//===- lib/MC/MCDwarf.cpp - MCDwarf implementation ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/MC/MCDwarf.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/Config/config.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Endian.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Path.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include using namespace llvm; /// Manage the .debug_line_str section contents, if we use it. class llvm::MCDwarfLineStr { MCSymbol *LineStrLabel = nullptr; StringTableBuilder LineStrings{StringTableBuilder::DWARF}; bool UseRelocs = false; public: /// Construct an instance that can emit .debug_line_str (for use in a normal /// v5 line table). explicit MCDwarfLineStr(MCContext &Ctx) { UseRelocs = Ctx.getAsmInfo()->doesDwarfUseRelocationsAcrossSections(); if (UseRelocs) LineStrLabel = Ctx.getObjectFileInfo()->getDwarfLineStrSection()->getBeginSymbol(); } /// Emit a reference to the string. void emitRef(MCStreamer *MCOS, StringRef Path); /// Emit the .debug_line_str section if appropriate. void emitSection(MCStreamer *MCOS); }; static inline uint64_t ScaleAddrDelta(MCContext &Context, uint64_t AddrDelta) { unsigned MinInsnLength = Context.getAsmInfo()->getMinInstAlignment(); if (MinInsnLength == 1) return AddrDelta; if (AddrDelta % MinInsnLength != 0) { // TODO: report this error, but really only once. ; } return AddrDelta / MinInsnLength; } // // This is called when an instruction is assembled into the specified section // and if there is information from the last .loc directive that has yet to have // a line entry made for it is made. // void MCDwarfLineEntry::Make(MCObjectStreamer *MCOS, MCSection *Section) { if (!MCOS->getContext().getDwarfLocSeen()) return; // Create a symbol at in the current section for use in the line entry. MCSymbol *LineSym = MCOS->getContext().createTempSymbol(); // Set the value of the symbol to use for the MCDwarfLineEntry. MCOS->EmitLabel(LineSym); // Get the current .loc info saved in the context. const MCDwarfLoc &DwarfLoc = MCOS->getContext().getCurrentDwarfLoc(); // Create a (local) line entry with the symbol and the current .loc info. MCDwarfLineEntry LineEntry(LineSym, DwarfLoc); // clear DwarfLocSeen saying the current .loc info is now used. MCOS->getContext().clearDwarfLocSeen(); // Add the line entry to this section's entries. MCOS->getContext() .getMCDwarfLineTable(MCOS->getContext().getDwarfCompileUnitID()) .getMCLineSections() .addLineEntry(LineEntry, Section); } // // This helper routine returns an expression of End - Start + IntVal . // static inline const MCExpr *MakeStartMinusEndExpr(const MCStreamer &MCOS, const MCSymbol &Start, const MCSymbol &End, int IntVal) { MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; const MCExpr *Res = MCSymbolRefExpr::create(&End, Variant, MCOS.getContext()); const MCExpr *RHS = MCSymbolRefExpr::create(&Start, Variant, MCOS.getContext()); const MCExpr *Res1 = MCBinaryExpr::create(MCBinaryExpr::Sub, Res, RHS, MCOS.getContext()); const MCExpr *Res2 = MCConstantExpr::create(IntVal, MCOS.getContext()); const MCExpr *Res3 = MCBinaryExpr::create(MCBinaryExpr::Sub, Res1, Res2, MCOS.getContext()); return Res3; } // // This helper routine returns an expression of Start + IntVal . // static inline const MCExpr * makeStartPlusIntExpr(MCContext &Ctx, const MCSymbol &Start, int IntVal) { MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; const MCExpr *LHS = MCSymbolRefExpr::create(&Start, Variant, Ctx); const MCExpr *RHS = MCConstantExpr::create(IntVal, Ctx); const MCExpr *Res = MCBinaryExpr::create(MCBinaryExpr::Add, LHS, RHS, Ctx); return Res; } // // This emits the Dwarf line table for the specified section from the entries // in the LineSection. // static inline void EmitDwarfLineTable(MCObjectStreamer *MCOS, MCSection *Section, const MCLineSection::MCDwarfLineEntryCollection &LineEntries) { unsigned FileNum = 1; unsigned LastLine = 1; unsigned Column = 0; unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0; unsigned Isa = 0; unsigned Discriminator = 0; MCSymbol *LastLabel = nullptr; // Loop through each MCDwarfLineEntry and encode the dwarf line number table. for (const MCDwarfLineEntry &LineEntry : LineEntries) { int64_t LineDelta = static_cast(LineEntry.getLine()) - LastLine; if (FileNum != LineEntry.getFileNum()) { FileNum = LineEntry.getFileNum(); MCOS->EmitIntValue(dwarf::DW_LNS_set_file, 1); MCOS->EmitULEB128IntValue(FileNum); } if (Column != LineEntry.getColumn()) { Column = LineEntry.getColumn(); MCOS->EmitIntValue(dwarf::DW_LNS_set_column, 1); MCOS->EmitULEB128IntValue(Column); } if (Discriminator != LineEntry.getDiscriminator() && MCOS->getContext().getDwarfVersion() >= 4) { Discriminator = LineEntry.getDiscriminator(); unsigned Size = getULEB128Size(Discriminator); MCOS->EmitIntValue(dwarf::DW_LNS_extended_op, 1); MCOS->EmitULEB128IntValue(Size + 1); MCOS->EmitIntValue(dwarf::DW_LNE_set_discriminator, 1); MCOS->EmitULEB128IntValue(Discriminator); } if (Isa != LineEntry.getIsa()) { Isa = LineEntry.getIsa(); MCOS->EmitIntValue(dwarf::DW_LNS_set_isa, 1); MCOS->EmitULEB128IntValue(Isa); } if ((LineEntry.getFlags() ^ Flags) & DWARF2_FLAG_IS_STMT) { Flags = LineEntry.getFlags(); MCOS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1); } if (LineEntry.getFlags() & DWARF2_FLAG_BASIC_BLOCK) MCOS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1); if (LineEntry.getFlags() & DWARF2_FLAG_PROLOGUE_END) MCOS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1); if (LineEntry.getFlags() & DWARF2_FLAG_EPILOGUE_BEGIN) MCOS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1); MCSymbol *Label = LineEntry.getLabel(); // At this point we want to emit/create the sequence to encode the delta in // line numbers and the increment of the address from the previous Label // and the current Label. const MCAsmInfo *asmInfo = MCOS->getContext().getAsmInfo(); MCOS->EmitDwarfAdvanceLineAddr(LineDelta, LastLabel, Label, asmInfo->getCodePointerSize()); Discriminator = 0; LastLine = LineEntry.getLine(); LastLabel = Label; } // Emit a DW_LNE_end_sequence for the end of the section. // Use the section end label to compute the address delta and use INT64_MAX // as the line delta which is the signal that this is actually a // DW_LNE_end_sequence. MCSymbol *SectionEnd = MCOS->endSection(Section); // Switch back the dwarf line section, in case endSection had to switch the // section. MCContext &Ctx = MCOS->getContext(); MCOS->SwitchSection(Ctx.getObjectFileInfo()->getDwarfLineSection()); const MCAsmInfo *AsmInfo = Ctx.getAsmInfo(); MCOS->EmitDwarfAdvanceLineAddr(INT64_MAX, LastLabel, SectionEnd, AsmInfo->getCodePointerSize()); } // // This emits the Dwarf file and the line tables. // void MCDwarfLineTable::Emit(MCObjectStreamer *MCOS, MCDwarfLineTableParams Params) { MCContext &context = MCOS->getContext(); auto &LineTables = context.getMCDwarfLineTables(); // Bail out early so we don't switch to the debug_line section needlessly and // in doing so create an unnecessary (if empty) section. if (LineTables.empty()) return; // In a v5 non-split line table, put the strings in a separate section. Optional LineStr; if (context.getDwarfVersion() >= 5) LineStr = MCDwarfLineStr(context); // Switch to the section where the table will be emitted into. MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfLineSection()); // Handle the rest of the Compile Units. for (const auto &CUIDTablePair : LineTables) { CUIDTablePair.second.EmitCU(MCOS, Params, LineStr); } if (LineStr) LineStr->emitSection(MCOS); } void MCDwarfDwoLineTable::Emit(MCStreamer &MCOS, MCDwarfLineTableParams Params, MCSection *Section) const { if (!HasSplitLineTable) return; Optional NoLineStr(None); MCOS.SwitchSection(Section); MCOS.EmitLabel(Header.Emit(&MCOS, Params, None, NoLineStr).second); } std::pair MCDwarfLineTableHeader::Emit(MCStreamer *MCOS, MCDwarfLineTableParams Params, Optional &LineStr) const { static const char StandardOpcodeLengths[] = { 0, // length of DW_LNS_copy 1, // length of DW_LNS_advance_pc 1, // length of DW_LNS_advance_line 1, // length of DW_LNS_set_file 1, // length of DW_LNS_set_column 0, // length of DW_LNS_negate_stmt 0, // length of DW_LNS_set_basic_block 0, // length of DW_LNS_const_add_pc 1, // length of DW_LNS_fixed_advance_pc 0, // length of DW_LNS_set_prologue_end 0, // length of DW_LNS_set_epilogue_begin 1 // DW_LNS_set_isa }; assert(array_lengthof(StandardOpcodeLengths) >= (Params.DWARF2LineOpcodeBase - 1U)); return Emit( MCOS, Params, makeArrayRef(StandardOpcodeLengths, Params.DWARF2LineOpcodeBase - 1), LineStr); } static const MCExpr *forceExpAbs(MCStreamer &OS, const MCExpr* Expr) { MCContext &Context = OS.getContext(); assert(!isa(Expr)); if (Context.getAsmInfo()->hasAggressiveSymbolFolding()) return Expr; MCSymbol *ABS = Context.createTempSymbol(); OS.EmitAssignment(ABS, Expr); return MCSymbolRefExpr::create(ABS, Context); } static void emitAbsValue(MCStreamer &OS, const MCExpr *Value, unsigned Size) { const MCExpr *ABS = forceExpAbs(OS, Value); OS.EmitValue(ABS, Size); } void MCDwarfLineStr::emitSection(MCStreamer *MCOS) { // Switch to the .debug_line_str section. MCOS->SwitchSection( MCOS->getContext().getObjectFileInfo()->getDwarfLineStrSection()); // Emit the strings without perturbing the offsets we used. LineStrings.finalizeInOrder(); SmallString<0> Data; Data.resize(LineStrings.getSize()); LineStrings.write((uint8_t *)Data.data()); MCOS->EmitBinaryData(Data.str()); } void MCDwarfLineStr::emitRef(MCStreamer *MCOS, StringRef Path) { int RefSize = 4; // FIXME: Support DWARF-64 size_t Offset = LineStrings.add(Path); if (UseRelocs) { MCContext &Ctx = MCOS->getContext(); MCOS->EmitValue(makeStartPlusIntExpr(Ctx, *LineStrLabel, Offset), RefSize); } else MCOS->EmitIntValue(Offset, RefSize); } void MCDwarfLineTableHeader::emitV2FileDirTables(MCStreamer *MCOS) const { // First the directory table. for (auto &Dir : MCDwarfDirs) { MCOS->EmitBytes(Dir); // The DirectoryName, and... MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator. } MCOS->EmitIntValue(0, 1); // Terminate the directory list. // Second the file table. for (unsigned i = 1; i < MCDwarfFiles.size(); i++) { assert(!MCDwarfFiles[i].Name.empty()); MCOS->EmitBytes(MCDwarfFiles[i].Name); // FileName and... MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator. MCOS->EmitULEB128IntValue(MCDwarfFiles[i].DirIndex); // Directory number. MCOS->EmitIntValue(0, 1); // Last modification timestamp (always 0). MCOS->EmitIntValue(0, 1); // File size (always 0). } MCOS->EmitIntValue(0, 1); // Terminate the file list. } static void emitOneV5FileEntry(MCStreamer *MCOS, const MCDwarfFile &DwarfFile, bool EmitMD5, bool HasSource, Optional &LineStr) { assert(!DwarfFile.Name.empty()); if (LineStr) LineStr->emitRef(MCOS, DwarfFile.Name); else { MCOS->EmitBytes(DwarfFile.Name); // FileName and... MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator. } MCOS->EmitULEB128IntValue(DwarfFile.DirIndex); // Directory number. if (EmitMD5) { const MD5::MD5Result &Cksum = *DwarfFile.Checksum; MCOS->EmitBinaryData( StringRef(reinterpret_cast(Cksum.Bytes.data()), Cksum.Bytes.size())); } if (HasSource) { if (LineStr) LineStr->emitRef(MCOS, DwarfFile.Source.getValueOr(StringRef())); else { MCOS->EmitBytes( DwarfFile.Source.getValueOr(StringRef())); // Source and... MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator. } } } void MCDwarfLineTableHeader::emitV5FileDirTables( MCStreamer *MCOS, Optional &LineStr) const { // The directory format, which is just a list of the directory paths. In a // non-split object, these are references to .debug_line_str; in a split // object, they are inline strings. MCOS->EmitIntValue(1, 1); MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_path); MCOS->EmitULEB128IntValue(LineStr ? dwarf::DW_FORM_line_strp : dwarf::DW_FORM_string); MCOS->EmitULEB128IntValue(MCDwarfDirs.size() + 1); // Try not to emit an empty compilation directory. const StringRef CompDir = CompilationDir.empty() ? MCOS->getContext().getCompilationDir() : StringRef(CompilationDir); if (LineStr) { // Record path strings, emit references here. LineStr->emitRef(MCOS, CompDir); for (const auto &Dir : MCDwarfDirs) LineStr->emitRef(MCOS, Dir); } else { // The list of directory paths. Compilation directory comes first. MCOS->EmitBytes(CompDir); MCOS->EmitBytes(StringRef("\0", 1)); for (const auto &Dir : MCDwarfDirs) { MCOS->EmitBytes(Dir); // The DirectoryName, and... MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator. } } // The file format, which is the inline null-terminated filename and a // directory index. We don't track file size/timestamp so don't emit them // in the v5 table. Emit MD5 checksums and source if we have them. uint64_t Entries = 2; if (HasAllMD5) Entries += 1; if (HasSource) Entries += 1; MCOS->EmitIntValue(Entries, 1); MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_path); MCOS->EmitULEB128IntValue(LineStr ? dwarf::DW_FORM_line_strp : dwarf::DW_FORM_string); MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_directory_index); MCOS->EmitULEB128IntValue(dwarf::DW_FORM_udata); if (HasAllMD5) { MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_MD5); MCOS->EmitULEB128IntValue(dwarf::DW_FORM_data16); } if (HasSource) { MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_LLVM_source); MCOS->EmitULEB128IntValue(LineStr ? dwarf::DW_FORM_line_strp : dwarf::DW_FORM_string); } // Then the counted list of files. The root file is file #0, then emit the // files as provide by .file directives. // MCDwarfFiles has an unused element [0] so use size() not size()+1. // But sometimes MCDwarfFiles is empty, in which case we still emit one file. MCOS->EmitULEB128IntValue(MCDwarfFiles.empty() ? 1 : MCDwarfFiles.size()); // To accommodate assembler source written for DWARF v4 but trying to emit // v5: If we didn't see a root file explicitly, replicate file #1. assert((!RootFile.Name.empty() || MCDwarfFiles.size() >= 1) && "No root file and no .file directives"); emitOneV5FileEntry(MCOS, RootFile.Name.empty() ? MCDwarfFiles[1] : RootFile, HasAllMD5, HasSource, LineStr); for (unsigned i = 1; i < MCDwarfFiles.size(); ++i) emitOneV5FileEntry(MCOS, MCDwarfFiles[i], HasAllMD5, HasSource, LineStr); } std::pair MCDwarfLineTableHeader::Emit(MCStreamer *MCOS, MCDwarfLineTableParams Params, ArrayRef StandardOpcodeLengths, Optional &LineStr) const { MCContext &context = MCOS->getContext(); // Create a symbol at the beginning of the line table. MCSymbol *LineStartSym = Label; if (!LineStartSym) LineStartSym = context.createTempSymbol(); // Set the value of the symbol, as we are at the start of the line table. MCOS->EmitLabel(LineStartSym); // Create a symbol for the end of the section (to be set when we get there). MCSymbol *LineEndSym = context.createTempSymbol(); // The first 4 bytes is the total length of the information for this // compilation unit (not including these 4 bytes for the length). emitAbsValue(*MCOS, MakeStartMinusEndExpr(*MCOS, *LineStartSym, *LineEndSym, 4), 4); // Next 2 bytes is the Version. unsigned LineTableVersion = context.getDwarfVersion(); MCOS->EmitIntValue(LineTableVersion, 2); // Keep track of the bytes between the very start and where the header length // comes out. unsigned PreHeaderLengthBytes = 4 + 2; // In v5, we get address info next. if (LineTableVersion >= 5) { MCOS->EmitIntValue(context.getAsmInfo()->getCodePointerSize(), 1); MCOS->EmitIntValue(0, 1); // Segment selector; same as EmitGenDwarfAranges. PreHeaderLengthBytes += 2; } // Create a symbol for the end of the prologue (to be set when we get there). MCSymbol *ProEndSym = context.createTempSymbol(); // Lprologue_end // Length of the prologue, is the next 4 bytes. This is actually the length // from after the length word, to the end of the prologue. emitAbsValue(*MCOS, MakeStartMinusEndExpr(*MCOS, *LineStartSym, *ProEndSym, (PreHeaderLengthBytes + 4)), 4); // Parameters of the state machine, are next. MCOS->EmitIntValue(context.getAsmInfo()->getMinInstAlignment(), 1); // maximum_operations_per_instruction // For non-VLIW architectures this field is always 1. // FIXME: VLIW architectures need to update this field accordingly. if (LineTableVersion >= 4) MCOS->EmitIntValue(1, 1); MCOS->EmitIntValue(DWARF2_LINE_DEFAULT_IS_STMT, 1); MCOS->EmitIntValue(Params.DWARF2LineBase, 1); MCOS->EmitIntValue(Params.DWARF2LineRange, 1); MCOS->EmitIntValue(StandardOpcodeLengths.size() + 1, 1); // Standard opcode lengths for (char Length : StandardOpcodeLengths) MCOS->EmitIntValue(Length, 1); // Put out the directory and file tables. The formats vary depending on // the version. if (LineTableVersion >= 5) emitV5FileDirTables(MCOS, LineStr); else emitV2FileDirTables(MCOS); // This is the end of the prologue, so set the value of the symbol at the // end of the prologue (that was used in a previous expression). MCOS->EmitLabel(ProEndSym); return std::make_pair(LineStartSym, LineEndSym); } void MCDwarfLineTable::EmitCU(MCObjectStreamer *MCOS, MCDwarfLineTableParams Params, Optional &LineStr) const { MCSymbol *LineEndSym = Header.Emit(MCOS, Params, LineStr).second; // Put out the line tables. for (const auto &LineSec : MCLineSections.getMCLineEntries()) EmitDwarfLineTable(MCOS, LineSec.first, LineSec.second); // This is the end of the section, so set the value of the symbol at the end // of this section (that was used in a previous expression). MCOS->EmitLabel(LineEndSym); } Expected MCDwarfLineTable::tryGetFile(StringRef &Directory, StringRef &FileName, Optional Checksum, Optional Source, uint16_t DwarfVersion, unsigned FileNumber) { return Header.tryGetFile(Directory, FileName, Checksum, Source, DwarfVersion, FileNumber); } static bool isRootFile(const MCDwarfFile &RootFile, StringRef &Directory, StringRef &FileName, Optional Checksum) { if (RootFile.Name.empty() || RootFile.Name != FileName.data()) return false; return RootFile.Checksum == Checksum; } Expected MCDwarfLineTableHeader::tryGetFile(StringRef &Directory, StringRef &FileName, Optional Checksum, Optional Source, uint16_t DwarfVersion, unsigned FileNumber) { if (Directory == CompilationDir) Directory = ""; if (FileName.empty()) { FileName = ""; Directory = ""; } assert(!FileName.empty()); // Keep track of whether any or all files have an MD5 checksum. // If any files have embedded source, they all must. if (MCDwarfFiles.empty()) { trackMD5Usage(Checksum.hasValue()); HasSource = (Source != None); } if (isRootFile(RootFile, Directory, FileName, Checksum) && DwarfVersion >= 5) return 0; if (FileNumber == 0) { // File numbers start with 1 and/or after any file numbers // allocated by inline-assembler .file directives. FileNumber = MCDwarfFiles.empty() ? 1 : MCDwarfFiles.size(); SmallString<256> Buffer; auto IterBool = SourceIdMap.insert( std::make_pair((Directory + Twine('\0') + FileName).toStringRef(Buffer), FileNumber)); if (!IterBool.second) return IterBool.first->second; } // Make space for this FileNumber in the MCDwarfFiles vector if needed. if (FileNumber >= MCDwarfFiles.size()) MCDwarfFiles.resize(FileNumber + 1); // Get the new MCDwarfFile slot for this FileNumber. MCDwarfFile &File = MCDwarfFiles[FileNumber]; // It is an error to see the same number more than once. if (!File.Name.empty()) return make_error("file number already allocated", inconvertibleErrorCode()); // If any files have embedded source, they all must. if (HasSource != (Source != None)) return make_error("inconsistent use of embedded source", inconvertibleErrorCode()); if (Directory.empty()) { // Separate the directory part from the basename of the FileName. StringRef tFileName = sys::path::filename(FileName); if (!tFileName.empty()) { Directory = sys::path::parent_path(FileName); if (!Directory.empty()) FileName = tFileName; } } // Find or make an entry in the MCDwarfDirs vector for this Directory. // Capture directory name. unsigned DirIndex; if (Directory.empty()) { // For FileNames with no directories a DirIndex of 0 is used. DirIndex = 0; } else { DirIndex = llvm::find(MCDwarfDirs, Directory) - MCDwarfDirs.begin(); if (DirIndex >= MCDwarfDirs.size()) MCDwarfDirs.push_back(Directory); // The DirIndex is one based, as DirIndex of 0 is used for FileNames with // no directories. MCDwarfDirs[] is unlike MCDwarfFiles[] in that the // directory names are stored at MCDwarfDirs[DirIndex-1] where FileNames // are stored at MCDwarfFiles[FileNumber].Name . DirIndex++; } File.Name = FileName; File.DirIndex = DirIndex; File.Checksum = Checksum; trackMD5Usage(Checksum.hasValue()); File.Source = Source; if (Source) HasSource = true; // return the allocated FileNumber. return FileNumber; } /// Utility function to emit the encoding to a streamer. void MCDwarfLineAddr::Emit(MCStreamer *MCOS, MCDwarfLineTableParams Params, int64_t LineDelta, uint64_t AddrDelta) { MCContext &Context = MCOS->getContext(); SmallString<256> Tmp; raw_svector_ostream OS(Tmp); MCDwarfLineAddr::Encode(Context, Params, LineDelta, AddrDelta, OS); MCOS->EmitBytes(OS.str()); } /// Given a special op, return the address skip amount (in units of /// DWARF2_LINE_MIN_INSN_LENGTH). static uint64_t SpecialAddr(MCDwarfLineTableParams Params, uint64_t op) { return (op - Params.DWARF2LineOpcodeBase) / Params.DWARF2LineRange; } /// Utility function to encode a Dwarf pair of LineDelta and AddrDeltas. void MCDwarfLineAddr::Encode(MCContext &Context, MCDwarfLineTableParams Params, int64_t LineDelta, uint64_t AddrDelta, raw_ostream &OS) { uint64_t Temp, Opcode; bool NeedCopy = false; // The maximum address skip amount that can be encoded with a special op. uint64_t MaxSpecialAddrDelta = SpecialAddr(Params, 255); // Scale the address delta by the minimum instruction length. AddrDelta = ScaleAddrDelta(Context, AddrDelta); // A LineDelta of INT64_MAX is a signal that this is actually a // DW_LNE_end_sequence. We cannot use special opcodes here, since we want the // end_sequence to emit the matrix entry. if (LineDelta == INT64_MAX) { if (AddrDelta == MaxSpecialAddrDelta) OS << char(dwarf::DW_LNS_const_add_pc); else if (AddrDelta) { OS << char(dwarf::DW_LNS_advance_pc); encodeULEB128(AddrDelta, OS); } OS << char(dwarf::DW_LNS_extended_op); OS << char(1); OS << char(dwarf::DW_LNE_end_sequence); return; } // Bias the line delta by the base. Temp = LineDelta - Params.DWARF2LineBase; // If the line increment is out of range of a special opcode, we must encode // it with DW_LNS_advance_line. if (Temp >= Params.DWARF2LineRange || Temp + Params.DWARF2LineOpcodeBase > 255) { OS << char(dwarf::DW_LNS_advance_line); encodeSLEB128(LineDelta, OS); LineDelta = 0; Temp = 0 - Params.DWARF2LineBase; NeedCopy = true; } // Use DW_LNS_copy instead of a "line +0, addr +0" special opcode. if (LineDelta == 0 && AddrDelta == 0) { OS << char(dwarf::DW_LNS_copy); return; } // Bias the opcode by the special opcode base. Temp += Params.DWARF2LineOpcodeBase; // Avoid overflow when addr_delta is large. if (AddrDelta < 256 + MaxSpecialAddrDelta) { // Try using a special opcode. Opcode = Temp + AddrDelta * Params.DWARF2LineRange; if (Opcode <= 255) { OS << char(Opcode); return; } // Try using DW_LNS_const_add_pc followed by special op. Opcode = Temp + (AddrDelta - MaxSpecialAddrDelta) * Params.DWARF2LineRange; if (Opcode <= 255) { OS << char(dwarf::DW_LNS_const_add_pc); OS << char(Opcode); return; } } // Otherwise use DW_LNS_advance_pc. OS << char(dwarf::DW_LNS_advance_pc); encodeULEB128(AddrDelta, OS); if (NeedCopy) OS << char(dwarf::DW_LNS_copy); else { assert(Temp <= 255 && "Buggy special opcode encoding."); OS << char(Temp); } } bool MCDwarfLineAddr::FixedEncode(MCContext &Context, MCDwarfLineTableParams Params, int64_t LineDelta, uint64_t AddrDelta, raw_ostream &OS, uint32_t *Offset, uint32_t *Size) { if (LineDelta != INT64_MAX) { OS << char(dwarf::DW_LNS_advance_line); encodeSLEB128(LineDelta, OS); } // Use address delta to adjust address or use absolute address to adjust // address. bool SetDelta; // According to DWARF spec., the DW_LNS_fixed_advance_pc opcode takes a // single uhalf (unencoded) operand. So, the maximum value of AddrDelta // is 65535. We set a conservative upper bound for it for relaxation. if (AddrDelta > 60000) { const MCAsmInfo *asmInfo = Context.getAsmInfo(); unsigned AddrSize = asmInfo->getCodePointerSize(); OS << char(dwarf::DW_LNS_extended_op); encodeULEB128(1 + AddrSize, OS); OS << char(dwarf::DW_LNE_set_address); // Generate fixup for the address. *Offset = OS.tell(); *Size = AddrSize; SetDelta = false; OS.write_zeros(AddrSize); } else { OS << char(dwarf::DW_LNS_fixed_advance_pc); // Generate fixup for 2-bytes address delta. *Offset = OS.tell(); *Size = 2; SetDelta = true; OS << char(0); OS << char(0); } if (LineDelta == INT64_MAX) { OS << char(dwarf::DW_LNS_extended_op); OS << char(1); OS << char(dwarf::DW_LNE_end_sequence); } else { OS << char(dwarf::DW_LNS_copy); } return SetDelta; } // Utility function to write a tuple for .debug_abbrev. static void EmitAbbrev(MCStreamer *MCOS, uint64_t Name, uint64_t Form) { MCOS->EmitULEB128IntValue(Name); MCOS->EmitULEB128IntValue(Form); } // When generating dwarf for assembly source files this emits // the data for .debug_abbrev section which contains three DIEs. static void EmitGenDwarfAbbrev(MCStreamer *MCOS) { MCContext &context = MCOS->getContext(); MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfAbbrevSection()); // DW_TAG_compile_unit DIE abbrev (1). MCOS->EmitULEB128IntValue(1); MCOS->EmitULEB128IntValue(dwarf::DW_TAG_compile_unit); MCOS->EmitIntValue(dwarf::DW_CHILDREN_yes, 1); EmitAbbrev(MCOS, dwarf::DW_AT_stmt_list, context.getDwarfVersion() >= 4 ? dwarf::DW_FORM_sec_offset : dwarf::DW_FORM_data4); if (context.getGenDwarfSectionSyms().size() > 1 && context.getDwarfVersion() >= 3) { EmitAbbrev(MCOS, dwarf::DW_AT_ranges, context.getDwarfVersion() >= 4 ? dwarf::DW_FORM_sec_offset : dwarf::DW_FORM_data4); } else { EmitAbbrev(MCOS, dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr); EmitAbbrev(MCOS, dwarf::DW_AT_high_pc, dwarf::DW_FORM_addr); } EmitAbbrev(MCOS, dwarf::DW_AT_name, dwarf::DW_FORM_string); if (!context.getCompilationDir().empty()) EmitAbbrev(MCOS, dwarf::DW_AT_comp_dir, dwarf::DW_FORM_string); StringRef DwarfDebugFlags = context.getDwarfDebugFlags(); if (!DwarfDebugFlags.empty()) EmitAbbrev(MCOS, dwarf::DW_AT_APPLE_flags, dwarf::DW_FORM_string); EmitAbbrev(MCOS, dwarf::DW_AT_producer, dwarf::DW_FORM_string); EmitAbbrev(MCOS, dwarf::DW_AT_language, dwarf::DW_FORM_data2); EmitAbbrev(MCOS, 0, 0); // DW_TAG_label DIE abbrev (2). MCOS->EmitULEB128IntValue(2); MCOS->EmitULEB128IntValue(dwarf::DW_TAG_label); MCOS->EmitIntValue(dwarf::DW_CHILDREN_yes, 1); EmitAbbrev(MCOS, dwarf::DW_AT_name, dwarf::DW_FORM_string); EmitAbbrev(MCOS, dwarf::DW_AT_decl_file, dwarf::DW_FORM_data4); EmitAbbrev(MCOS, dwarf::DW_AT_decl_line, dwarf::DW_FORM_data4); EmitAbbrev(MCOS, dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr); EmitAbbrev(MCOS, dwarf::DW_AT_prototyped, dwarf::DW_FORM_flag); EmitAbbrev(MCOS, 0, 0); // DW_TAG_unspecified_parameters DIE abbrev (3). MCOS->EmitULEB128IntValue(3); MCOS->EmitULEB128IntValue(dwarf::DW_TAG_unspecified_parameters); MCOS->EmitIntValue(dwarf::DW_CHILDREN_no, 1); EmitAbbrev(MCOS, 0, 0); // Terminate the abbreviations for this compilation unit. MCOS->EmitIntValue(0, 1); } // When generating dwarf for assembly source files this emits the data for // .debug_aranges section. This section contains a header and a table of pairs // of PointerSize'ed values for the address and size of section(s) with line // table entries. static void EmitGenDwarfAranges(MCStreamer *MCOS, const MCSymbol *InfoSectionSymbol) { MCContext &context = MCOS->getContext(); auto &Sections = context.getGenDwarfSectionSyms(); MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfARangesSection()); // This will be the length of the .debug_aranges section, first account for // the size of each item in the header (see below where we emit these items). int Length = 4 + 2 + 4 + 1 + 1; // Figure the padding after the header before the table of address and size // pairs who's values are PointerSize'ed. const MCAsmInfo *asmInfo = context.getAsmInfo(); int AddrSize = asmInfo->getCodePointerSize(); int Pad = 2 * AddrSize - (Length & (2 * AddrSize - 1)); if (Pad == 2 * AddrSize) Pad = 0; Length += Pad; // Add the size of the pair of PointerSize'ed values for the address and size // of each section we have in the table. Length += 2 * AddrSize * Sections.size(); // And the pair of terminating zeros. Length += 2 * AddrSize; // Emit the header for this section. // The 4 byte length not including the 4 byte value for the length. MCOS->EmitIntValue(Length - 4, 4); // The 2 byte version, which is 2. MCOS->EmitIntValue(2, 2); // The 4 byte offset to the compile unit in the .debug_info from the start // of the .debug_info. if (InfoSectionSymbol) MCOS->EmitSymbolValue(InfoSectionSymbol, 4, asmInfo->needsDwarfSectionOffsetDirective()); else MCOS->EmitIntValue(0, 4); // The 1 byte size of an address. MCOS->EmitIntValue(AddrSize, 1); // The 1 byte size of a segment descriptor, we use a value of zero. MCOS->EmitIntValue(0, 1); // Align the header with the padding if needed, before we put out the table. for(int i = 0; i < Pad; i++) MCOS->EmitIntValue(0, 1); // Now emit the table of pairs of PointerSize'ed values for the section // addresses and sizes. for (MCSection *Sec : Sections) { const MCSymbol *StartSymbol = Sec->getBeginSymbol(); MCSymbol *EndSymbol = Sec->getEndSymbol(context); assert(StartSymbol && "StartSymbol must not be NULL"); assert(EndSymbol && "EndSymbol must not be NULL"); const MCExpr *Addr = MCSymbolRefExpr::create( StartSymbol, MCSymbolRefExpr::VK_None, context); const MCExpr *Size = MakeStartMinusEndExpr(*MCOS, *StartSymbol, *EndSymbol, 0); MCOS->EmitValue(Addr, AddrSize); emitAbsValue(*MCOS, Size, AddrSize); } // And finally the pair of terminating zeros. MCOS->EmitIntValue(0, AddrSize); MCOS->EmitIntValue(0, AddrSize); } // When generating dwarf for assembly source files this emits the data for // .debug_info section which contains three parts. The header, the compile_unit // DIE and a list of label DIEs. static void EmitGenDwarfInfo(MCStreamer *MCOS, const MCSymbol *AbbrevSectionSymbol, const MCSymbol *LineSectionSymbol, const MCSymbol *RangesSectionSymbol) { MCContext &context = MCOS->getContext(); MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfInfoSection()); // Create a symbol at the start and end of this section used in here for the // expression to calculate the length in the header. MCSymbol *InfoStart = context.createTempSymbol(); MCOS->EmitLabel(InfoStart); MCSymbol *InfoEnd = context.createTempSymbol(); // First part: the header. // The 4 byte total length of the information for this compilation unit, not // including these 4 bytes. const MCExpr *Length = MakeStartMinusEndExpr(*MCOS, *InfoStart, *InfoEnd, 4); emitAbsValue(*MCOS, Length, 4); // The 2 byte DWARF version. MCOS->EmitIntValue(context.getDwarfVersion(), 2); // The DWARF v5 header has unit type, address size, abbrev offset. // Earlier versions have abbrev offset, address size. const MCAsmInfo &AsmInfo = *context.getAsmInfo(); int AddrSize = AsmInfo.getCodePointerSize(); if (context.getDwarfVersion() >= 5) { MCOS->EmitIntValue(dwarf::DW_UT_compile, 1); MCOS->EmitIntValue(AddrSize, 1); } // The 4 byte offset to the debug abbrevs from the start of the .debug_abbrev, // it is at the start of that section so this is zero. if (AbbrevSectionSymbol == nullptr) MCOS->EmitIntValue(0, 4); else MCOS->EmitSymbolValue(AbbrevSectionSymbol, 4, AsmInfo.needsDwarfSectionOffsetDirective()); if (context.getDwarfVersion() <= 4) MCOS->EmitIntValue(AddrSize, 1); // Second part: the compile_unit DIE. // The DW_TAG_compile_unit DIE abbrev (1). MCOS->EmitULEB128IntValue(1); // DW_AT_stmt_list, a 4 byte offset from the start of the .debug_line section, // which is at the start of that section so this is zero. if (LineSectionSymbol) MCOS->EmitSymbolValue(LineSectionSymbol, 4, AsmInfo.needsDwarfSectionOffsetDirective()); else MCOS->EmitIntValue(0, 4); if (RangesSectionSymbol) { // There are multiple sections containing code, so we must use the // .debug_ranges sections. // AT_ranges, the 4 byte offset from the start of the .debug_ranges section // to the address range list for this compilation unit. MCOS->EmitSymbolValue(RangesSectionSymbol, 4); } else { // If we only have one non-empty code section, we can use the simpler // AT_low_pc and AT_high_pc attributes. // Find the first (and only) non-empty text section auto &Sections = context.getGenDwarfSectionSyms(); const auto TextSection = Sections.begin(); assert(TextSection != Sections.end() && "No text section found"); MCSymbol *StartSymbol = (*TextSection)->getBeginSymbol(); MCSymbol *EndSymbol = (*TextSection)->getEndSymbol(context); assert(StartSymbol && "StartSymbol must not be NULL"); assert(EndSymbol && "EndSymbol must not be NULL"); // AT_low_pc, the first address of the default .text section. const MCExpr *Start = MCSymbolRefExpr::create( StartSymbol, MCSymbolRefExpr::VK_None, context); MCOS->EmitValue(Start, AddrSize); // AT_high_pc, the last address of the default .text section. const MCExpr *End = MCSymbolRefExpr::create( EndSymbol, MCSymbolRefExpr::VK_None, context); MCOS->EmitValue(End, AddrSize); } // AT_name, the name of the source file. Reconstruct from the first directory // and file table entries. const SmallVectorImpl &MCDwarfDirs = context.getMCDwarfDirs(); if (MCDwarfDirs.size() > 0) { MCOS->EmitBytes(MCDwarfDirs[0]); MCOS->EmitBytes(sys::path::get_separator()); } const SmallVectorImpl &MCDwarfFiles = context.getMCDwarfFiles(); // MCDwarfFiles might be empty if we have an empty source file. // If it's not empty, [0] is unused and [1] is the first actual file. assert(MCDwarfFiles.empty() || MCDwarfFiles.size() >= 2); const MCDwarfFile &RootFile = MCDwarfFiles.empty() ? context.getMCDwarfLineTable(/*CUID=*/0).getRootFile() : MCDwarfFiles[1]; MCOS->EmitBytes(RootFile.Name); MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string. // AT_comp_dir, the working directory the assembly was done in. if (!context.getCompilationDir().empty()) { MCOS->EmitBytes(context.getCompilationDir()); MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string. } // AT_APPLE_flags, the command line arguments of the assembler tool. StringRef DwarfDebugFlags = context.getDwarfDebugFlags(); if (!DwarfDebugFlags.empty()){ MCOS->EmitBytes(DwarfDebugFlags); MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string. } // AT_producer, the version of the assembler tool. StringRef DwarfDebugProducer = context.getDwarfDebugProducer(); if (!DwarfDebugProducer.empty()) MCOS->EmitBytes(DwarfDebugProducer); else MCOS->EmitBytes(StringRef("llvm-mc (based on LLVM " PACKAGE_VERSION ")")); MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string. // AT_language, a 4 byte value. We use DW_LANG_Mips_Assembler as the dwarf2 // draft has no standard code for assembler. MCOS->EmitIntValue(dwarf::DW_LANG_Mips_Assembler, 2); // Third part: the list of label DIEs. // Loop on saved info for dwarf labels and create the DIEs for them. const std::vector &Entries = MCOS->getContext().getMCGenDwarfLabelEntries(); for (const auto &Entry : Entries) { // The DW_TAG_label DIE abbrev (2). MCOS->EmitULEB128IntValue(2); // AT_name, of the label without any leading underbar. MCOS->EmitBytes(Entry.getName()); MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string. // AT_decl_file, index into the file table. MCOS->EmitIntValue(Entry.getFileNumber(), 4); // AT_decl_line, source line number. MCOS->EmitIntValue(Entry.getLineNumber(), 4); // AT_low_pc, start address of the label. const MCExpr *AT_low_pc = MCSymbolRefExpr::create(Entry.getLabel(), MCSymbolRefExpr::VK_None, context); MCOS->EmitValue(AT_low_pc, AddrSize); // DW_AT_prototyped, a one byte flag value of 0 saying we have no prototype. MCOS->EmitIntValue(0, 1); // The DW_TAG_unspecified_parameters DIE abbrev (3). MCOS->EmitULEB128IntValue(3); // Add the NULL DIE terminating the DW_TAG_unspecified_parameters DIE's. MCOS->EmitIntValue(0, 1); } // Add the NULL DIE terminating the Compile Unit DIE's. MCOS->EmitIntValue(0, 1); // Now set the value of the symbol at the end of the info section. MCOS->EmitLabel(InfoEnd); } // When generating dwarf for assembly source files this emits the data for // .debug_ranges section. We only emit one range list, which spans all of the // executable sections of this file. static void EmitGenDwarfRanges(MCStreamer *MCOS) { MCContext &context = MCOS->getContext(); auto &Sections = context.getGenDwarfSectionSyms(); const MCAsmInfo *AsmInfo = context.getAsmInfo(); int AddrSize = AsmInfo->getCodePointerSize(); MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfRangesSection()); for (MCSection *Sec : Sections) { const MCSymbol *StartSymbol = Sec->getBeginSymbol(); MCSymbol *EndSymbol = Sec->getEndSymbol(context); assert(StartSymbol && "StartSymbol must not be NULL"); assert(EndSymbol && "EndSymbol must not be NULL"); // Emit a base address selection entry for the start of this section const MCExpr *SectionStartAddr = MCSymbolRefExpr::create( StartSymbol, MCSymbolRefExpr::VK_None, context); MCOS->emitFill(AddrSize, 0xFF); MCOS->EmitValue(SectionStartAddr, AddrSize); // Emit a range list entry spanning this section const MCExpr *SectionSize = MakeStartMinusEndExpr(*MCOS, *StartSymbol, *EndSymbol, 0); MCOS->EmitIntValue(0, AddrSize); emitAbsValue(*MCOS, SectionSize, AddrSize); } // Emit end of list entry MCOS->EmitIntValue(0, AddrSize); MCOS->EmitIntValue(0, AddrSize); } // // When generating dwarf for assembly source files this emits the Dwarf // sections. // void MCGenDwarfInfo::Emit(MCStreamer *MCOS) { MCContext &context = MCOS->getContext(); // Create the dwarf sections in this order (.debug_line already created). const MCAsmInfo *AsmInfo = context.getAsmInfo(); bool CreateDwarfSectionSymbols = AsmInfo->doesDwarfUseRelocationsAcrossSections(); MCSymbol *LineSectionSymbol = nullptr; if (CreateDwarfSectionSymbols) LineSectionSymbol = MCOS->getDwarfLineTableSymbol(0); MCSymbol *AbbrevSectionSymbol = nullptr; MCSymbol *InfoSectionSymbol = nullptr; MCSymbol *RangesSectionSymbol = nullptr; // Create end symbols for each section, and remove empty sections MCOS->getContext().finalizeDwarfSections(*MCOS); // If