//===-- Instruction.cpp - Implement the Instruction class -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Instruction class for the IR library. // //===----------------------------------------------------------------------===// #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/ADT/DenseSet.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" using namespace llvm; Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, Instruction *InsertBefore) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) { // If requested, insert this instruction into a basic block... if (InsertBefore) { BasicBlock *BB = InsertBefore->getParent(); assert(BB && "Instruction to insert before is not in a basic block!"); BB->getInstList().insert(InsertBefore->getIterator(), this); } } Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) { // append this instruction into the basic block assert(InsertAtEnd && "Basic block to append to may not be NULL!"); InsertAtEnd->getInstList().push_back(this); } Instruction::~Instruction() { assert(!Parent && "Instruction still linked in the program!"); if (hasMetadataHashEntry()) clearMetadataHashEntries(); } void Instruction::setParent(BasicBlock *P) { Parent = P; } const Module *Instruction::getModule() const { return getParent()->getModule(); } const Function *Instruction::getFunction() const { return getParent()->getParent(); } void Instruction::removeFromParent() { getParent()->getInstList().remove(getIterator()); } iplist::iterator Instruction::eraseFromParent() { return getParent()->getInstList().erase(getIterator()); } /// Insert an unlinked instruction into a basic block immediately before the /// specified instruction. void Instruction::insertBefore(Instruction *InsertPos) { InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this); } /// Insert an unlinked instruction into a basic block immediately after the /// specified instruction. void Instruction::insertAfter(Instruction *InsertPos) { InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(), this); } /// Unlink this instruction from its current basic block and insert it into the /// basic block that MovePos lives in, right before MovePos. void Instruction::moveBefore(Instruction *MovePos) { moveBefore(*MovePos->getParent(), MovePos->getIterator()); } void Instruction::moveAfter(Instruction *MovePos) { moveBefore(*MovePos->getParent(), ++MovePos->getIterator()); } void Instruction::moveBefore(BasicBlock &BB, SymbolTableList::iterator I) { assert(I == BB.end() || I->getParent() == &BB); BB.getInstList().splice(I, getParent()->getInstList(), getIterator()); } void Instruction::setHasNoUnsignedWrap(bool b) { cast(this)->setHasNoUnsignedWrap(b); } void Instruction::setHasNoSignedWrap(bool b) { cast(this)->setHasNoSignedWrap(b); } void Instruction::setIsExact(bool b) { cast(this)->setIsExact(b); } bool Instruction::hasNoUnsignedWrap() const { return cast(this)->hasNoUnsignedWrap(); } bool Instruction::hasNoSignedWrap() const { return cast(this)->hasNoSignedWrap(); } void Instruction::dropPoisonGeneratingFlags() { switch (getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::Shl: cast(this)->setHasNoUnsignedWrap(false); cast(this)->setHasNoSignedWrap(false); break; case Instruction::UDiv: case Instruction::SDiv: case Instruction::AShr: case Instruction::LShr: cast(this)->setIsExact(false); break; case Instruction::GetElementPtr: cast(this)->setIsInBounds(false); break; } } bool Instruction::isExact() const { return cast(this)->isExact(); } void Instruction::setFast(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setFast(B); } void Instruction::setHasAllowReassoc(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasAllowReassoc(B); } void Instruction::setHasNoNaNs(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasNoNaNs(B); } void Instruction::setHasNoInfs(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasNoInfs(B); } void Instruction::setHasNoSignedZeros(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasNoSignedZeros(B); } void