it is hard to see /// their values after they get legalized to loads from a constant pool. static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { EVT VT = N->getValueType(0); if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) { // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16. SDValue N1 = N->getOperand(1); if (ConstantSDNode *C = dyn_cast(N1)) { SDValue N0 = N->getOperand(0); if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP && DAG.MaskedValueIsZero(N0.getOperand(0), APInt::getHighBitsSet(32, 16))) return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1); } } // Nothing to be done for scalar shifts. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!VT.isVector() || !TLI.isTypeLegal(VT)) return SDValue(); assert(ST->hasNEON() && "unexpected vector shift"); int64_t Cnt; switch (N->getOpcode()) { default: llvm_unreachable("unexpected shift opcode"); case ISD::SHL: if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0), DAG.getConstant(Cnt, MVT::i32)); break; case ISD::SRA: case ISD::SRL: if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? ARMISD::VSHRs : ARMISD::VSHRu); return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0), DAG.getConstant(Cnt, MVT::i32)); } } return SDValue(); } /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { SDValue N0 = N->getOperand(0); // Check for sign- and zero-extensions of vector extract operations of 8- // and 16-bit vector elements. NEON supports these directly. They are // handled during DAG combining because type legalization will promote them // to 32-bit types and it is messy to recognize the operations after that. if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { SDValue Vec = N0.getOperand(0); SDValue Lane = N0.getOperand(1); EVT VT = N->getValueType(0); EVT EltVT = N0.getValueType(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (VT == MVT::i32 && (EltVT == MVT::i8 || EltVT == MVT::i16) && TLI.isTypeLegal(Vec.getValueType()) && isa(Lane)) { unsigned Opc = 0; switch (N->getOpcode()) { default: llvm_unreachable("unexpected opcode"); case ISD::SIGN_EXTEND: Opc = ARMISD::VGETLANEs; break; case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: Opc = ARMISD::VGETLANEu; break; } return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane); } } return SDValue(); } /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC /// to match f32 max/min patterns to use NEON vmax/vmin instructions. static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) { // If the target supports NEON, try to use vmax/vmin instructions for f32 // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set, // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is // a NaN; only do the transformation when it matches that behavior. // For now only do this when using NEON for FP operations; if using VFP, it // is not obvious that the benefit outweighs the cost of switching to the // NEON pipeline. if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() || N->getValueType(0) != MVT::f32) return SDValue(); SDValue CondLHS = N->getOperand(0); SDValue CondRHS = N->getOperand(1); SDValue LHS = N->getOperand(2); SDValue RHS = N->getOperand(3); ISD::CondCode CC = cast(N->getOperand(4))->get(); unsigned Opcode = 0; bool IsReversed; if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) { IsReversed = false; // x CC y ? x : y } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) { IsReversed = true ; // x CC y ? y : x } else { return SDValue(); } bool IsUnordered; switch (CC) { default: break; case ISD::SETOLT: case ISD::SETOLE: case ISD::SETLT: case ISD::SETLE: case ISD::SETULT: case ISD::SETULE: // If LHS is NaN, an ordered comparison will be false and the result will // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE); if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) break; // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin // will return -0, so vmin can only be used for unsafe math or if one of // the operands is known to be nonzero. if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) && !DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) break; Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN; break; case ISD::SETOGT: case ISD::SETOGE: case ISD::SETGT: case ISD::SETGE: case ISD::SETUGT: case ISD::SETUGE: // If LHS is NaN, an ordered comparison will be false and the result will // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE); if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) break; // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax // will return +0, so vmax can only be used for unsafe math or if one of // the operands is known to be nonzero. if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) && !DAG.getTarget().Options.UnsafeFPMath && !