//===- llvm/MC/WinCOFFObjectWriter.cpp ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains an implementation of a Win32 COFF object file writer. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCFragment.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSectionCOFF.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCSymbolCOFF.h" #include "llvm/MC/MCValue.h" #include "llvm/MC/MCWinCOFFObjectWriter.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Support/CRC.h" #include "llvm/Support/Casting.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include using namespace llvm; using llvm::support::endian::write32le; #define DEBUG_TYPE "WinCOFFObjectWriter" namespace { using name = SmallString; enum AuxiliaryType { ATWeakExternal, ATFile, ATSectionDefinition }; struct AuxSymbol { AuxiliaryType AuxType; COFF::Auxiliary Aux; }; class COFFSection; class COFFSymbol { public: COFF::symbol Data = {}; using AuxiliarySymbols = SmallVector; name Name; int Index; AuxiliarySymbols Aux; COFFSymbol *Other = nullptr; COFFSection *Section = nullptr; int Relocations = 0; const MCSymbol *MC = nullptr; COFFSymbol(StringRef Name) : Name(Name) {} void set_name_offset(uint32_t Offset); int64_t getIndex() const { return Index; } void setIndex(int Value) { Index = Value; if (MC) MC->setIndex(static_cast(Value)); } }; // This class contains staging data for a COFF relocation entry. struct COFFRelocation { COFF::relocation Data; COFFSymbol *Symb = nullptr; COFFRelocation() = default; static size_t size() { return COFF::RelocationSize; } }; using relocations = std::vector; class COFFSection { public: COFF::section Header = {}; std::string Name; int Number; MCSectionCOFF const *MCSection = nullptr; COFFSymbol *Symbol = nullptr; relocations Relocations; COFFSection(StringRef Name) : Name(std::string(Name)) {} }; class WinCOFFObjectWriter : public MCObjectWriter { public: support::endian::Writer W; using symbols = std::vector>; using sections = std::vector>; using symbol_map = DenseMap; using section_map = DenseMap; using symbol_list = DenseSet; std::unique_ptr TargetObjectWriter; // Root level file contents. COFF::header Header = {}; sections Sections; symbols Symbols; StringTableBuilder Strings{StringTableBuilder::WinCOFF}; // Maps used during object file creation. section_map SectionMap; symbol_map SymbolMap; symbol_list WeakDefaults; bool UseBigObj; bool EmitAddrsigSection = false; MCSectionCOFF *AddrsigSection; std::vector AddrsigSyms; MCSectionCOFF *CGProfileSection = nullptr; WinCOFFObjectWriter(std::unique_ptr MOTW, raw_pwrite_stream &OS); void reset() override { memset(&Header, 0, sizeof(Header)); Header.Machine = TargetObjectWriter->getMachine(); Sections.clear(); Symbols.clear(); Strings.clear(); SectionMap.clear(); SymbolMap.clear(); MCObjectWriter::reset(); } COFFSymbol *createSymbol(StringRef Name); COFFSymbol *GetOrCreateCOFFSymbol(const MCSymbol *Symbol); COFFSection *createSection(StringRef Name); void defineSection(MCSectionCOFF const &Sec); COFFSymbol *getLinkedSymbol(const MCSymbol &Symbol); void DefineSymbol(const MCSymbol &Symbol, MCAssembler &Assembler, const MCAsmLayout &Layout); void SetSymbolName(COFFSymbol &S); void SetSectionName(COFFSection &S); bool IsPhysicalSection(COFFSection *S); // Entity writing methods. void WriteFileHeader(const COFF::header &Header); void WriteSymbol(const COFFSymbol &S); void WriteAuxiliarySymbols(const COFFSymbol::AuxiliarySymbols &S); void writeSectionHeaders(); void WriteRelocation(const COFF::relocation &R); uint32_t writeSectionContents(MCAssembler &Asm, const MCAsmLayout &Layout, const MCSection &MCSec); void writeSection(MCAssembler &Asm, const MCAsmLayout &Layout, const COFFSection &Sec, const MCSection &MCSec); // MCObjectWriter interface implementation. void executePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) override; bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, const MCSymbol &SymA, const MCFragment &FB, bool InSet, bool IsPCRel) const override; void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue) override; void createFileSymbols(MCAssembler &Asm); void setWeakDefaultNames(); void assignSectionNumbers(); void assignFileOffsets(MCAssembler &Asm, const