there are no sections to generate debug info for, we don't need // to do anything if (MCOS->getContext().getGenDwarfSectionSyms().empty()) return; // We only use the .debug_ranges section if we have multiple code sections, // and we are emitting a DWARF version which supports it. const bool UseRangesSection = MCOS->getContext().getGenDwarfSectionSyms().size() > 1 && MCOS->getContext().getDwarfVersion() >= 3; CreateDwarfSectionSymbols |= UseRangesSection; MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfInfoSection()); if (CreateDwarfSectionSymbols) { InfoSectionSymbol = context.createTempSymbol(); MCOS->EmitLabel(InfoSectionSymbol); } MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfAbbrevSection()); if (CreateDwarfSectionSymbols) { AbbrevSectionSymbol = context.createTempSymbol(); MCOS->EmitLabel(AbbrevSectionSymbol); } if (UseRangesSection) { MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfRangesSection()); if (CreateDwarfSectionSymbols) { RangesSectionSymbol = context.createTempSymbol(); MCOS->EmitLabel(RangesSectionSymbol); } } assert((RangesSectionSymbol != nullptr) || !UseRangesSection); MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfARangesSection()); // Output the data for .debug_aranges section. EmitGenDwarfAranges(MCOS, InfoSectionSymbol); if (UseRangesSection) EmitGenDwarfRanges(MCOS); // Output the data for .debug_abbrev section. EmitGenDwarfAbbrev(MCOS); // Output the data for .debug_info section. EmitGenDwarfInfo(MCOS, AbbrevSectionSymbol, LineSectionSymbol, RangesSectionSymbol); } // // When generating dwarf for assembly source files this is called when symbol // for a label is created. If this symbol is not a temporary and is in the // section that dwarf is being generated for, save the needed info to create // a dwarf label. // void MCGenDwarfLabelEntry::Make(MCSymbol *Symbol, MCStreamer *MCOS, SourceMgr &SrcMgr, SMLoc &Loc) { // We won't create dwarf labels for temporary symbols. if (Symbol->isTemporary()) return; MCContext &context = MCOS->getContext(); // We won't create dwarf labels for symbols in sections that we are not // generating debug info for. if (!context.getGenDwarfSectionSyms().count(MCOS->getCurrentSectionOnly())) return; // The dwarf label's name does not have the symbol name's leading // underbar if any. StringRef Name = Symbol->getName(); if (Name.startswith("_")) Name = Name.substr(1, Name.size()-1); // Get the dwarf file number to be used for the dwarf label. unsigned FileNumber = context.getGenDwarfFileNumber(); // Finding the line number is the expensive part which is why we just don't // pass it in as for some symbols we won't create a dwarf label. unsigned CurBuffer = SrcMgr.FindBufferContainingLoc(Loc); unsigned LineNumber = SrcMgr.FindLineNumber(Loc, CurBuffer); // We create a temporary symbol for use for the AT_high_pc and AT_low_pc // values so that they don't have things like an ARM thumb bit from the // original symbol. So when used they won't get a low bit set after // relocation. MCSymbol *Label = context.createTempSymbol(); MCOS->EmitLabel(Label); // Create and entry for the info and add it to the other entries. MCOS->getContext().addMCGenDwarfLabelEntry( MCGenDwarfLabelEntry(Name, FileNumber, LineNumber, Label)); } static int getDataAlignmentFactor(MCStreamer &streamer) { MCContext &context = streamer.getContext(); const MCAsmInfo *asmInfo = context.getAsmInfo(); int size = asmInfo->getCalleeSaveStackSlotSize(); if (asmInfo->isStackGrowthDirectionUp()) return size; else return -size; } static unsigned getSizeForEncoding(MCStreamer &streamer, unsigned symbolEncoding) { MCContext &context = streamer.getContext(); unsigned format = symbolEncoding & 0x0f; switch (format) { default: llvm_unreachable("Unknown Encoding"); case dwarf::DW_EH_PE_absptr: case dwarf::DW_EH_PE_signed: return context.getAsmInfo()->getCodePointerSize(); case dwarf::DW_EH_PE_udata2: case dwarf::DW_EH_PE_sdata2: return 2; case dwarf::DW_EH_PE_udata4: case dwarf::DW_EH_PE_sdata4: return 4; case dwarf::DW_EH_PE_udata8: case dwarf::DW_EH_PE_sdata8: return 8; } } static void emitFDESymbol(MCObjectStreamer &streamer, const MCSymbol &symbol, unsigned symbolEncoding, bool isEH) { MCContext &context = streamer.getContext(); const MCAsmInfo *asmInfo = context.getAsmInfo(); const MCExpr *v = asmInfo->getExprForFDESymbol(&symbol, symbolEncoding, streamer); unsigned size = getSizeForEncoding(streamer, symbolEncoding); if (asmInfo->doDwarfFDESymbolsUseAbsDiff() && isEH) emitAbsValue(streamer, v, size); else streamer.EmitValue(v, size); } static void EmitPersonality(MCStreamer &streamer, const MCSymbol &symbol, unsigned symbolEncoding) { MCContext &context = streamer.getContext(); const MCAsmInfo *asmInfo = context.getAsmInfo(); const MCExpr *v = asmInfo->getExprForPersonalitySymbol(&symbol, symbolEncoding, streamer); unsigned size = getSizeForEncoding(streamer, symbolEncoding); streamer.EmitValue(v, size); } namespace { class FrameEmitterImpl { int CFAOffset = 0; int InitialCFAOffset = 0; bool IsEH; MCObjectStreamer &Streamer; public: FrameEmitterImpl(bool IsEH, MCObjectStreamer &Streamer) : IsEH(IsEH), Streamer(Streamer) {} /// Emit the unwind information in a compact way. void EmitCompactUnwind(const MCDwarfFrameInfo &frame); const MCSymbol &EmitCIE(const MCDwarfFrameInfo &F); void EmitFDE(const MCSymbol &cieStart, const MCDwarfFrameInfo &frame, bool LastInSection, const MCSymbol &SectionStart); void EmitCFIInstructions(ArrayRef Instrs, MCSymbol *BaseLabel); void EmitCFIInstruction(const MCCFIInstruction &Instr); }; } // end anonymous namespace static void emitEncodingByte(MCObjectStreamer &Streamer, unsigned Encoding) { Streamer.EmitIntValue(Encoding, 1); } void FrameEmitterImpl::EmitCFIInstruction(const MCCFIInstruction &Instr) { int dataAlignmentFactor = getDataAlignmentFactor(Streamer); auto *MRI = Streamer.getContext().getRegisterInfo(); switch (Instr.getOperation()) { case MCCFIInstruction::OpRegister: { unsigned Reg1 = Instr.getRegister(); unsigned Reg2 = Instr.getRegister2(); if (!IsEH) { Reg1 = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg1); Reg2 = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg2); } Streamer.EmitIntValue(dwarf::DW_CFA_register, 1); Streamer.EmitULEB128IntValue(Reg1); Streamer.EmitULEB128IntValue(Reg2); return; } case MCCFIInstruction::OpWindowSave: Streamer.EmitIntValue(dwarf::DW_CFA_GNU_window_save, 1); return; case MCCFIInstruction::OpNegateRAState: Streamer.EmitIntValue(dwarf::DW_CFA_AARCH64_negate_ra_state, 1); return; case MCCFIInstruction::OpUndefined: { unsigned Reg = Instr.getRegister(); Streamer.EmitIntValue(dwarf::DW_CFA_undefined, 1); Streamer.EmitULEB128IntValue(Reg); return; } case MCCFIInstruction::OpAdjustCfaOffset: case MCCFIInstruction::OpDefCfaOffset: { const bool IsRelative = Instr.getOperation() == MCCFIInstruction::OpAdjustCfaOffset; Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa_offset, 1); if (IsRelative) CFAOffset += Instr.getOffset(); else CFAOffset = -Instr.getOffset(); Streamer.EmitULEB128IntValue(CFAOffset); return; } case MCCFIInstruction::OpDefCfa: { unsigned Reg = Instr.getRegister(); if (!IsEH) Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg); Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa, 1); Streamer.EmitULEB128IntValue(Reg); CFAOffset = -Instr.getOffset(); Streamer.EmitULEB128IntValue(CFAOffset); return; } case MCCFIInstruction::OpDefCfaRegister: { unsigned Reg = Instr.getRegister(); if (!IsEH) Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg); Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa_register, 1); Streamer.EmitULEB128IntValue(Reg); return; } case MCCFIInstruction::OpOffset: case