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) break; Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX; break; } if (!Opcode) return SDValue(); return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS); } /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV. SDValue ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const { SDValue Cmp = N->getOperand(4); if (Cmp.getOpcode() != ARMISD::CMPZ) // Only looking at EQ and NE cases. return SDValue(); EVT VT = N->getValueType(0); SDLoc dl(N); SDValue LHS = Cmp.getOperand(0); SDValue RHS = Cmp.getOperand(1); SDValue FalseVal = N->getOperand(0); SDValue TrueVal = N->getOperand(1); SDValue ARMcc = N->getOperand(2); ARMCC::CondCodes CC = (ARMCC::CondCodes)cast(ARMcc)->getZExtValue(); // Simplify // mov r1, r0 // cmp r1, x // mov r0, y // moveq r0, x // to // cmp r0, x // movne r0, y // // mov r1, r0 // cmp r1, x // mov r0, x // movne r0, y // to // cmp r0, x // movne r0, y /// FIXME: Turn this into a target neutral optimization? SDValue Res; if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) { Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, N->getOperand(3), Cmp); } else if (CC == ARMCC::EQ && TrueVal == RHS) { SDValue ARMcc; SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl); Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, N->getOperand(3), NewCmp); } if (Res.getNode()) { APInt KnownZero, KnownOne; DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne); // Capture demanded bits information that would be otherwise lost. if (KnownZero == 0xfffffffe) Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, DAG.getValueType(MVT::i1)); else if (KnownZero == 0xffffff00) Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, DAG.getValueType(MVT::i8)); else if (KnownZero == 0xffff0000) Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, DAG.getValueType(MVT::i16)); } return Res; } SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { switch (N->getOpcode()) { default: break; case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget); case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget); case ISD::SUB: return PerformSUBCombine(N, DCI); case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); case ISD::OR: return PerformORCombine(N, DCI, Subtarget); case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget); case ISD::AND: return PerformANDCombine(N, DCI, Subtarget); case ARMISD::BFI: return PerformBFICombine(N, DCI); case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI); case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG); case ISD::STORE: return PerformSTORECombine(N, DCI); case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI); case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI); case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG); case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget); case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget); case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); case ISD::SHL: case ISD::SRA: case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget); case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget); case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG); case ARMISD::VLD2DUP: case ARMISD::VLD3DUP: case ARMISD::VLD4DUP: return CombineBaseUpdate(N, DCI); case ARMISD::BUILD_VECTOR: return PerformARMBUILD_VECTORCombine(N, DCI); case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: switch (cast(N->getOperand(1))->getZExtValue()) { case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: return CombineBaseUpdate(N, DCI); default: break; } break; } return SDValue(); } bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const { return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE); } bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const { // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus bool AllowsUnaligned = Subtarget->allowsUnalignedMem(); switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i8: case MVT::i16: case MVT::i32: { // Unaligned access can use (for example) LRDB, LRDH, LDR if (AllowsUnaligned) { if (Fast) *Fast = Subtarget->hasV7Ops(); return true; } return false; } case MVT::f64: case MVT::v2f64: { // For any little-endian targets with neon, we can support unaligned ld/st // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8. // A big-endian target may also explictly support unaligned accesses if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) { if (Fast) *Fast = true; return true; } return false; } } } static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, unsigned AlignCheck) { return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && (DstAlign == 0 || DstAlign % AlignCheck == 0)); } EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { const Function *F = MF.getFunction(); // See if we can use NEON instructions for this... if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() && !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat)) { bool Fast; if (Size >= 16 && (memOpAlign(SrcAlign, DstAlign, 16) || (allowsUnalignedMemoryAccesses(MVT::v2f64, &Fast) && Fast))) { return MVT::v2f64; } else if (Size >= 8 && (memOpAlign(SrcAlign, DstAlign, 8) || (allowsUnalignedMemoryAccesses(MVT::f64, &Fast) && Fast))) { return MVT::f64; } } // Lowering to i32/i16 if the size permits. if (Size >= 4) return MVT::i32; else if (Size >= 2) return MVT::i16; // Let the target-independent logic figure it out. return MVT::Other; } bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { if (Val.getOpcode() != ISD::LOAD) return false; EVT VT1 = Val.getValueType(); if (!VT1.isSimple() || !VT1.isInteger() || !VT2.isSimple() || !VT2.isInteger()) return false; switch (VT1.getSimpleVT().SimpleTy) { default: break; case MVT::i1: case MVT::i8: case MVT::i16: // 8-bit and 16-bit loads implicitly zero-extend to 32-bits. return true; } return false; } bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; if (!isTypeLegal(EVT::getEVT(Ty1))) return false; assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); // Assuming the caller doesn't have a zeroext or signext return parameter, // truncation all the way down to i1 is valid. return true; } static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { if (V < 0) return false; unsigned Scale = 1; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: // Scale == 1; break; case MVT::i16: // Scale == 2; Scale = 2; break; case MVT::i32: // Scale == 4; Scale = 4; break; } if ((V & (Scale - 1)) != 0) return false; V /= Scale; return V == (V & ((1LL << 5) - 1)); } static bool isLegalT2AddressImmediate(int64_t V, EVT VT, const ARMSubtarget *Subtarget) { bool isNeg = false; if (V < 0) { isNeg = true; V = - V; } switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: // + imm12 or - imm8 if (isNeg) return V == (V & ((1LL << 8) - 1)); return V == (V & ((1LL << 12) - 1)); case MVT::f32: case MVT::f64: // Same as ARM mode. FIXME: NEON? if (!Subtarget->hasVFP2()) return false; if ((V & 3) != 0) return false; V >>= 2; return V == (V & ((1LL << 8) - 1)); } } /// isLegalAddressImmediate - Return true if the integer value can be used /// as the offset of the target addressing mode for load / store of the /// given type. static bool isLegalAddressImmediate(int64_t V, EVT VT, const ARMSubtarget *Subtarget) { if (V == 0) return true; if (!VT.isSimple()) return false; if (Subtarget->isThumb1Only()) return isLegalT1AddressImmediate(V, VT); else if (Subtarget->isThumb2()) return isLegalT2AddressImmediate(V, VT, Subtarget); // ARM mode. if (V < 0) V = - V; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i32: // +- imm12 return V == (V & ((1LL << 12) - 1)); case MVT::i16: // +- imm8 return V == (V & ((1LL << 8) - 1)); case MVT::f32: case MVT::f64: if (!Subtarget->hasVFP2()) // FIXME: NEON? return false; if ((V & 3) != 0) return false; V >>= 2; return V == (V & ((1LL << 8) - 1)); } } bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const { int Scale = AM.Scale; if (Scale < 0) return false; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (Scale == 1) return true; // r + r << imm Scale = Scale & ~1; return Scale == 2 || Scale == 4 || Scale == 8; case MVT::i64: // r + r if (((unsigned)AM.HasBaseReg + Scale) <= 2) return true; return false; case MVT::isVoid: // Note, we allow "void" uses (basically, uses that aren't loads or // stores), because arm allows folding a scale into many arithmetic // operations. This should be made more precise and revisited later. // Allow r << imm, but the imm has to be a multiple of two. if (Scale & 1) return false; return isPowerOf2_32(Scale); } } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { EVT VT = getValueType(Ty, true); if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) return false; // Can never fold addr of global into load/store. if (AM.BaseGV) return false; switch (AM.Scale) { case 0: // no scale reg, must be "r+i" or "r", or "i". break; case 1: if (Subtarget->isThumb1Only()) return false; // FALL THROUGH. default: // ARM doesn't support any R+R*scale+imm addr modes. if (AM.BaseOffs) return false; if (!VT.isSimple()) return false; if (Subtarget->isThumb2()) return isLegalT2ScaledAddressingMode(AM, VT); int Scale = AM.Scale; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i32: if (Scale < 0) Scale = -Scale; if (Scale == 1) return true; // r + r << imm return isPowerOf2_32(Scale & ~1); case MVT::i16: case MVT::i64: // r + r if (((unsigned)AM.HasBaseReg + Scale) <= 2) return true; return false; case MVT::isVoid: // Note, we allow "void" uses (basically, uses that aren't loads or // stores), because arm allows folding a scale into many arithmetic // operations. This should be made more precise and revisited later. // Allow r << imm, but the imm has to be a multiple of two. if (Scale & 1) return false; return isPowerOf2_32(Scale); } } return true; } /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can compare /// a register against the immediate without having to materialize the /// immediate into a register. bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { // Thumb2 and ARM modes can use cmn for negative immediates. if (!Subtarget->isThumb()) return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1; if (Subtarget->isThumb2()) return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1; // Thumb1 doesn't have cmn, and only 8-bit immediates. return Imm >= 0 && Imm <= 255; } /// isLegalAddImmediate - Return true if the specified immediate is a legal add /// *or sub* immediate, that is the target has add or sub instructions which can /// add a register with the immediate without having to materialize the /// immediate into a register. bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const { // Same encoding for add/sub, just flip the sign. int64_t AbsImm = llvm::abs64(Imm); if (!Subtarget->isThumb()) return ARM_AM::getSOImmVal(AbsImm) != -1; if (Subtarget->isThumb2()) return ARM_AM::getT2SOImmVal(AbsImm) != -1; // Thumb1 only