Instruction::setHasAllowReciprocal(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasAllowReciprocal(B); } void Instruction::setHasApproxFunc(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasApproxFunc(B); } void Instruction::setFastMathFlags(FastMathFlags FMF) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setFastMathFlags(FMF); } void Instruction::copyFastMathFlags(FastMathFlags FMF) { assert(isa(this) && "copying fast-math flag on invalid op"); cast(this)->copyFastMathFlags(FMF); } bool Instruction::isFast() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->isFast(); } bool Instruction::hasAllowReassoc() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasAllowReassoc(); } bool Instruction::hasNoNaNs() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasNoNaNs(); } bool Instruction::hasNoInfs() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasNoInfs(); } bool Instruction::hasNoSignedZeros() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasNoSignedZeros(); } bool Instruction::hasAllowReciprocal() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasAllowReciprocal(); } bool Instruction::hasAllowContract() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasAllowContract(); } bool Instruction::hasApproxFunc() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasApproxFunc(); } FastMathFlags Instruction::getFastMathFlags() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->getFastMathFlags(); } void Instruction::copyFastMathFlags(const Instruction *I) { copyFastMathFlags(I->getFastMathFlags()); } void Instruction::copyIRFlags(const Value *V, bool IncludeWrapFlags) { // Copy the wrapping flags. if (IncludeWrapFlags && isa(this)) { if (auto *OB = dyn_cast(V)) { setHasNoSignedWrap(OB->hasNoSignedWrap()); setHasNoUnsignedWrap(OB->hasNoUnsignedWrap()); } } // Copy the exact flag. if (auto *PE = dyn_cast(V)) if (isa(this)) setIsExact(PE->isExact()); // Copy the fast-math flags. if (auto *FP = dyn_cast(V)) if (isa(this)) copyFastMathFlags(FP->getFastMathFlags()); if (auto *SrcGEP = dyn_cast(V)) if (auto *DestGEP = dyn_cast(this)) DestGEP->setIsInBounds(SrcGEP->isInBounds() | DestGEP->isInBounds()); } void Instruction::andIRFlags(const Value *V) { if (auto *OB = dyn_cast(V)) { if (isa(this)) { setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap()); setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap()); } } if (auto *PE = dyn_cast(V)) if (isa(this)) setIsExact(isExact() & PE->isExact()); if (auto *FP = dyn_cast(V)) { if (isa(this)) { FastMathFlags FM = getFastMathFlags(); FM &= FP->getFastMathFlags(); copyFastMathFlags(FM); } } if (auto *SrcGEP = dyn_cast(V)) if (auto *DestGEP = dyn_cast(this)) DestGEP->setIsInBounds(SrcGEP->isInBounds() & DestGEP->isInBounds()); } const char *Instruction::getOpcodeName(unsigned OpCode) { switch (OpCode) { // Terminators case Ret: return "ret"; case Br: return "br"; case Switch: return "switch"; case IndirectBr: return "indirectbr"; case Invoke: return "invoke"; case Resume: return "resume"; case Unreachable: return "unreachable"; case CleanupRet: return "cleanupret"; case CatchRet: return "catchret"; case CatchPad: return "catchpad"; case CatchSwitch: return "catchswitch"; // Standard binary operators... case Add: return "add"; case FAdd: return "fadd"; case Sub: return "sub"; case FSub: return "fsub"; case Mul: return "mul"; case FMul: return "fmul"; case UDiv: return "udiv"; case SDiv: return "sdiv"; case FDiv: return "fdiv"; case URem: return "urem"; case SRem: return "srem"; case FRem: return "frem"; // Logical operators... case And: return "and"; case Or : return "or"; case Xor: return "xor"; // Memory instructions... case Alloca: return "alloca"; case Load: return "load"; case Store: return "store"; case AtomicCmpXchg: return "cmpxchg"; case AtomicRMW: return "atomicrmw"; case Fence: return "fence"; case GetElementPtr: return "getelementptr"; // Convert instructions... case Trunc: return "trunc"; case ZExt: return "zext"; case SExt: return "sext"; case FPTrunc: return "fptrunc"; case FPExt: return "fpext"; case FPToUI: return "fptoui"; case FPToSI: return "fptosi"; case UIToFP: return "uitofp"; case SIToFP: return "sitofp"; case IntToPtr: return "inttoptr"; case PtrToInt: return "ptrtoint"; case BitCast: return "bitcast"; case AddrSpaceCast: return "addrspacecast"; // Other instructions... case ICmp: return "icmp"; case FCmp: return "fcmp"; case PHI: return "phi"; case Select: return "select"; case Call: return "call"; case Shl: return "shl"; case LShr: return "lshr"; case AShr: return "ashr"; case VAArg: return "va_arg"; case ExtractElement: return "extractelement"; case InsertElement: return "insertelement"; case ShuffleVector: return "shufflevector"; case ExtractValue: return "extractvalue"; case InsertValue: return "insertvalue"; case LandingPad: return "landingpad"; case CleanupPad: return "cleanuppad"; default: return " "; } } /// Return true if both instructions have the same special state. This must be /// kept in sync with FunctionComparator::cmpOperations in /// lib/Transforms/IPO/MergeFunctions.cpp. static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2, bool IgnoreAlignment = false) { assert(I1->getOpcode() == I2->getOpcode() && "Can not compare special state of different instructions"); if (const AllocaInst *AI = dyn_cast(I1)) return AI->getAllocatedType() == cast(I2)->getAllocatedType() && (AI->getAlignment() == cast(I2)->getAlignment() || IgnoreAlignment); if (const LoadInst *LI = dyn_cast(I1)) return LI->isVolatile() == cast(I2)->isVolatile() && (LI->getAlignment() == cast(I2)->getAlignment() || IgnoreAlignment) && LI->getOrdering() == cast(I2)->getOrdering() && LI->getSyncScopeID() == cast(I2)->getSyncScopeID(); if (const StoreInst *SI = dyn_cast(I1)) return SI->isVolatile() == cast(I2)->isVolatile() && (SI->getAlignment() == cast(I2)->getAlignment() || IgnoreAlignment) && SI->getOrdering() == cast(I2)->getOrdering() && SI->getSyncScopeID() == cast(I2)->getSyncScopeID(); if (const CmpInst *CI = dyn_cast(I1)) return CI->getPredicate() == cast(I2)->getPredicate(); if (const CallInst *CI = dyn_cast(I1)) return CI->isTailCall() == cast(I2)->isTailCall() && CI->getCallingConv() == cast(I2)->getCallingConv() && CI->getAttributes() == cast(I2)->getAttributes() && CI->hasIdenticalOperandBundleSchema(*cast(I2)); if (const InvokeInst *CI = dyn_cast(I1)) return CI->getCallingConv() == cast(I2)->getCallingConv() && CI->getAttributes() == cast(I2)->getAttributes() && CI->hasIdenticalOperandBundleSchema(*cast(I2)); if (const InsertValueInst *IVI = dyn_cast(I1)) return IVI->getIndices() == cast(I2)->getIndices(); if (const ExtractValueInst *EVI = dyn_cast(I1)) return EVI->getIndices() == cast(I2)->getIndices(); if (const FenceInst *FI = dyn_cast(I1)) return FI->getOrdering() == cast(I2)->getOrdering() && FI->getSyncScopeID() == cast(I2)->getSyncScopeID(); if (const AtomicCmpXchgInst *CXI = dyn_cast(I1)) return CXI->isVolatile() == cast(I2)->isVolatile() && CXI->isWeak() == cast(I2)->isWeak() && CXI->getSuccessOrdering() == cast(I2)->getSuccessOrdering() && CXI->getFailureOrdering() == cast(I2)->getFailureOrdering() && CXI->getSyncScopeID() == cast(I2)->getSyncScopeID(); if (const AtomicRMWInst *RMWI = dyn_cast(I1)) return RMWI->getOperation() == cast(I2)->getOperation() && RMWI->isVolatile() == cast(I2)->isVolatile() && RMWI->getOrdering() == cast(I2)->getOrdering() && RMWI->getSyncScopeID() == cast(I2)->getSyncScopeID(); return true; } bool Instruction::isIdenticalTo(const Instruction *I) const { return isIdenticalToWhenDefined(I) && SubclassOptionalData == I->SubclassOptionalData; } bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const { if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || getType() != I->getType()) return false; // If both instructions have no operands, they are identical. if (getNumOperands() == 0 && I->getNumOperands() == 0) return haveSameSpecialState(this, I); // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same. if (!std::equal(op_begin(), op_end(), I->op_begin())) return false; if (const PHINode *thisPHI = dyn_cast(this)) { const PHINode *otherPHI = cast(I); return std::equal(thisPHI->block_begin(), thisPHI->block_end(), otherPHI->block_begin()); } return haveSameSpecialState(this, I); } // Keep this in sync with FunctionComparator::cmpOperations in // lib/Transforms/IPO/MergeFunctions.cpp. bool Instruction::isSameOperationAs(const Instruction *I, unsigned flags) const { bool IgnoreAlignment = flags & CompareIgnoringAlignment; bool UseScalarTypes = flags & CompareUsingScalarTypes; if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || (UseScalarTypes ? getType()->getScalarType() != I->getType()->getScalarType() : getType() != I->getType())) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same type for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (UseScalarTypes ? getOperand(i)->getType()->getScalarType() != I->getOperand(i)->getType()->getScalarType() : getOperand(i)->getType() != I->getOperand(i)->getType()) return false; return haveSameSpecialState(this, I, IgnoreAlignment); } bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const { for (const Use &U : uses()) { // PHI nodes uses values in the corresponding predecessor block. For other // instructions, just check to see whether the parent of the use matches up. const Instruction *I = cast(U.getUser()); const PHINode *PN = dyn_cast(I); if (!PN) { if (I->getParent() != BB) return true; continue; } if (PN->getIncomingBlock(U) != BB) return true; } return false; } bool Instruction::mayReadFromMemory() const { switch (getOpcode()) { default: return false; case Instruction::VAArg: case Instruction::Load: case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::CatchPad: case Instruction::CatchRet: return true; case Instruction::Call: return !cast(this)->doesNotAccessMemory(); case Instruction::Invoke: return !cast(this)->doesNotAccessMemory(); case Instruction::Store: return !cast(this)->isUnordered(); } } bool Instruction::mayWriteToMemory() const { switch (getOpcode()) { default: return false; case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory case Instruction::Store: case Instruction::VAArg: case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::CatchPad: case Instruction::CatchRet: return true; case Instruction::Call: return !cast(this)->onlyReadsMemory(); case Instruction::Invoke: return !cast(this)->onlyReadsMemory(); case Instruction::Load: return !cast(this)->isUnordered(); } } bool Instruction::isAtomic() const { switch (getOpcode()) { default: return false; case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::Fence: return true; case Instruction::Load: return cast(this)->getOrdering() != AtomicOrdering::NotAtomic; case Instruction::Store: return cast(this)->getOrdering() != AtomicOrdering::NotAtomic; } } bool Instruction::hasAtomicLoad() const { assert(isAtomic()); switch (getOpcode()) { default: return false; case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::Load: return true; } } bool Instruction::hasAtomicStore() const { assert(isAtomic()); switch (getOpcode()) { default: return false; case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::Store: return true; } } bool Instruction::mayThrow() const { if (const CallInst *CI = dyn_cast(this)) return !CI->doesNotThrow(); if (const auto *CRI = dyn_cast(this)) return CRI->unwindsToCaller(); if (const auto *CatchSwitch = dyn_cast(this)) return CatchSwitch->unwindsToCaller(); return isa(this); } bool Instruction::isSafeToRemove() const { return (!isa(this) || !this->mayHaveSideEffects()) && !this->isTerminator(); } const Instruction *Instruction::getNextNonDebugInstruction() const { for (const Instruction *I = getNextNode(); I; I = I->getNextNode()) if (!isa(I)) return I; return nullptr; } bool Instruction::isAssociative() const { unsigned Opcode = getOpcode(); if (isAssociative(Opcode)) return true; switch (Opcode) { case FMul: case FAdd: return cast(this)->hasAllowReassoc() && cast(this)->hasNoSignedZeros(); default: return false; } } unsigned Instruction::getNumSuccessors() const { switch (getOpcode()) { #define HANDLE_TERM_INST(N, OPC, CLASS) \ case