MCAsmLayout &Layout); void emitAddrsigSection() override { EmitAddrsigSection = true; } void addAddrsigSymbol(const MCSymbol *Sym) override { AddrsigSyms.push_back(Sym); } uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; }; } // end anonymous namespace //------------------------------------------------------------------------------ // Symbol class implementation // In the case that the name does not fit within 8 bytes, the offset // into the string table is stored in the last 4 bytes instead, leaving // the first 4 bytes as 0. void COFFSymbol::set_name_offset(uint32_t Offset) { write32le(Data.Name + 0, 0); write32le(Data.Name + 4, Offset); } //------------------------------------------------------------------------------ // WinCOFFObjectWriter class implementation WinCOFFObjectWriter::WinCOFFObjectWriter( std::unique_ptr MOTW, raw_pwrite_stream &OS) : W(OS, support::little), TargetObjectWriter(std::move(MOTW)) { Header.Machine = TargetObjectWriter->getMachine(); } COFFSymbol *WinCOFFObjectWriter::createSymbol(StringRef Name) { Symbols.push_back(std::make_unique(Name)); return Symbols.back().get(); } COFFSymbol *WinCOFFObjectWriter::GetOrCreateCOFFSymbol(const MCSymbol *Symbol) { COFFSymbol *&Ret = SymbolMap[Symbol]; if (!Ret) Ret = createSymbol(Symbol->getName()); return Ret; } COFFSection *WinCOFFObjectWriter::createSection(StringRef Name) { Sections.emplace_back(std::make_unique(Name)); return Sections.back().get(); } static uint32_t getAlignment(const MCSectionCOFF &Sec) { switch (Sec.getAlignment()) { case 1: return COFF::IMAGE_SCN_ALIGN_1BYTES; case 2: return COFF::IMAGE_SCN_ALIGN_2BYTES; case 4: return COFF::IMAGE_SCN_ALIGN_4BYTES; case 8: return COFF::IMAGE_SCN_ALIGN_8BYTES; case 16: return COFF::IMAGE_SCN_ALIGN_16BYTES; case 32: return COFF::IMAGE_SCN_ALIGN_32BYTES; case 64: return COFF::IMAGE_SCN_ALIGN_64BYTES; case 128: return COFF::IMAGE_SCN_ALIGN_128BYTES; case 256: return COFF::IMAGE_SCN_ALIGN_256BYTES; case 512: return COFF::IMAGE_SCN_ALIGN_512BYTES; case 1024: return COFF::IMAGE_SCN_ALIGN_1024BYTES; case 2048: return COFF::IMAGE_SCN_ALIGN_2048BYTES; case 4096: return COFF::IMAGE_SCN_ALIGN_4096BYTES; case 8192: return COFF::IMAGE_SCN_ALIGN_8192BYTES; } llvm_unreachable("unsupported section alignment"); } /// This function takes a section data object from the assembler /// and creates the associated COFF section staging object. void WinCOFFObjectWriter::defineSection(const MCSectionCOFF &MCSec) { COFFSection *Section = createSection(MCSec.getName()); COFFSymbol *Symbol = createSymbol(MCSec.getName()); Section->Symbol = Symbol; Symbol->Section = Section; Symbol->Data.StorageClass = COFF::IMAGE_SYM_CLASS_STATIC; // Create a COMDAT symbol if needed. if (MCSec.getSelection() != COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) { if (const MCSymbol *S = MCSec.getCOMDATSymbol()) { COFFSymbol *COMDATSymbol = GetOrCreateCOFFSymbol(S); if (COMDATSymbol->Section) report_fatal_error("two sections have the same comdat"); COMDATSymbol->Section = Section; } } // In this case the auxiliary symbol is a Section Definition. Symbol->Aux.resize(1); Symbol->Aux[0] = {}; Symbol->Aux[0].AuxType = ATSectionDefinition; Symbol->Aux[0].Aux.SectionDefinition.Selection = MCSec.getSelection(); // Set section alignment. Section->Header.Characteristics = MCSec.getCharacteristics(); Section->Header.Characteristics |= getAlignment(MCSec); // Bind internal COFF section to MC section. Section->MCSection = &MCSec; SectionMap[&MCSec] = Section; } static uint64_t getSymbolValue(const MCSymbol &Symbol, const MCAsmLayout &Layout) { if (Symbol.isCommon() && Symbol.isExternal()) return Symbol.getCommonSize(); uint64_t Res; if (!Layout.getSymbolOffset(Symbol, Res)) return 0; return Res; } COFFSymbol *WinCOFFObjectWriter::getLinkedSymbol(const MCSymbol &Symbol) { if (!Symbol.isVariable()) return nullptr; const MCSymbolRefExpr *SymRef = dyn_cast(Symbol.getVariableValue()); if (!SymRef) return nullptr; const MCSymbol &Aliasee = SymRef->getSymbol(); if (Aliasee.isUndefined() || Aliasee.isExternal()) return GetOrCreateCOFFSymbol(&Aliasee); else return nullptr; } /// This function takes a symbol data object from the assembler /// and creates the