has 8-bit unsigned immediate. return AbsImm >= 0 && AbsImm <= 255; } static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) return false; if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { // AddressingMode 3 Base = Ptr->getOperand(0); if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -256) { assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); return true; } } isInc = (Ptr->getOpcode() == ISD::ADD); Offset = Ptr->getOperand(1); return true; } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { // AddressingMode 2 if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -0x1000) { assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); Base = Ptr->getOperand(0); return true; } } if (Ptr->getOpcode() == ISD::ADD) { isInc = true; ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode()); if (ShOpcVal != ARM_AM::no_shift) { Base = Ptr->getOperand(1); Offset = Ptr->getOperand(0); } else { Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); } return true; } isInc = (Ptr->getOpcode() == ISD::ADD); Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); return true; } // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. return false; } static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) return false; Base = Ptr->getOperand(0); if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC < 0 && RHSC > -0x100) { // 8 bits. assert(Ptr->getOpcode() == ISD::ADD); isInc = false; Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); return true; } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. isInc = Ptr->getOpcode() == ISD::ADD; Offset = DAG.getConstant(RHSC, RHS->getValueType(0)); return true; } } return false; } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { if (Subtarget->isThumb1Only()) return false; EVT VT; SDValue Ptr; bool isSEXTLoad = false; if (LoadSDNode *LD = dyn_cast(N)) { Ptr = LD->getBasePtr(); VT = LD->getMemoryVT(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; } else if (StoreSDNode *ST = dyn_cast(N)) { Ptr = ST->getBasePtr(); VT = ST->getMemoryVT(); } else return false; bool isInc; bool isLegal = false; if (Subtarget->isThumb2()) isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset, isInc, DAG); else isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset, isInc, DAG); if (!isLegal) return false; AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; return true; } /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { if (Subtarget->isThumb1Only()) return false; EVT VT; SDValue Ptr; bool isSEXTLoad = false; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); } else return false; bool isInc; bool isLegal = false; if (Subtarget->isThumb2()) isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, isInc, DAG); else isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, isInc, DAG); if (!isLegal) return false; if (Ptr != Base) { // Swap base ptr and offset to catch more post-index load / store when // it's legal. In Thumb2 mode, offset must be an immediate. if (Ptr == Offset && Op->getOpcode() == ISD::ADD && !Subtarget->isThumb2()) std::swap(Base, Offset); // Post-indexed load / store update the base pointer. if (Ptr != Base) return false; } AM = isInc ? ISD::POST_INC : ISD::POST_DEC; return true; } void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { unsigned BitWidth = KnownOne.getBitWidth(); KnownZero = KnownOne = APInt(BitWidth, 0); switch (Op.getOpcode()) { default: break; case ARMISD::ADDC: case ARMISD::ADDE: case ARMISD::SUBC: case ARMISD::SUBE: // These nodes' second result is a boolean if (Op.getResNo() == 0) break; KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); break; case ARMISD::CMOV: { // Bits are known zero/one if known on the LHS and RHS. DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); if (KnownZero == 0 && KnownOne == 0) return; APInt KnownZeroRHS, KnownOneRHS; DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1); KnownZero &= KnownZeroRHS; KnownOne &= KnownOneRHS; return; } } } //===----------------------------------------------------------------------===// // ARM Inline Assembly Support //===----------------------------------------------------------------------===// bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const { // Looking for "rev" which is V6+. if (!Subtarget->hasV6Ops()) return false; InlineAsm *IA = cast(CI->getCalledValue()); std::string AsmStr = IA->getAsmString(); SmallVector AsmPieces; SplitString(AsmStr, AsmPieces, ";\n"); switch (AsmPieces.size()) { default: return false; case 1: AsmStr = AsmPieces[0]; AsmPieces.clear(); SplitString(AsmStr, AsmPieces, " \t,"); // rev $0, $1 if (AsmPieces.size() == 3 && AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" && IA->getConstraintString().compare(0, 4, "=l,l") == 0) { IntegerType *Ty = dyn_cast(CI->getType()); if (Ty && Ty->getBitWidth() == 32) return IntrinsicLowering::LowerToByteSwap(CI); } break; } return false; } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. ARMTargetLowering::ConstraintType ARMTargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'l': return C_RegisterClass; case 'w': return C_RegisterClass; case 'h': return C_RegisterClass; case 'x': return C_RegisterClass; case 't': return C_RegisterClass; case 'j': return C_Other; // Constant