MCCFIInstruction::OpRelOffset: { const bool IsRelative = Instr.getOperation() == MCCFIInstruction::OpRelOffset; unsigned Reg = Instr.getRegister(); if (!IsEH) Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg); int Offset = Instr.getOffset(); if (IsRelative) Offset -= CFAOffset; Offset = Offset / dataAlignmentFactor; if (Offset < 0) { Streamer.EmitIntValue(dwarf::DW_CFA_offset_extended_sf, 1); Streamer.EmitULEB128IntValue(Reg); Streamer.EmitSLEB128IntValue(Offset); } else if (Reg < 64) { Streamer.EmitIntValue(dwarf::DW_CFA_offset + Reg, 1); Streamer.EmitULEB128IntValue(Offset); } else { Streamer.EmitIntValue(dwarf::DW_CFA_offset_extended, 1); Streamer.EmitULEB128IntValue(Reg); Streamer.EmitULEB128IntValue(Offset); } return; } case MCCFIInstruction::OpRememberState: Streamer.EmitIntValue(dwarf::DW_CFA_remember_state, 1); return; case MCCFIInstruction::OpRestoreState: Streamer.EmitIntValue(dwarf::DW_CFA_restore_state, 1); return; case MCCFIInstruction::OpSameValue: { unsigned Reg = Instr.getRegister(); Streamer.EmitIntValue(dwarf::DW_CFA_same_value, 1); Streamer.EmitULEB128IntValue(Reg); return; } case MCCFIInstruction::OpRestore: { unsigned Reg = Instr.getRegister(); if (!IsEH) Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg); if (Reg < 64) { Streamer.EmitIntValue(dwarf::DW_CFA_restore | Reg, 1); } else { Streamer.EmitIntValue(dwarf::DW_CFA_restore_extended, 1); Streamer.EmitULEB128IntValue(Reg); } return; } case MCCFIInstruction::OpGnuArgsSize: Streamer.EmitIntValue(dwarf::DW_CFA_GNU_args_size, 1); Streamer.EmitULEB128IntValue(Instr.getOffset()); return; case MCCFIInstruction::OpEscape: Streamer.EmitBytes(Instr.getValues()); return; } llvm_unreachable("Unhandled case in switch"); } /// Emit frame instructions to describe the layout of the frame. void FrameEmitterImpl::EmitCFIInstructions(ArrayRef Instrs, MCSymbol *BaseLabel) { for (const MCCFIInstruction &Instr : Instrs) { MCSymbol *Label = Instr.getLabel(); // Throw out move if the label is invalid. if (Label && !Label->isDefined()) continue; // Not emitted, in dead code. // Advance row if new location. if (BaseLabel && Label) { MCSymbol *ThisSym = Label; if (ThisSym != BaseLabel) { Streamer.EmitDwarfAdvanceFrameAddr(BaseLabel, ThisSym); BaseLabel = ThisSym; } } EmitCFIInstruction(Instr); } } /// Emit the unwind information in a compact way. void FrameEmitterImpl::EmitCompactUnwind(const MCDwarfFrameInfo &Frame) { MCContext &Context = Streamer.getContext(); const MCObjectFileInfo *MOFI = Context.getObjectFileInfo(); // range-start range-length compact-unwind-enc personality-func lsda // _foo LfooEnd-_foo 0x00000023 0 0 // _bar LbarEnd-_bar 0x00000025 __gxx_personality except_tab1 // // .section __LD,__compact_unwind,regular,debug // // # compact unwind for _foo // .quad _foo // .set L1,LfooEnd-_foo // .long L1 // .long 0x01010001 // .quad 0 // .quad 0 // // # compact unwind for _bar // .quad _bar // .set L2,LbarEnd-_bar // .long L2 // .long 0x01020011 // .quad __gxx_personality // .quad except_tab1 uint32_t Encoding = Frame.CompactUnwindEncoding; if (!Encoding) return; bool DwarfEHFrameOnly = (Encoding == MOFI->getCompactUnwindDwarfEHFrameOnly()); // The encoding needs to know we have an LSDA. if (!DwarfEHFrameOnly && Frame.Lsda) Encoding |= 0x40000000; // Range Start unsigned FDEEncoding = MOFI->getFDEEncoding(); unsigned Size = getSizeForEncoding(Streamer, FDEEncoding); Streamer.EmitSymbolValue(Frame.Begin, Size); // Range Length const MCExpr *Range = MakeStartMinusEndExpr(Streamer, *Frame.Begin, *Frame.End, 0); emitAbsValue(Streamer, Range, 4); // Compact Encoding Size = getSizeForEncoding(Streamer, dwarf::DW_EH_PE_udata4); Streamer.EmitIntValue(Encoding, Size); // Personality Function Size = getSizeForEncoding(Streamer, dwarf::DW_EH_PE_absptr); if (!DwarfEHFrameOnly && Frame.Personality) Streamer.EmitSymbolValue(Frame.Personality, Size); else Streamer.EmitIntValue(0, Size); // No personality fn // LSDA Size = getSizeForEncoding(Streamer, Frame.LsdaEncoding); if (!DwarfEHFrameOnly && Frame.Lsda) Streamer.EmitSymbolValue(Frame.Lsda, Size); else Streamer.EmitIntValue(0, Size); // No LSDA } static unsigned getCIEVersion(bool IsEH, unsigned DwarfVersion) { if (IsEH) return 1; switch (DwarfVersion) { case 2: return 1; case 3: return 3; case 4: case 5: return 4; } llvm_unreachable("Unknown version"); } const MCSymbol &FrameEmitterImpl::EmitCIE(const MCDwarfFrameInfo &Frame) { MCContext &context = Streamer.getContext(); const MCRegisterInfo *MRI = context.getRegisterInfo(); const MCObjectFileInfo *MOFI = context.getObjectFileInfo(); MCSymbol *sectionStart = context.createTempSymbol(); Streamer.EmitLabel(sectionStart); MCSymbol *sectionEnd = context.createTempSymbol(); // Length const MCExpr *Length = MakeStartMinusEndExpr(Streamer, *sectionStart, *sectionEnd, 4); emitAbsValue(Streamer, Length, 4); // CIE ID unsigned CIE_ID = IsEH ? 0 : -1; Streamer.EmitIntValue(CIE_ID, 4); // Version uint8_t CIEVersion = getCIEVersion(IsEH, context.getDwarfVersion()); Streamer.EmitIntValue(CIEVersion, 1); if (IsEH) { SmallString<8> Augmentation; Augmentation += "z"; if (Frame.Personality) Augmentation += "P"; if (Frame.Lsda) Augmentation += "L"; Augmentation += "R"; if (Frame.IsSignalFrame) Augmentation += "S"; if (Frame.IsBKeyFrame) Augmentation += "B"; Streamer.EmitBytes(Augmentation); } Streamer.EmitIntValue(0, 1); if (CIEVersion >= 4) { // Address Size Streamer.EmitIntValue(context.getAsmInfo()->getCodePointerSize(), 1); // Segment Descriptor Size Streamer.EmitIntValue(0, 1); } // Code Alignment Factor Streamer.EmitULEB128IntValue(context.getAsmInfo()->getMinInstAlignment()); // Data Alignment Factor Streamer.EmitSLEB128IntValue(getDataAlignmentFactor(Streamer)); // Return Address Register unsigned RAReg = Frame.RAReg; if (RAReg == static_cast(INT_MAX)) RAReg = MRI->getDwarfRegNum(MRI->getRARegister(), IsEH); if (CIEVersion == 1) { assert(RAReg <= 255 && "DWARF 2 encodes return_address_register in one byte"); Streamer.EmitIntValue(RAReg, 1); } else { Streamer.EmitULEB128IntValue(RAReg); } // Augmentation Data Length (optional) unsigned augmentationLength = 0; if (IsEH) { if (Frame.Personality) { // Personality Encoding augmentationLength += 1; // Personality augmentationLength += getSizeForEncoding(Streamer, Frame.PersonalityEncoding); } if (Frame.Lsda) augmentationLength += 1; // Encoding of the FDE pointers augmentationLength += 1; Streamer.EmitULEB128IntValue(augmentationLength); // Augmentation Data (optional) if (Frame.Personality) { // Personality Encoding emitEncodingByte(Streamer, Frame.PersonalityEncoding); // Personality EmitPersonality(Streamer, *Frame.Personality, Frame.PersonalityEncoding); } if (Frame.Lsda) emitEncodingByte(Streamer, Frame.LsdaEncoding); // Encoding of the FDE pointers emitEncodingByte(Streamer, MOFI->getFDEEncoding()); } // Initial Instructions const MCAsmInfo *MAI = context.getAsmInfo(); if (!Frame.IsSimple) { const std::vector &Instructions = MAI->getInitialFrameState(); EmitCFIInstructions(Instructions, nullptr); } InitialCFAOffset = CFAOffset; // Padding Streamer.EmitValueToAlignment(IsEH ? 