Instruction::OPC: \ return static_cast(this)->getNumSuccessors(); #include "llvm/IR/Instruction.def" default: break; } llvm_unreachable("not a terminator"); } BasicBlock *Instruction::getSuccessor(unsigned idx) const { switch (getOpcode()) { #define HANDLE_TERM_INST(N, OPC, CLASS) \ case Instruction::OPC: \ return static_cast(this)->getSuccessor(idx); #include "llvm/IR/Instruction.def" default: break; } llvm_unreachable("not a terminator"); } void Instruction::setSuccessor(unsigned idx, BasicBlock *B) { switch (getOpcode()) { #define HANDLE_TERM_INST(N, OPC, CLASS) \ case Instruction::OPC: \ return static_cast(this)->setSuccessor(idx, B); #include "llvm/IR/Instruction.def" default: break; } llvm_unreachable("not a terminator"); } Instruction *Instruction::cloneImpl() const { llvm_unreachable("Subclass of Instruction failed to implement cloneImpl"); } void Instruction::swapProfMetadata() { MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); if (!ProfileData || ProfileData->getNumOperands() != 3 || !isa(ProfileData->getOperand(0))) return; MDString *MDName = cast(ProfileData->getOperand(0)); if (MDName->getString() != "branch_weights") return; // The first operand is the name. Fetch them backwards and build a new one. Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2), ProfileData->getOperand(1)}; setMetadata(LLVMContext::MD_prof, MDNode::get(ProfileData->getContext(), Ops)); } void Instruction::copyMetadata(const Instruction &SrcInst, ArrayRef WL) { if (!SrcInst.hasMetadata()) return; DenseSet WLS; for (unsigned M : WL) WLS.insert(M); // Otherwise, enumerate and copy over metadata from the old instruction to the // new one. SmallVector, 4> TheMDs; SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs); for (const auto &MD : TheMDs) { if (WL.empty() || WLS.count(MD.first)) setMetadata(MD.first, MD.second); } if (WL.empty() || WLS.count(LLVMContext::MD_dbg)) setDebugLoc(SrcInst.getDebugLoc()); } Instruction *Instruction::clone() const { Instruction *New = nullptr; switch (getOpcode()) { default: llvm_unreachable("Unhandled Opcode."); #define HANDLE_INST(num, opc, clas) \ case Instruction::opc: \ New = cast(this)->cloneImpl(); \ break; #include "llvm/IR/Instruction.def" #undef HANDLE_INST } New->SubclassOptionalData = SubclassOptionalData; New->copyMetadata(*this); return New; } void Instruction::updateProfWeight(uint64_t S, uint64_t T) { auto *ProfileData = getMetadata(LLVMContext::MD_prof); if (ProfileData == nullptr) return; auto *ProfDataName = dyn_cast(ProfileData->getOperand(0)); if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") && !ProfDataName->getString().equals("VP"))) return; MDBuilder MDB(getContext()); SmallVector Vals; Vals.push_back(ProfileData->getOperand(0)); APInt APS(128, S), APT(128, T); if (ProfDataName->getString().equals("branch_weights")) for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { // Using APInt::div may be expensive, but most cases should fit 64 bits. APInt Val(128, mdconst::dyn_extract(ProfileData->getOperand(i)) ->getValue() .getZExtValue()); Val *= APS; Vals.push_back(MDB.createConstant( ConstantInt::get(Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue()))); } else if (ProfDataName->getString().equals("VP")) for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) { // The first value is the key of the value profile, which will not change. Vals.push_back(ProfileData->getOperand(i)); // Using APInt::div may be expensive, but most cases should fit 64 bits. APInt Val(128, mdconst::dyn_extract(ProfileData->getOperand(i + 1)) ->getValue() .getZExtValue()); Val *= APS; Vals.push_back(MDB.createConstant( ConstantInt::get(Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue()))); } setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals)); } void Instruction::setProfWeight(uint64_t W) { assert((isa(this) || isa(this)) && "Can only set weights for call and invoke instrucitons"); SmallVector Weights; Weights.push_back(W); MDBuilder MDB(getContext()); setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); }