for movw. // An address with a single base register. Due to the way we // currently handle addresses it is the same as an 'r' memory constraint. case 'Q': return C_Memory; } } else if (Constraint.size() == 2) { switch (Constraint[0]) { default: break; // All 'U+' constraints are addresses. case 'U': return C_Memory; } } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight ARMTargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (CallOperandVal == NULL) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'l': if (type->isIntegerTy()) { if (Subtarget->isThumb()) weight = CW_SpecificReg; else weight = CW_Register; } break; case 'w': if (type->isFloatingPointTy()) weight = CW_Register; break; } return weight; } typedef std::pair RCPair; RCPair ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { if (Constraint.size() == 1) { // GCC ARM Constraint Letters switch (Constraint[0]) { case 'l': // Low regs or general regs. if (Subtarget->isThumb()) return RCPair(0U, &ARM::tGPRRegClass); return RCPair(0U, &ARM::GPRRegClass); case 'h': // High regs or no regs. if (Subtarget->isThumb()) return RCPair(0U, &ARM::hGPRRegClass); break; case 'r': return RCPair(0U, &ARM::GPRRegClass); case 'w': if (VT == MVT::f32) return RCPair(0U, &ARM::SPRRegClass); if (VT.getSizeInBits() == 64) return RCPair(0U, &ARM::DPRRegClass); if (VT.getSizeInBits() == 128) return RCPair(0U, &ARM::QPRRegClass); break; case 'x': if (VT == MVT::f32) return RCPair(0U, &ARM::SPR_8RegClass); if (VT.getSizeInBits() == 64) return RCPair(0U, &ARM::DPR_8RegClass); if (VT.getSizeInBits() == 128) return RCPair(0U, &ARM::QPR_8RegClass); break; case 't': if (VT == MVT::f32) return RCPair(0U, &ARM::SPRRegClass); break; } } if (StringRef("{cc}").equals_lower(Constraint)) return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass); return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector&Ops, SelectionDAG &DAG) const { SDValue Result(0, 0); // Currently only support length 1 constraints. if (Constraint.length() != 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; case 'j': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': ConstantSDNode *C = dyn_cast(Op); if (!C) return; int64_t CVal64 = C->getSExtValue(); int CVal = (int) CVal64; // None of these constraints allow values larger than 32 bits. Check // that the value fits in an int. if (CVal != CVal64) return; switch (ConstraintLetter) { case 'j': // Constant suitable for movw, must be between 0 and // 65535. if (Subtarget->hasV6T2Ops()) if (CVal >= 0 && CVal <= 65535) break; return; case 'I': if (Subtarget->isThumb1Only()) { // This must be a constant between 0 and 255, for ADD // immediates. if (CVal >= 0 && CVal <= 255) break; } else if (Subtarget->isThumb2()) { // A constant that can be used as an immediate value in a // data-processing instruction. if (ARM_AM::getT2SOImmVal(CVal) != -1) break; } else { // A constant that can be used as an immediate value in a // data-processing instruction. if (ARM_AM::getSOImmVal(CVal) != -1) break; } return; case 'J': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a constant between -255 and -1, for negated ADD // immediates. This can be used in GCC with an "n" modifier that // prints the negated value, for use with SUB instructions. It is // not useful otherwise but is implemented for compatibility. if (CVal >= -255 && CVal <= -1) break; } else { // This must be a constant between -4095 and 4095. It is not clear // what this constraint is intended for. Implemented for // compatibility with GCC. if (CVal >= -4095 && CVal <= 4095) break; } return; case 'K': if (Subtarget->isThumb1Only()) { // A 32-bit value where only one byte has a nonzero value. Exclude // zero to match GCC. This constraint is used by GCC internally for // constants that can be loaded with a move/shift combination. // It is not useful otherwise but is implemented for compatibility. if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) break; } else if (Subtarget->isThumb2()) { // A constant whose bitwise inverse can be used as an immediate // value in a data-processing instruction. This can be used in GCC // with a "B" modifier that prints the inverted value, for use with // BIC and MVN instructions. It is not useful otherwise but is // implemented for compatibility. if (ARM_AM::getT2SOImmVal(~CVal) != -1) break; } else { // A constant whose bitwise inverse can be used as an immediate // value in a data-processing instruction. This can be used in GCC // with a "B" modifier that prints the inverted value, for use with // BIC and MVN instructions. It is not useful otherwise but is // implemented for compatibility. if (ARM_AM::getSOImmVal(~CVal) != -1) break; } return; case 'L': if (Subtarget->isThumb1Only()) { // This must be a constant between -7 and 7, // for 3-operand ADD/SUB immediate instructions. if (CVal >= -7 && CVal < 7) break; } else if (Subtarget->isThumb2()) { // A constant whose negation can be used as an immediate value in a // data-processing instruction. This can be used in GCC with an "n" // modifier that prints the negated value, for use with SUB // instructions. It is not useful otherwise but is implemented for // compatibility. if (ARM_AM::getT2SOImmVal(-CVal) != -1) break; } else { // A constant