4 : MAI->getCodePointerSize()); Streamer.EmitLabel(sectionEnd); return *sectionStart; } void FrameEmitterImpl::EmitFDE(const MCSymbol &cieStart, const MCDwarfFrameInfo &frame, bool LastInSection, const MCSymbol &SectionStart) { MCContext &context = Streamer.getContext(); MCSymbol *fdeStart = context.createTempSymbol(); MCSymbol *fdeEnd = context.createTempSymbol(); const MCObjectFileInfo *MOFI = context.getObjectFileInfo(); CFAOffset = InitialCFAOffset; // Length const MCExpr *Length = MakeStartMinusEndExpr(Streamer, *fdeStart, *fdeEnd, 0); emitAbsValue(Streamer, Length, 4); Streamer.EmitLabel(fdeStart); // CIE Pointer const MCAsmInfo *asmInfo = context.getAsmInfo(); if (IsEH) { const MCExpr *offset = MakeStartMinusEndExpr(Streamer, cieStart, *fdeStart, 0); emitAbsValue(Streamer, offset, 4); } else if (!asmInfo->doesDwarfUseRelocationsAcrossSections()) { const MCExpr *offset = MakeStartMinusEndExpr(Streamer, SectionStart, cieStart, 0); emitAbsValue(Streamer, offset, 4); } else { Streamer.EmitSymbolValue(&cieStart, 4); } // PC Begin unsigned PCEncoding = IsEH ? MOFI->getFDEEncoding() : (unsigned)dwarf::DW_EH_PE_absptr; unsigned PCSize = getSizeForEncoding(Streamer, PCEncoding); emitFDESymbol(Streamer, *frame.Begin, PCEncoding, IsEH); // PC Range const MCExpr *Range = MakeStartMinusEndExpr(Streamer, *frame.Begin, *frame.End, 0); emitAbsValue(Streamer, Range, PCSize); if (IsEH) { // Augmentation Data Length unsigned augmentationLength = 0; if (frame.Lsda) augmentationLength += getSizeForEncoding(Streamer, frame.LsdaEncoding); Streamer.EmitULEB128IntValue(augmentationLength); // Augmentation Data if (frame.Lsda) emitFDESymbol(Streamer, *frame.Lsda, frame.LsdaEncoding, true); } // Call Frame Instructions EmitCFIInstructions(frame.Instructions, frame.Begin); // Padding // The size of a .eh_frame section has to be a multiple of the alignment // since a null CIE is interpreted as the end. Old systems overaligned // .eh_frame, so we do too and account for it in the last FDE. unsigned Align = LastInSection ? asmInfo->getCodePointerSize() : PCSize; Streamer.EmitValueToAlignment(Align); Streamer.EmitLabel(fdeEnd); } namespace { struct CIEKey { static const CIEKey getEmptyKey() { return CIEKey(nullptr, 0, -1, false, false, static_cast(INT_MAX), false); } static const CIEKey getTombstoneKey() { return CIEKey(nullptr, -1, 0, false, false, static_cast(INT_MAX), false); } CIEKey(const MCSymbol *Personality, unsigned PersonalityEncoding, unsigned LSDAEncoding, bool IsSignalFrame, bool IsSimple, unsigned RAReg, bool IsBKeyFrame) : Personality(Personality), PersonalityEncoding(PersonalityEncoding), LsdaEncoding(LSDAEncoding), IsSignalFrame(IsSignalFrame), IsSimple(IsSimple), RAReg(RAReg), IsBKeyFrame(IsBKeyFrame) {} explicit CIEKey(const MCDwarfFrameInfo &Frame) : Personality(Frame.Personality), PersonalityEncoding(Frame.PersonalityEncoding), LsdaEncoding(Frame.LsdaEncoding), IsSignalFrame(Frame.IsSignalFrame), IsSimple(Frame.IsSimple), RAReg(Frame.RAReg), IsBKeyFrame(Frame.IsBKeyFrame) {} StringRef PersonalityName() const { if (!Personality) return StringRef(); return Personality->getName(); } bool operator<(const CIEKey &Other) const { return std::make_tuple(PersonalityName(), PersonalityEncoding, LsdaEncoding, IsSignalFrame, IsSimple, RAReg) < std::make_tuple(Other.PersonalityName(), Other.PersonalityEncoding, Other.LsdaEncoding, Other.IsSignalFrame, Other.IsSimple, Other.RAReg); } const MCSymbol *Personality; unsigned PersonalityEncoding; unsigned LsdaEncoding; bool IsSignalFrame; bool IsSimple; unsigned RAReg; bool IsBKeyFrame; }; } // end anonymous namespace namespace llvm { template <> struct DenseMapInfo { static CIEKey getEmptyKey() { return CIEKey::getEmptyKey(); } static CIEKey getTombstoneKey() { return CIEKey::getTombstoneKey(); } static unsigned getHashValue(const CIEKey &Key) { return static_cast(hash_combine( Key.Personality, Key.PersonalityEncoding, Key.LsdaEncoding, Key.IsSignalFrame, Key.IsSimple, Key.RAReg, Key.IsBKeyFrame)); } static bool isEqual(const CIEKey &LHS, const CIEKey &RHS) { return LHS.Personality == RHS.Personality && LHS.PersonalityEncoding == RHS.PersonalityEncoding && LHS.LsdaEncoding == RHS.LsdaEncoding && LHS.IsSignalFrame == RHS.IsSignalFrame && LHS.IsSimple == RHS.IsSimple && LHS.RAReg == RHS.RAReg && LHS.IsBKeyFrame == RHS.IsBKeyFrame; } }; } // end namespace llvm void MCDwarfFrameEmitter::Emit(MCObjectStreamer &Streamer, MCAsmBackend *MAB, bool IsEH) { Streamer.generateCompactUnwindEncodings(MAB); MCContext &Context = Streamer.getContext(); const MCObjectFileInfo *MOFI = Context.getObjectFileInfo(); const MCAsmInfo *AsmInfo = Context.getAsmInfo(); FrameEmitterImpl Emitter(IsEH, Streamer); ArrayRef FrameArray = Streamer.getDwarfFrameInfos(); // Emit the compact unwind info if available. bool NeedsEHFrameSection = !MOFI->getSupportsCompactUnwindWithoutEHFrame(); if (IsEH && MOFI->getCompactUnwindSection()) { bool SectionEmitted = false; for (const MCDwarfFrameInfo &Frame : FrameArray) { if (Frame.CompactUnwindEncoding == 0) continue; if (!SectionEmitted) { Streamer.SwitchSection(MOFI->getCompactUnwindSection()); Streamer.EmitValueToAlignment(AsmInfo->getCodePointerSize()); SectionEmitted = true; } NeedsEHFrameSection |= Frame.CompactUnwindEncoding == MOFI->getCompactUnwindDwarfEHFrameOnly(); Emitter.EmitCompactUnwind(Frame); } } if (!NeedsEHFrameSection) return; MCSection &Section = IsEH ? *const_cast(MOFI)->getEHFrameSection() : *MOFI->getDwarfFrameSection(); Streamer.SwitchSection(&Section); MCSymbol *SectionStart = Context.createTempSymbol(); Streamer.EmitLabel(SectionStart); DenseMap CIEStarts; const MCSymbol *DummyDebugKey = nullptr; bool CanOmitDwarf = MOFI->getOmitDwarfIfHaveCompactUnwind(); // Sort the FDEs by their corresponding CIE before we emit them. // This isn't technically necessary according to the DWARF standard, // but the Android libunwindstack rejects eh_frame sections where // an FDE refers to a CIE other than the closest previous CIE. std::vector FrameArrayX(FrameArray.begin(), FrameArray.end()); llvm::stable_sort(FrameArrayX, [](const MCDwarfFrameInfo &X, const MCDwarfFrameInfo &Y) { return CIEKey(X) < CIEKey(Y); }); for (auto I = FrameArrayX.begin(), E = FrameArrayX.end(); I != E;) { const MCDwarfFrameInfo &Frame = *I; ++I; if (CanOmitDwarf && Frame.CompactUnwindEncoding != MOFI->getCompactUnwindDwarfEHFrameOnly()) // Don't generate an EH frame if we don't need one. I.e., it's taken care // of by the compact unwind encoding. continue; CIEKey Key(Frame); const MCSymbol *&CIEStart = IsEH ? CIEStarts[Key] : DummyDebugKey; if (!CIEStart) CIEStart = &Emitter.EmitCIE(Frame); Emitter.EmitFDE(*CIEStart, Frame, I == E, *SectionStart); } } void MCDwarfFrameEmitter::EmitAdvanceLoc(MCObjectStreamer &Streamer, uint64_t AddrDelta) { MCContext &Context = Streamer.getContext(); SmallString<256> Tmp; raw_svector_ostream OS(Tmp); MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OS); Streamer.EmitBytes(OS.str()); } void MCDwarfFrameEmitter::EncodeAdvanceLoc(MCContext &Context, uint64_t AddrDelta, raw_ostream &OS, uint32_t *Offset, uint32_t *Size) { // Scale the address delta by the minimum instruction length. AddrDelta = ScaleAddrDelta(Context, AddrDelta); bool WithFixups = false; if (Offset && Size) WithFixups = true; support::endianness E = Context.getAsmInfo()->isLittleEndian() ? support::little : support::big; if (AddrDelta == 0) { if (WithFixups) { *Offset = 0; *Size = 0; } } else if (isUIntN(6, AddrDelta)) { uint8_t Opcode = dwarf::DW_CFA_advance_loc | AddrDelta; if (WithFixups) { *Offset = OS.tell(); *Size = 6; OS << uint8_t(dwarf::DW_CFA_advance_loc); } else OS << Opcode; } else if (isUInt<8>(AddrDelta)) { OS << uint8_t(dwarf::DW_CFA_advance_loc1); if (WithFixups) { *Offset = OS.tell(); *Size = 8; OS.write_zeros(1); } else OS << uint8_t(AddrDelta); } else if (isUInt<16>(AddrDelta)) { OS << uint8_t(dwarf::DW_CFA_advance_loc2); if (WithFixups) { *Offset = OS.tell(); *Size = 16; OS.write_zeros(2); } else support::endian::write(OS, AddrDelta, E); } else { assert(isUInt<32>(AddrDelta)); OS << uint8_t(dwarf::DW_CFA_advance_loc4); if (WithFixups) { *Offset = OS.tell(); *Size = 32; OS.write_zeros(4); } else support::endian::write(OS, AddrDelta, E); } }