associated COFF symbol staging object. void WinCOFFObjectWriter::DefineSymbol(const MCSymbol &MCSym, MCAssembler &Assembler, const MCAsmLayout &Layout) { COFFSymbol *Sym = GetOrCreateCOFFSymbol(&MCSym); const MCSymbol *Base = Layout.getBaseSymbol(MCSym); COFFSection *Sec = nullptr; if (Base && Base->getFragment()) { Sec = SectionMap[Base->getFragment()->getParent()]; if (Sym->Section && Sym->Section != Sec) report_fatal_error("conflicting sections for symbol"); } COFFSymbol *Local = nullptr; if (cast(MCSym).isWeakExternal()) { Sym->Data.StorageClass = COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL; Sym->Section = nullptr; COFFSymbol *WeakDefault = getLinkedSymbol(MCSym); if (!WeakDefault) { std::string WeakName = (".weak." + MCSym.getName() + ".default").str(); WeakDefault = createSymbol(WeakName); if (!Sec) WeakDefault->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE; else WeakDefault->Section = Sec; WeakDefaults.insert(WeakDefault); Local = WeakDefault; } Sym->Other = WeakDefault; // Setup the Weak External auxiliary symbol. Sym->Aux.resize(1); memset(&Sym->Aux[0], 0, sizeof(Sym->Aux[0])); Sym->Aux[0].AuxType = ATWeakExternal; Sym->Aux[0].Aux.WeakExternal.TagIndex = 0; Sym->Aux[0].Aux.WeakExternal.Characteristics = COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS; } else { if (!Base) Sym->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE; else Sym->Section = Sec; Local = Sym; } if (Local) { Local->Data.Value = getSymbolValue(MCSym, Layout); const MCSymbolCOFF &SymbolCOFF = cast(MCSym); Local->Data.Type = SymbolCOFF.getType(); Local->Data.StorageClass = SymbolCOFF.getClass(); // If no storage class was specified in the streamer, define it here. if (Local->Data.StorageClass == COFF::IMAGE_SYM_CLASS_NULL) { bool IsExternal = MCSym.isExternal() || (!MCSym.getFragment() && !MCSym.isVariable()); Local->Data.StorageClass = IsExternal ? COFF::IMAGE_SYM_CLASS_EXTERNAL : COFF::IMAGE_SYM_CLASS_STATIC; } } Sym->MC = &MCSym; } // Maximum offsets for different string table entry encodings. enum : unsigned { Max7DecimalOffset = 9999999U }; enum : uint64_t { MaxBase64Offset = 0xFFFFFFFFFULL }; // 64^6, including 0 // Encode a string table entry offset in base 64, padded to 6 chars, and // prefixed with a double slash: '//AAAAAA', '//AAAAAB', ... // Buffer must be at least 8 bytes large. No terminating null appended. static void encodeBase64StringEntry(char *Buffer, uint64_t Value) { assert(Value > Max7DecimalOffset && Value <= MaxBase64Offset && "Illegal section name encoding for value"); static const char Alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; Buffer[0] = '/'; Buffer[1] = '/'; char *Ptr = Buffer + 7; for (unsigned i = 0; i < 6; ++i) { unsigned Rem = Value % 64; Value /= 64; *(Ptr--) = Alphabet[Rem]; } } void WinCOFFObjectWriter::SetSectionName(COFFSection &S) { if (S.Name.size() <= COFF::NameSize) { std::memcpy(S.Header.Name, S.Name.c_str(), S.Name.size()); return; } uint64_t StringTableEntry = Strings.getOffset(S.Name); if (StringTableEntry <= Max7DecimalOffset) { SmallVector Buffer; Twine('/').concat(Twine(StringTableEntry)).toVector(Buffer); assert(Buffer.size() <= COFF::NameSize && Buffer.size() >= 2); std::memcpy(S.Header.Name, Buffer.data(), Buffer.size()); return; } if (StringTableEntry <= MaxBase64Offset) { // Starting with 10,000,000, offsets are encoded as base64. encodeBase64StringEntry(S.Header.Name, StringTableEntry); return; } report_fatal_error("COFF string table is greater than 64 GB."); } void WinCOFFObjectWriter::SetSymbolName(COFFSymbol &S) { if (S.Name.size() > COFF::NameSize) S.set_name_offset(Strings.getOffset(S.Name)); else std::memcpy(S.Data.Name, S.Name.c_str(), S.Name.size()); } bool WinCOFFObjectWriter::IsPhysicalSection(COFFSection *S) { return (S->Header.Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0; } //------------------------------------------------------------------------------ // entity writing methods void WinCOFFObjectWriter::WriteFileHeader(const COFF::header &Header) { if (UseBigObj) { W.write(COFF::IMAGE_FILE_MACHINE_UNKNOWN); W.write(0xFFFF); W.write(COFF::BigObjHeader::MinBigObjectVersion); W.write(Header.Machine); W.write(Header.TimeDateStamp); W.OS.write(COFF::BigObjMagic, sizeof(COFF::BigObjMagic)); W.write(0); W.write(0); W.write(0); W.write(0); W.write(Header.NumberOfSections); W.write(Header.PointerToSymbolTable); W.write(Header.NumberOfSymbols); } else { W.write(Header.Machine); W.write(static_cast(Header.NumberOfSections)); W.write(Header.TimeDateStamp); W.write(Header.PointerToSymbolTable); W.write(Header.NumberOfSymbols); W.write(Header.SizeOfOptionalHeader); W.write(Header.Characteristics); } } void WinCOFFObjectWriter::WriteSymbol(const COFFSymbol &S) { W.OS.write(S.Data.Name, COFF::NameSize); W.write(S.Data.Value); if (UseBigObj) W.write(S.Data.SectionNumber); else W.write(static_cast(S.Data.SectionNumber)); W.write(S.Data.Type); W.OS << char(S.Data.StorageClass); W.OS << char(S.Data.NumberOfAuxSymbols); WriteAuxiliarySymbols(S.Aux); } void WinCOFFObjectWriter::WriteAuxiliarySymbols( const COFFSymbol::AuxiliarySymbols &S) { for (const AuxSymbol &i : S) { switch (i.AuxType) { case ATWeakExternal: W.write(i.Aux.WeakExternal.TagIndex); W.write(i.Aux.WeakExternal.Characteristics); W.OS.write_zeros(sizeof(i.Aux.WeakExternal.unused)); if (UseBigObj) W.OS.write_zeros(COFF::Symbol32Size - COFF::Symbol16Size); break; case ATFile: W.OS.write(reinterpret_cast(&i.Aux), UseBigObj ? COFF::Symbol32Size : COFF::Symbol16Size); break; case ATSectionDefinition: W.write(i.Aux.SectionDefinition.Length); W.write(i.Aux.SectionDefinition.NumberOfRelocations); W.write(i.Aux.SectionDefinition.NumberOfLinenumbers); W.write(i.Aux.SectionDefinition.CheckSum); W.write(static_cast(i.Aux.SectionDefinition.Number)); W.OS << char(i.Aux.SectionDefinition.Selection); W.OS.write_zeros(sizeof(i.Aux.SectionDefinition.unused)); W.write(static_cast(i.Aux.SectionDefinition.Number >> 16)); if (UseBigObj) W.OS.write_zeros(COFF::Symbol32Size - COFF::Symbol16Size); break; } } } // Write the section header. void WinCOFFObjectWriter::writeSectionHeaders() { // Section numbers must be monotonically increasing in the section // header, but our Sections array is not sorted by section number, // so make a copy of Sections and sort it. std::vector Arr; for (auto &Section : Sections) Arr.push_back(Section.get()); llvm::sort(Arr, [](const COFFSection *A, const COFFSection *B) { return A->Number < B->Number; }); for (auto &Section : Arr) { if (Section->Number == -1) continue; COFF::section &S = Section->Header; if (Section->Relocations.size() >= 0xffff) S.Characteristics |= COFF::IMAGE_SCN_LNK_NRELOC_OVFL; W.OS.write(S.Name, COFF::NameSize); W.write(S.VirtualSize); W.write(S.VirtualAddress); W.write(S.SizeOfRawData); W.write(S.PointerToRawData); W.write(S.PointerToRelocations); W.write(S.PointerToLineNumbers); W.write(S.NumberOfRelocations); W.write(S.NumberOfLineNumbers); W.write(S.Characteristics); } } void WinCOFFObjectWriter::WriteRelocation(const COFF::relocation &R) { W.write(R.VirtualAddress); W.write(R.SymbolTableIndex); W.write(R.Type); } // Write MCSec's contents. What this function does is essentially // "Asm.writeSectionData(&MCSec, Layout)", but it's a bit complicated // because it needs to compute a CRC. uint32_t WinCOFFObjectWriter::writeSectionContents(MCAssembler &Asm, const MCAsmLayout &Layout, const MCSection &MCSec) { // Save the contents of the section to a temporary buffer, we need this // to CRC the data before we dump it into the object file. SmallVector Buf; raw_svector_ostream VecOS(Buf); Asm.writeSectionData(VecOS, &MCSec, Layout); // Write the section contents to the object file. W.OS << Buf; // Calculate our CRC with an initial value of '0', this is not how // JamCRC is specified but it aligns with the expected output. JamCRC JC(/*Init=*/0); JC.update(makeArrayRef(reinterpret_cast(Buf.data()), Buf.size())); return JC.getCRC(); } void WinCOFFObjectWriter::writeSection(MCAssembler &Asm, const MCAsmLayout &Layout, const COFFSection &Sec, const MCSection &MCSec) { if (Sec.Number == -1) return; // Write the section contents. if (Sec.Header.PointerToRawData != 0) { assert(W.OS.tell() == Sec.Header.PointerToRawData && "Section::PointerToRawData is insane!"); uint32_t CRC = writeSectionContents(Asm, Layout, MCSec); // Update the section definition auxiliary symbol to record the CRC. COFFSection *Sec = SectionMap[&MCSec]; COFFSymbol::AuxiliarySymbols &AuxSyms = Sec->Symbol->Aux; assert(AuxSyms.size() == 1 && AuxSyms[0].AuxType == ATSectionDefinition); AuxSymbol &SecDef = AuxSyms[0]; SecDef.Aux.SectionDefinition.CheckSum = CRC; } // Write relocations for this section. if (Sec.Relocations.empty()) { assert(Sec.Header.PointerToRelocations == 0 && "Section::PointerToRelocations is insane!"); return; } assert(W.OS.tell() == Sec.Header.PointerToRelocations && "Section::PointerToRelocations is insane!"); if (Sec.Relocations.size() >= 0xffff) { // In case of overflow, write actual relocation count as first // relocation. Including the synthetic reloc itself (+ 1). COFF::relocation R; R.VirtualAddress = Sec.Relocations.size() + 1; R.SymbolTableIndex = 0; R.Type = 0; WriteRelocation(R); } for (const auto &Relocation : Sec.Relocations) WriteRelocation(Relocation.Data); } //////////////////////////////////////////////////////////////////////////////// // MCObjectWriter interface implementations void WinCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) { if (EmitAddrsigSection) { AddrsigSection = Asm.getContext().getCOFFSection( ".llvm_addrsig", COFF::IMAGE_SCN_LNK_REMOVE, SectionKind::getMetadata()); Asm.registerSection(*AddrsigSection); } if (!Asm.CGProfile.empty()) { CGProfileSection = Asm.getContext().getCOFFSection( ".llvm.call-graph-profile", COFF::IMAGE_SCN_LNK_REMOVE, SectionKind::getMetadata()); Asm.registerSection(*CGProfileSection); } // "Define" each section & symbol. This creates section & symbol // entries in the staging area. for (const auto &Section : Asm) defineSection(static_cast(Section)); for (const MCSymbol &Symbol : Asm.symbols()) if (!Symbol.isTemporary()) DefineSymbol(Symbol, Asm, Layout); } bool WinCOFFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( const MCAssembler &Asm, const MCSymbol &SymA, const MCFragment &FB, bool InSet, bool IsPCRel) const { // Don't drop relocations between functions, even if they are in the same text // section. Multiple Visual C++ linker features depend on having the // relocations present. The /INCREMENTAL flag will cause these relocations to // point to thunks, and the /GUARD:CF flag assumes that it can use relocations // to approximate the set of all address taken functions. LLD's implementation // of /GUARD:CF also relies on the existance of these relocations. uint16_t Type = cast(SymA).getType(); if ((Type >> COFF::SCT_COMPLEX_TYPE_SHIFT) == COFF::IMAGE_SYM_DTYPE_FUNCTION) return false; return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, InSet, IsPCRel); } void WinCOFFObjectWriter::recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue) { assert(Target.getSymA() && "Relocation must reference a symbol!"); const MCSymbol &A = Target.getSymA()->getSymbol(); if (!A.isRegistered()) { Asm.getContext().reportError(Fixup.getLoc(), Twine("symbol '") + A.getName() + "' can not be undefined"); return; } if (A.isTemporary() && A.isUndefined()) { Asm.getContext().reportError(Fixup.getLoc(), Twine("assembler label '") + A.getName() + "' can not be undefined"); return; } MCSection *MCSec = Fragment->getParent(); // Mark this symbol as requiring an entry in the symbol table. assert(SectionMap.find(MCSec) != SectionMap.end() && "Section must already have been defined in executePostLayoutBinding!"); COFFSection *Sec = SectionMap[MCSec]; const MCSymbolRefExpr *SymB = Target.getSymB(); if (SymB) { const MCSymbol *B = &SymB->getSymbol(); if (!B->getFragment()) { Asm.getContext().reportError( Fixup.getLoc(), Twine("symbol '") + B->getName() + "' can not be undefined in a subtraction expression"); return; } // Offset of the symbol in the section int64_t OffsetOfB = Layout.getSymbolOffset(*B); // Offset of the relocation in the section int64_t OffsetOfRelocation = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); FixedValue = (OffsetOfRelocation - OffsetOfB) + Target.getConstant(); } else { FixedValue = Target.getConstant(); } COFFRelocation Reloc; Reloc.Data.SymbolTableIndex = 0; Reloc.Data.VirtualAddress = Layout.getFragmentOffset(Fragment); // Turn relocations for temporary symbols into section relocations. if (A.isTemporary()) { MCSection *TargetSection = &A.getSection(); assert( SectionMap.find(TargetSection) != SectionMap.end() && "Section must already have been defined in executePostLayoutBinding!"); Reloc.Symb = SectionMap[TargetSection]->Symbol; FixedValue += Layout.getSymbolOffset(A); } else { assert( SymbolMap.find(&A) != SymbolMap.end() && "Symbol must already have been defined in executePostLayoutBinding!"); Reloc.Symb = SymbolMap[&A]; } ++Reloc.Symb->Relocations; Reloc.Data.VirtualAddress += Fixup.getOffset(); Reloc.Data.Type = TargetObjectWriter->getRelocType( Asm.getContext(), Target, Fixup, SymB, Asm.getBackend()); // The *_REL32 relocations are relative to the end of the relocation, // not to the start. if ((Header.Machine == COFF::IMAGE_FILE_MACHINE_AMD64 && Reloc.Data.Type == COFF::IMAGE_REL_AMD64_REL32) || (Header.Machine == COFF::IMAGE_FILE_MACHINE_I386 && Reloc.Data.Type == COFF::IMAGE_REL_I386_REL32) || (Header.Machine == COFF::IMAGE_FILE_MACHINE_ARMNT && Reloc.Data.Type == COFF::IMAGE_REL_ARM_REL32) || (Header.Machine == COFF::IMAGE_FILE_MACHINE_ARM64 && Reloc.Data.Type == COFF::IMAGE_REL_ARM64_REL32)) FixedValue += 4; if (Header.Machine == COFF::IMAGE_FILE_MACHINE_ARMNT) { switch (Reloc.Data.Type) { case COFF::IMAGE_REL_ARM_ABSOLUTE: case COFF::IMAGE_REL_ARM_ADDR32: case COFF::IMAGE_REL_ARM_ADDR32NB: case COFF::IMAGE_REL_ARM_TOKEN: case COFF::IMAGE_REL_ARM_SECTION: case COFF::IMAGE_REL_ARM_SECREL: break; case COFF::IMAGE_REL_ARM_BRANCH11: case COFF::IMAGE_REL_ARM_BLX11: // IMAGE_REL_ARM_BRANCH11 and IMAGE_REL_ARM_BLX11 are only used for // pre-ARMv7, which implicitly rules it out of ARMNT (it would be valid // for Windows CE). case COFF::IMAGE_REL_ARM_BRANCH24: case COFF::IMAGE_REL_ARM_BLX24: case COFF::IMAGE_REL_ARM_MOV32A: // IMAGE_REL_ARM_BRANCH24, IMAGE_REL_ARM_BLX24, IMAGE_REL_ARM_MOV32A are // only used for ARM mode code, which is documented as being unsupported // by Windows on ARM. Empirical proof indicates that masm is able to // generate the relocations however the rest of the MSVC toolchain is // unable to handle it. llvm_unreachable("unsupported relocation"); break; case COFF::IMAGE_REL_ARM_MOV32T: break; case COFF::IMAGE_REL_ARM_BRANCH20T: case COFF::IMAGE_REL_ARM_BRANCH24T: case COFF::IMAGE_REL_ARM_BLX23T: // IMAGE_REL_BRANCH20T, IMAGE_REL_ARM_BRANCH24T, IMAGE_REL_ARM_BLX23T all // perform a 4 byte adjustment to the relocation. Relative branches are // offset by 4 on ARM, however, because there is no RELA relocations, all // branches are offset by 4. FixedValue = FixedValue + 4; break; } } // The fixed value never makes sense for section indices, ignore it. if (Fixup.getKind() == FK_SecRel_2) FixedValue = 0; if (TargetObjectWriter->recordRelocation(Fixup)) Sec->Relocations.push_back(Reloc); } static std::time_t getTime() { std::time_t Now = time(nullptr); if (Now < 0 || !isUInt<32>(Now)) return UINT32_MAX; return Now; } // Create .file symbols. void WinCOFFObjectWriter::createFileSymbols(MCAssembler &Asm) { for (const std::pair &It : Asm.getFileNames()) { // round up to calculate the number of auxiliary symbols required const std::string &Name = It.first; unsigned SymbolSize = UseBigObj ? COFF::Symbol32Size : COFF::Symbol16Size; unsigned Count = (Name.size() + SymbolSize - 1) / SymbolSize; COFFSymbol *File = createSymbol(".file"); File->Data.SectionNumber = COFF::IMAGE_SYM_DEBUG; File->Data.StorageClass = COFF::IMAGE_SYM_CLASS_FILE; File->Aux.resize(Count); unsigned Offset = 0; unsigned Length = Name.size(); for (auto &Aux : File->Aux) { Aux.AuxType = ATFile; if (Length > SymbolSize) { memcpy(&Aux.Aux, Name.c_str() + Offset, SymbolSize); Length = Length - SymbolSize; } else { memcpy(&Aux.Aux, Name.c_str() + Offset, Length); memset((char *)&Aux.Aux + Length, 0, SymbolSize - Length); break; } Offset += SymbolSize; } } } void WinCOFFObjectWriter::setWeakDefaultNames() { if (WeakDefaults.empty()) return; // If multiple object files use a weak symbol (either with a regular // defined default, or an absolute zero symbol as default), the defaults // cause duplicate definitions unless their names are made unique. Look // for a defined extern symbol, that isn't comdat - that should be unique // unless there are other duplicate definitions. And if none is found, // allow