whose negation can be used as an immediate value in a // data-processing instruction. This can be used in GCC with an "n" // modifier that prints the negated value, for use with SUB // instructions. It is not useful otherwise but is implemented for // compatibility. if (ARM_AM::getSOImmVal(-CVal) != -1) break; } return; case 'M': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a multiple of 4 between 0 and 1020, for // ADD sp + immediate. if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) break; } else { // A power of two or a constant between 0 and 32. This is used in // GCC for the shift amount on shifted register operands, but it is // useful in general for any shift amounts. if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) break; } return; case 'N': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a constant between 0 and 31, for shift amounts. if (CVal >= 0 && CVal <= 31) break; } return; case 'O': if (Subtarget->isThumb()) { // FIXME thumb2 // This must be a multiple of 4 between -508 and 508, for // ADD/SUB sp = sp + immediate. if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) break; } return; } Result = DAG.getTargetConstant(CVal, Op.getValueType()); break; } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only"); unsigned Opcode = Op->getOpcode(); assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && "Invalid opcode for Div/Rem lowering"); bool isSigned = (Opcode == ISD::SDIVREM); EVT VT = Op->getValueType(0); Type *Ty = VT.getTypeForEVT(*DAG.getContext()); RTLIB::Libcall LC; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unexpected request for libcall!"); case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; } SDValue InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { EVT ArgVT = Op->getOperand(i).getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = Op->getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); Type *RetTy = (Type*)StructType::get(Ty, Ty, NULL); SDLoc dl(Op); TargetLowering:: CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, true, 0, getLibcallCallingConv(LC), /*isTailCall=*/false, /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, Callee, Args, DAG, dl); std::pair CallInfo = LowerCallTo(CLI); return CallInfo.first; } bool ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // The ARM target isn't yet aware of offsets. return false; } bool ARM::isBitFieldInvertedMask(unsigned v) { if (v == 0xffffffff) return false; // there can be 1's on either or both "outsides", all the "inside" // bits must be 0's unsigned TO = CountTrailingOnes_32(v); unsigned LO = CountLeadingOnes_32(v); v = (v >> TO) << TO; v = (v << LO) >> LO; return v == 0; } /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { if (!Subtarget->hasVFP3()) return false; if (VT == MVT::f32) return ARM_AM::getFP32Imm(Imm) != -1; if (VT == MVT::f64) return ARM_AM::getFP64Imm(Imm) != -1; return false; } /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment /// specified in the intrinsic calls. bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const { switch (Intrinsic) { case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: { Info.opc = ISD::INTRINSIC_W_CHAIN; // Conservatively set memVT to the entire set of vectors loaded. uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8; Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); Info.align = cast(AlignArg)->getZExtValue(); Info.vol = false; // volatile loads with NEON intrinsics not supported Info.readMem = true; Info.writeMem = false; return true; } case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { Info.opc = ISD::INTRINSIC_VOID; // Conservatively set memVT to the entire set of vectors stored. unsigned NumElts = 0; for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { Type *ArgTy = I.getArgOperand(ArgI)->getType(); if (!ArgTy->isVectorTy()) break; NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8; } Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); Info.align = cast(AlignArg)->getZExtValue(); Info.vol = false; // volatile stores with NEON intrinsics not supported Info.readMem = false; Info.writeMem = true; return true; } case Intrinsic::arm_ldrex: { PointerType *PtrTy = cast(I.getArgOperand(0)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(PtrTy->getElementType()); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); Info.vol = true; Info.readMem = true; Info.writeMem = false; return true; } case Intrinsic::arm_strex: { PointerType *PtrTy = cast(I.getArgOperand(1)->getType()); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(PtrTy->getElementType()); Info.ptrVal = I.getArgOperand(1); Info.offset = 0; Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); Info.vol = true; Info.readMem = false; Info.writeMem = true; return true; } case Intrinsic::arm_strexd: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i64; Info.ptrVal = I.getArgOperand(2); Info.offset = 0; Info.align = 8; Info.vol = true; Info.readMem = false; Info.writeMem = true; return true; } case Intrinsic::arm_ldrexd: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i64; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = 8; Info.vol = true; Info.readMem = true; Info.writeMem = false; return true; } default: break; } return false; }