//===- GuardWidening.cpp - ---- Guard widening ----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the guard widening pass. The semantics of the // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails // more often that it did before the transform. This optimization is called // "widening" and can be used hoist and common runtime checks in situations like // these: // // %cmp0 = 7 u< Length // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ] // call @unknown_side_effects() // %cmp1 = 9 u< Length // call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ] // ... // // => // // %cmp0 = 9 u< Length // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ] // call @unknown_side_effects() // ... // // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a // generic implementation of the same function, which will have the correct // semantics from that point onward. It is always _legal_ to deoptimize (so // replacing %cmp0 with false is "correct"), though it may not always be // profitable to do so. // // NB! This pass is a work in progress. It hasn't been tuned to be "production // ready" yet. It is known to have quadriatic running time and will not scale // to large numbers of guards // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/GuardWidening.h" #include "llvm/Pass.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; #define DEBUG_TYPE "guard-widening" namespace { class GuardWideningImpl { DominatorTree &DT; PostDominatorTree &PDT; LoopInfo &LI; /// The set of guards whose conditions have been widened into dominating /// guards. SmallVector EliminatedGuards; /// The set of guards which have been widened to include conditions to other /// guards. DenseSet WidenedGuards; /// Try to eliminate guard \p Guard by widening it into an earlier dominating /// guard. \p DFSI is the DFS iterator on the dominator tree that is /// currently visiting the block containing \p Guard, and \p GuardsPerBlock /// maps BasicBlocks to the set of guards seen in that block. bool eliminateGuardViaWidening( IntrinsicInst *Guard, const df_iterator &DFSI, const DenseMap> & GuardsPerBlock); /// Used to keep track of which widening potential is more effective. enum WideningScore { /// Don't widen. WS_IllegalOrNegative, /// Widening is performance neutral as far as the cycles spent in check /// conditions goes (but can still help, e.g., code layout, having less /// deopt state). WS_Neutral, /// Widening is profitable. WS_Positive, /// Widening is very profitable. Not significantly different from \c /// WS_Positive, except by the order. WS_VeryPositive }; static StringRef scoreTypeToString(WideningScore WS); /// Compute the score for widening the condition in \p DominatedGuard /// (contained in \p DominatedGuardLoop) into \p DominatingGuard (contained in /// \p DominatingGuardLoop). WideningScore computeWideningScore(IntrinsicInst *DominatedGuard, Loop *DominatedGuardLoop, IntrinsicInst *DominatingGuard, Loop *DominatingGuardLoop); /// Helper to check if \p V can be hoisted to \p InsertPos. bool isAvailableAt(Value *V, Instruction *InsertPos) { SmallPtrSet Visited; return isAvailableAt(V, InsertPos, Visited); } bool isAvailableAt(Value *V, Instruction *InsertPos, SmallPtrSetImpl &Visited); /// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c /// isAvailableAt returned true. void makeAvailableAt(Value *V, Instruction *InsertPos); /// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try /// to generate an expression computing the logical AND of \p Cond0 and \p /// Cond1. Return true if the expression computing the AND is only as /// expensive as computing one of the two. If \p InsertPt is true then /// actually generate the resulting expression, make it available at \p /// InsertPt and return it in \p Result (else no change to the IR is made). bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt, Value *&Result); /// Represents a range check of the form \c Base + \c Offset u< \c Length, /// with the constraint that \c Length is not negative. \c CheckInst is the /// pre-existing instruction in the IR that computes the result of this range /// check. class RangeCheck { Value *Base; ConstantInt *Offset; Value *Length; ICmpInst *CheckInst; public: explicit RangeCheck(Value *Base, ConstantInt *Offset, Value *Length, ICmpInst *CheckInst) : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {} void setBase(Value *NewBase) { Base = NewBase; } void setOffset(ConstantInt *NewOffset) { Offset = NewOffset; } Value *getBase() const { return Base; } ConstantInt *getOffset() const { return Offset; } const APInt &getOffsetValue() const { return getOffset()->getValue(); } Value *getLength() const { return Length; }; ICmpInst *getCheckInst() const { return CheckInst; } void print(raw_ostream &OS, bool PrintTypes = false) { OS << "Base: "; Base->printAsOperand(OS, PrintTypes); OS << " Offset: "; Offset->printAsOperand(OS, PrintTypes); OS << " Length: "; Length->printAsOperand(OS, PrintTypes); } LLVM_DUMP_METHOD void dump() { print(dbgs()); dbgs() << "\n"; } }; /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and /// append them to \p Checks. Returns true on success, may clobber \c Checks /// on failure. bool parseRangeChecks(Value *CheckCond, SmallVectorImpl &Checks) { SmallPtrSet Visited; return parseRangeChecks(CheckCond, Checks, Visited); } bool parseRangeChecks(Value *CheckCond, SmallVectorImpl &Checks, SmallPtrSetImpl &Visited); /// Combine the checks in \p Checks into a smaller set of checks and append /// them into \p CombinedChecks. Return true on success (i.e. all of checks /// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks /// and \p CombinedChecks on success and on failure. bool combineRangeChecks(SmallVectorImpl &Checks, SmallVectorImpl &CombinedChecks); /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of /// computing only one of the two expressions? bool isWideningCondProfitable(Value *Cond0, Value *Cond1) { Value *ResultUnused; return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused); } /// Widen \p ToWiden to fail if \p NewCondition is false (in addition to /// whatever it is already checking). void widenGuard(IntrinsicInst *ToWiden, Value *NewCondition) { Value *Result; widenCondCommon(ToWiden->getArgOperand(0), NewCondition, ToWiden, Result); ToWiden->setArgOperand(0, Result); } public: explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree &PDT, LoopInfo &LI) : DT(DT), PDT(PDT), LI(LI) {} /// The entry point for this pass. bool run(); }; struct GuardWideningLegacyPass : public FunctionPass { static char ID; GuardWideningPass Impl; GuardWideningLegacyPass() : FunctionPass(ID) { initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; return GuardWideningImpl( getAnalysis().getDomTree(), getAnalysis().getPostDomTree(), getAnalysis().getLoopInfo()).run(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } }; } bool GuardWideningImpl::run() { using namespace llvm::PatternMatch; DenseMap> GuardsInBlock; bool Changed = false; for (auto DFI = df_begin(DT.getRootNode()), DFE = df_end(DT.getRootNode()); DFI != DFE; ++DFI) { auto *BB = (*DFI)->getBlock(); auto &CurrentList = GuardsInBlock[BB]; for (auto &I : *BB) if (match(&I, m_Intrinsic())) CurrentList.push_back(cast(&I)); for (auto *II : CurrentList) Changed |= eliminateGuardViaWidening(II, DFI, GuardsInBlock); } for (auto *II : EliminatedGuards) if (!WidenedGuards.count(II)) II->eraseFromParent(); return Changed; } bool GuardWideningImpl::eliminateGuardViaWidening( IntrinsicInst *GuardInst, const df_iterator &DFSI, const DenseMap> & GuardsInBlock) { IntrinsicInst *BestSoFar = nullptr; auto BestScoreSoFar = WS_IllegalOrNegative; auto *GuardInstLoop = LI.getLoopFor(GuardInst->getParent()); // In the set of dominating guards, find the one we can merge GuardInst with // for the most profit. for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) { auto *CurBB = DFSI.getPath(i)->getBlock(); auto *CurLoop = LI.getLoopFor(CurBB); assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!"); const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second; auto I = GuardsInCurBB.begin(); auto E = GuardsInCurBB.end(); #ifndef NDEBUG { unsigned Index = 0; for (auto &I : *CurBB) { if (Index == GuardsInCurBB.size()) break; if (GuardsInCurBB[Index] == &I) Index++; } assert(Index == GuardsInCurBB.size() && "Guards expected to be in order!"); } #endif assert((i == (e - 1)) == (GuardInst->getParent() == CurBB) && "Bad DFS?"); if (i == (e - 1)) { // Corner case: make sure we're only looking at guards strictly dominating // GuardInst when visiting GuardInst->getParent(). auto NewEnd = std::find(I, E, GuardInst); assert(NewEnd != E && "GuardInst not in its own block?"); E = NewEnd; } for (auto *Candidate : make_range(I, E)) { auto Score = computeWideningScore(GuardInst, GuardInstLoop, Candidate, CurLoop); DEBUG(dbgs() << "Score between " << *GuardInst->getArgOperand(0) << " and " << *Candidate->getArgOperand(0) << " is " << scoreTypeToString(Score) << "\n"); if (Score > BestScoreSoFar) { BestScoreSoFar = Score; BestSoFar = Candidate; } } } if (BestScoreSoFar == WS_IllegalOrNegative) { DEBUG(dbgs() << "Did not eliminate guard " << *GuardInst << "\n"); return false; } assert(BestSoFar != GuardInst && "Should have never visited same guard!"); assert(DT.dominates(BestSoFar, GuardInst) && "Should be!"); DEBUG(dbgs() << "Widening " << *GuardInst << " into " << *BestSoFar << " with score " << scoreTypeToString(BestScoreSoFar) << "\n"); widenGuard(BestSoFar, GuardInst->getArgOperand(0)); GuardInst->setArgOperand(0, ConstantInt::getTrue(GuardInst->getContext())); EliminatedGuards.push_back(GuardInst); WidenedGuards.insert(BestSoFar); return true; } GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore( IntrinsicInst *DominatedGuard, Loop *DominatedGuardLoop, IntrinsicInst *DominatingGuard, Loop *DominatingGuardLoop) { bool HoistingOutOfLoop = false; if (DominatingGuardLoop != DominatedGuardLoop) { if (DominatingGuardLoop && !DominatingGuardLoop->contains(DominatedGuardLoop)) return WS_IllegalOrNegative; HoistingOutOfLoop = true; } if (!isAvailableAt(DominatedGuard->getArgOperand(0), DominatingGuard)) return WS_IllegalOrNegative; bool HoistingOutOfIf = !PDT.dominates(DominatedGuard->getParent(), DominatingGuard->getParent()); if (isWideningCondProfitable(DominatedGuard->getArgOperand(0), DominatingGuard->getArgOperand(0))) return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive; if (HoistingOutOfLoop) return WS_Positive; return HoistingOutOfIf ? WS_IllegalOrNegative : WS_Neutral; } bool GuardWideningImpl::isAvailableAt(Value *V, Instruction *Loc, SmallPtrSetImpl &Visited) { auto *Inst = dyn_cast(V); if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst)) return true; if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) || Inst->mayReadFromMemory()) return false; Visited.insert(Inst); // We only want to go _up_ the dominance chain when recursing. assert(!isa(Loc) && "PHIs should return false for isSafeToSpeculativelyExecute"); assert(DT.isReachableFromEntry(Inst->getParent()) && "We did a DFS from the block entry!"); return all_of(Inst->operands(), [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); }); } void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) { auto *Inst = dyn_cast(V); if (!Inst || DT.dominates(Inst, Loc)) return; assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) && !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!"); for (Value *Op : Inst->operands()) makeAvailableAt(Op, Loc); Inst->moveBefore(Loc); } bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt, Value *&Result) { using namespace llvm::PatternMatch; { // L >u C0 && L >u C1 -> L >u max(C0, C1) ConstantInt *RHS0, *RHS1; Value *LHS; ICmpInst::Predicate Pred0, Pred1; if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) && match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) { ConstantRange CR0 = ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue()); ConstantRange CR1 = ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue()); // SubsetIntersect is a subset of the actual mathematical intersection of // CR0 and CR1, while SupersetIntersect is a superset of the actual // mathematical intersection. If these two ConstantRanges are equal, then // we know we were able to represent the actual mathematical intersection // of CR0 and CR1, and can use the same to generate an icmp instruction. // // Given what we're doing here and the semantics of guards, it would // actually be correct to just use SubsetIntersect, but that may be too // aggressive in cases we care about. auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse(); auto SupersetIntersect = CR0.intersectWith(CR1); APInt NewRHSAP; CmpInst::Predicate Pred; if (SubsetIntersect == SupersetIntersect && SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) { if (InsertPt) { ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP); Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk"); } return true; } } } { SmallVector Checks, CombinedChecks; if (parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) && combineRangeChecks(Checks, CombinedChecks)) { if (InsertPt) { Result = nullptr; for (auto &RC : CombinedChecks) { makeAvailableAt(RC.getCheckInst(), InsertPt); if (Result) Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "", InsertPt); else Result = RC.getCheckInst(); } Result->setName("wide.chk"); } return true; } } // Base case -- just logical-and the two conditions together. if (InsertPt) { makeAvailableAt(Cond0, InsertPt); makeAvailableAt(Cond1, InsertPt); Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt); } // We were not able to compute Cond0 AND Cond1 for the price of one. return false; } bool GuardWideningImpl::parseRangeChecks( Value *CheckCond, SmallVectorImpl &Checks, SmallPtrSetImpl &Visited) { if (!Visited.insert(CheckCond).second) return true; using namespace llvm::PatternMatch; { Value *AndLHS, *AndRHS; if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS)))) return parseRangeChecks(AndLHS, Checks) && parseRangeChecks(AndRHS, Checks); } auto *IC = dyn_cast(CheckCond); if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() || (IC->getPredicate() != ICmpInst::ICMP_ULT && IC->getPredicate() != ICmpInst::ICMP_UGT)) return false; Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1); if (IC->getPredicate() == ICmpInst::ICMP_UGT) std::swap(CmpLHS, CmpRHS); auto &DL = IC->getModule()->getDataLayout(); GuardWideningImpl::RangeCheck Check( CmpLHS, cast(ConstantInt::getNullValue(CmpRHS->getType())), CmpRHS, IC); if (!isKnownNonNegative(Check.getLength(), DL)) return false; // What we have in \c Check now is a correct interpretation of \p CheckCond. // Try to see