picking a comdat symbol, as that's still better than nothing. COFFSymbol *Unique = nullptr; for (bool AllowComdat : {false, true}) { for (auto &Sym : Symbols) { // Don't include the names of the defaults themselves if (WeakDefaults.count(Sym.get())) continue; // Only consider external symbols if (Sym->Data.StorageClass != COFF::IMAGE_SYM_CLASS_EXTERNAL) continue; // Only consider symbols defined in a section or that are absolute if (!Sym->Section && Sym->Data.SectionNumber != COFF::IMAGE_SYM_ABSOLUTE) continue; if (!AllowComdat && Sym->Section && Sym->Section->Header.Characteristics & COFF::IMAGE_SCN_LNK_COMDAT) continue; Unique = Sym.get(); break; } if (Unique) break; } // If we didn't find any unique symbol to use for the names, just skip this. if (!Unique) return; for (auto *Sym : WeakDefaults) { Sym->Name.append("."); Sym->Name.append(Unique->Name); } } static bool isAssociative(const COFFSection &Section) { return Section.Symbol->Aux[0].Aux.SectionDefinition.Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE; } void WinCOFFObjectWriter::assignSectionNumbers() { size_t I = 1; auto Assign = [&](COFFSection &Section) { Section.Number = I; Section.Symbol->Data.SectionNumber = I; Section.Symbol->Aux[0].Aux.SectionDefinition.Number = I; ++I; }; // Although it is not explicitly requested by the Microsoft COFF spec, // we should avoid emitting forward associative section references, // because MSVC link.exe as of 2017 cannot handle that. for (const std::unique_ptr &Section : Sections) if (!isAssociative(*Section)) Assign(*Section); for (const std::unique_ptr &Section : Sections) if (isAssociative(*Section)) Assign(*Section); } // Assign file offsets to COFF object file structures. void WinCOFFObjectWriter::assignFileOffsets(MCAssembler &Asm, const MCAsmLayout &Layout) { unsigned Offset = W.OS.tell(); Offset += UseBigObj ? COFF::Header32Size : COFF::Header16Size; Offset += COFF::SectionSize * Header.NumberOfSections; for (const auto &Section : Asm) { COFFSection *Sec = SectionMap[&Section]; if (Sec->Number == -1) continue; Sec->Header.SizeOfRawData = Layout.getSectionAddressSize(&Section); if (IsPhysicalSection(Sec)) { Sec->Header.PointerToRawData = Offset; Offset += Sec->Header.SizeOfRawData; } if (!Sec->Relocations.empty()) { bool RelocationsOverflow = Sec->Relocations.size() >= 0xffff; if (RelocationsOverflow) { // Signal overflow by setting NumberOfRelocations to max value. Actual // size is found in reloc #0. Microsoft tools understand this. Sec->Header.NumberOfRelocations = 0xffff; } else { Sec->Header.NumberOfRelocations = Sec->Relocations.size(); } Sec->Header.PointerToRelocations = Offset; if (RelocationsOverflow) { // Reloc #0 will contain actual count, so make room for it. Offset += COFF::RelocationSize; } Offset += COFF::RelocationSize * Sec->Relocations.size(); for (auto &Relocation : Sec->Relocations) { assert(Relocation.Symb->getIndex() != -1); Relocation.Data.SymbolTableIndex = Relocation.Symb->getIndex(); } } assert(Sec->Symbol->Aux.size() == 1 && "Section's symbol must have one aux!"); AuxSymbol &Aux = Sec->Symbol->Aux[0]; assert(Aux.AuxType == ATSectionDefinition && "Section's symbol's aux symbol must be a Section Definition!"); Aux.Aux.SectionDefinition.Length = Sec->Header.SizeOfRawData; Aux.Aux.SectionDefinition.NumberOfRelocations = Sec->Header.NumberOfRelocations; Aux.Aux.SectionDefinition.NumberOfLinenumbers = Sec->Header.NumberOfLineNumbers; } Header.PointerToSymbolTable = Offset; } uint64_t WinCOFFObjectWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { uint64_t StartOffset = W.OS.tell(); if (Sections.size() > INT32_MAX) report_fatal_error( "PE COFF object files can't have more than 2147483647 sections"); UseBigObj = Sections.size() > COFF::MaxNumberOfSections16; Header.NumberOfSections = Sections.size(); Header.NumberOfSymbols = 0; setWeakDefaultNames(); assignSectionNumbers(); createFileSymbols(Asm); for (auto &Symbol : Symbols) { // Update section number & offset for symbols that have them. if (Symbol->Section) Symbol->Data.SectionNumber = Symbol->Section->Number; Symbol->setIndex(Header.NumberOfSymbols++); // Update auxiliary symbol info. Symbol->Data.NumberOfAuxSymbols = Symbol->Aux.size(); Header.NumberOfSymbols += Symbol->Data.NumberOfAuxSymbols; } // Build string table. for (const auto &S : Sections) if (S->Name.size() > COFF::NameSize) Strings.add(S->Name); for (const auto &S : Symbols) if (S->Name.size() > COFF::NameSize) Strings.add(S->Name); Strings.finalize(); // Set names. for (const auto &S : Sections) SetSectionName(*S); for (auto &S : Symbols) SetSymbolName(*S); // Fixup weak external references. for (auto &Symbol : Symbols) { if (Symbol->Other) { assert(Symbol->getIndex() != -1); assert(Symbol->Aux.size() == 1 && "Symbol must contain one aux symbol!"); assert(Symbol->Aux[0].AuxType == ATWeakExternal && "Symbol's aux symbol must be a Weak External!"); Symbol->Aux[0].Aux.WeakExternal.TagIndex = Symbol->Other->getIndex(); } } // Fixup associative COMDAT sections. for (auto &Section : Sections) { if (Section->Symbol->Aux[0].Aux.SectionDefinition.Selection != COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) continue; const MCSectionCOFF &MCSec = *Section->MCSection; const MCSymbol *AssocMCSym = MCSec.getCOMDATSymbol(); assert(AssocMCSym); // It's an error to try to associate with an undefined symbol or a symbol // without a section. if (!AssocMCSym->isInSection()) { Asm.getContext().reportError( SMLoc(), Twine("cannot make section ") + MCSec.getName() + Twine(" associative with sectionless symbol ") + AssocMCSym->getName()); continue; } const auto *AssocMCSec = cast(&AssocMCSym->getSection()); assert(SectionMap.count(AssocMCSec)); COFFSection *AssocSec = SectionMap[AssocMCSec]; // Skip this section if the associated section is unused. if (AssocSec->Number == -1) continue; Section->Symbol->Aux[0].Aux.SectionDefinition.Number = AssocSec->Number; } // Create the contents of the .llvm_addrsig section. if (EmitAddrsigSection) { auto Frag = new MCDataFragment(AddrsigSection); Frag->setLayoutOrder(0); raw_svector_ostream OS(Frag->getContents()); for (const MCSymbol *S : AddrsigSyms) { if (!S->isTemporary()) { encodeULEB128(S->getIndex(), OS); continue; } MCSection *TargetSection = &S->getSection(); assert(SectionMap.find(TargetSection) != SectionMap.end() && "Section must already have been defined in " "executePostLayoutBinding!"); encodeULEB128(SectionMap[TargetSection]->Symbol->getIndex(), OS); } } // Create the contents of the .llvm.call-graph-profile section. if (CGProfileSection) { auto *Frag = new MCDataFragment(CGProfileSection); Frag->setLayoutOrder(0); raw_svector_ostream OS(Frag->getContents()); for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) { uint32_t FromIndex = CGPE.From->getSymbol().getIndex(); uint32_t ToIndex = CGPE.To->getSymbol().getIndex(); support::endian::write(OS, FromIndex, W.Endian); support::endian::write(OS, ToIndex, W.Endian); support::endian::write(OS, CGPE.Count, W.Endian); } } assignFileOffsets(Asm, Layout); // MS LINK expects to be able to use this timestamp to implement their // /INCREMENTAL feature. if (Asm.isIncrementalLinkerCompatible()) { Header.TimeDateStamp = getTime(); } else { // Have deterministic output if /INCREMENTAL isn't needed. Also matches GNU. Header.TimeDateStamp = 0; } // Write it all to disk... WriteFileHeader(Header); writeSectionHeaders(); // Write section contents. sections::iterator I = Sections.begin(); sections::iterator IE = Sections.end(); MCAssembler::iterator J = Asm.begin(); MCAssembler::iterator JE = Asm.end(); for (; I != IE && J != JE; ++I, ++J) writeSection(Asm, Layout, **I, *J); assert(W.OS.tell() == Header.PointerToSymbolTable && "Header::PointerToSymbolTable is insane!"); // Write a symbol table. for (auto &Symbol : Symbols) if (Symbol->getIndex() != -1) WriteSymbol(*Symbol); // Write a string table, which completes the entire COFF file. Strings.write(W.OS); return W.OS.tell() - StartOffset; } MCWinCOFFObjectTargetWriter::MCWinCOFFObjectTargetWriter(unsigned Machine_) : Machine(Machine_) {} // Pin the vtable to this file. void MCWinCOFFObjectTargetWriter::anchor() {} //------------------------------------------------------------------------------ // WinCOFFObjectWriter factory function std::unique_ptr llvm::createWinCOFFObjectWriter( std::unique_ptr MOTW, raw_pwrite_stream &OS) { return std::make_unique(std::move(MOTW), OS); }