if we can move some constant offsets into the \c Offset field. bool Changed; auto &Ctx = CheckCond->getContext(); do { Value *OpLHS; ConstantInt *OpRHS; Changed = false; #ifndef NDEBUG auto *BaseInst = dyn_cast(Check.getBase()); assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) && "Unreachable instruction?"); #endif if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) { Check.setBase(OpLHS); APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue(); Check.setOffset(ConstantInt::get(Ctx, NewOffset)); Changed = true; } else if (match(Check.getBase(), m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) { unsigned BitWidth = OpLHS->getType()->getScalarSizeInBits(); KnownBits Known(BitWidth); computeKnownBits(OpLHS, Known, DL); if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) { Check.setBase(OpLHS); APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue(); Check.setOffset(ConstantInt::get(Ctx, NewOffset)); Changed = true; } } } while (Changed); Checks.push_back(Check); return true; } bool GuardWideningImpl::combineRangeChecks( SmallVectorImpl &Checks, SmallVectorImpl &RangeChecksOut) { unsigned OldCount = Checks.size(); while (!Checks.empty()) { // Pick all of the range checks with a specific base and length, and try to // merge them. Value *CurrentBase = Checks.front().getBase(); Value *CurrentLength = Checks.front().getLength(); SmallVector CurrentChecks; auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) { return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength; }; copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck); Checks.erase(remove_if(Checks, IsCurrentCheck), Checks.end()); assert(CurrentChecks.size() != 0 && "We know we have at least one!"); if (CurrentChecks.size() < 3) { RangeChecksOut.insert(RangeChecksOut.end(), CurrentChecks.begin(), CurrentChecks.end()); continue; } // CurrentChecks.size() will typically be 3 here, but so far there has been // no need to hard-code that fact. std::sort(CurrentChecks.begin(), CurrentChecks.end(), [&](const GuardWideningImpl::RangeCheck &LHS, const GuardWideningImpl::RangeCheck &RHS) { return LHS.getOffsetValue().slt(RHS.getOffsetValue()); }); // Note: std::sort should not invalidate the ChecksStart iterator. ConstantInt *MinOffset = CurrentChecks.front().getOffset(), *MaxOffset = CurrentChecks.back().getOffset(); unsigned BitWidth = MaxOffset->getValue().getBitWidth(); if ((MaxOffset->getValue() - MinOffset->getValue()) .ugt(APInt::getSignedMinValue(BitWidth))) return false; APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue(); const APInt &HighOffset = MaxOffset->getValue(); auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) { return (HighOffset - RC.getOffsetValue()).ult(MaxDiff); }; if (MaxDiff.isMinValue() || !std::all_of(std::next(CurrentChecks.begin()), CurrentChecks.end(), OffsetOK)) return false; // We have a series of f+1 checks as: // // I+k_0 u< L ... Chk_0 // I+k_1 u< L ... Chk_1 // ... // I+k_f u< L ... Chk_f // // with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0 // k_f-k_0 u< INT_MIN+k_f ... Precond_1 // k_f != k_0 ... Precond_2 // // Claim: // Chk_0 AND Chk_f implies all the other checks // // Informal proof sketch: // // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and // thus I+k_f is the greatest unsigned value in that range. // // This combined with Ckh_(f+1) shows that everything in that range is u< L. // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1) // lie in [I+k_0,I+k_f], this proving our claim. // // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal // since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping // range by definition, and the latter case is impossible: // // 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1) // xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx // // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted // with 'x' above) to be at least >u INT_MIN. RangeChecksOut.emplace_back(CurrentChecks.front()); RangeChecksOut.emplace_back(CurrentChecks.back()); } assert(RangeChecksOut.size() <= OldCount && "We pessimized!"); return RangeChecksOut.size() != OldCount; } PreservedAnalyses GuardWideningPass::run(Function &F, FunctionAnalysisManager &AM) { auto &DT = AM.getResult(F); auto &LI = AM.getResult(F); auto &PDT = AM.getResult(F); if (!GuardWideningImpl(DT, PDT, LI).run()) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); return PA; } StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) { switch (WS) { case WS_IllegalOrNegative: return "IllegalOrNegative"; case WS_Neutral: return "Neutral"; case WS_Positive: return "Positive"; case WS_VeryPositive: return "VeryPositive"; } llvm_unreachable("Fully covered switch above!"); } char GuardWideningLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards", false, false) FunctionPass *llvm::createGuardWideningPass() { return new GuardWideningLegacyPass(); }