//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs loop invariant code motion on machine instructions. We // attempt to remove as much code from the body of a loop as possible. // // This pass does not attempt to throttle itself to limit register pressure. // The register allocation phases are expected to perform rematerialization // to recover when register pressure is high. // // This pass is not intended to be a replacement or a complete alternative // for the LLVM-IR-level LICM pass. It is only designed to hoist simple // constructs that are not exposed before lowering and instruction selection. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "machine-licm" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops"); STATISTIC(NumCSEed, "Number of hoisted machine instructions CSEed"); namespace { class MachineLICM : public MachineFunctionPass { MachineConstantPool *MCP; const TargetMachine *TM; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; BitVector AllocatableSet; // Various analyses that we use... AliasAnalysis *AA; // Alias analysis info. MachineLoopInfo *LI; // Current MachineLoopInfo MachineDominatorTree *DT; // Machine dominator tree for the cur loop MachineRegisterInfo *RegInfo; // Machine register information // State that is updated as we process loops bool Changed; // True if a loop is changed. bool FirstInLoop; // True if it's the first LICM in the loop. MachineLoop *CurLoop; // The current loop we are working on. MachineBasicBlock *CurPreheader; // The preheader for CurLoop. // For each opcode, keep a list of potentail CSE instructions. DenseMap > CSEMap; public: static char ID; // Pass identification, replacement for typeid MachineLICM() : MachineFunctionPass(&ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); const char *getPassName() const { return "Machine Instruction LICM"; } // FIXME: Loop preheaders? virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } virtual void releaseMemory() { CSEMap.clear(); } private: /// IsLoopInvariantInst - Returns true if the instruction is loop /// invariant. I.e., all virtual register operands are defined outside of /// the loop, physical registers aren't accessed (explicitly or implicitly), /// and the instruction is hoistable. /// bool IsLoopInvariantInst(MachineInstr &I); /// IsProfitableToHoist - Return true if it is potentially profitable to /// hoist the given loop invariant. bool IsProfitableToHoist(MachineInstr &MI); /// HoistRegion - Walk the specified region of the CFG (defined by all /// blocks dominated by the specified block, and that are in the current /// loop) in depth first order w.r.t the DominatorTree. This allows us to /// visit definitions before uses, allowing us to hoist a loop body in one /// pass without iteration. /// void HoistRegion(MachineDomTreeNode *N); /// isLoadFromConstantMemory - Return true if the given instruction is a /// load from constant memory. bool isLoadFromConstantMemory(MachineInstr *MI); /// ExtractHoistableLoad - Unfold a load from the given machineinstr if /// the load itself could be hoisted. Return the unfolded and hoistable /// load, or null if the load couldn't be unfolded or if it wouldn't /// be hoistable. MachineInstr *ExtractHoistableLoad(MachineInstr *MI); /// LookForDuplicate - Find an instruction amount PrevMIs that is a /// duplicate of MI. Return this instruction if it's found. const MachineInstr *LookForDuplicate(const MachineInstr *MI, std::vector &PrevMIs); /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on /// the preheader that compute the same value. If it's found, do a RAU on /// with the definition of the existing instruction rather than hoisting /// the instruction to the preheader. bool EliminateCSE(MachineInstr *MI, DenseMap >::iterator &CI); /// Hoist - When an instruction is found to only use loop invariant operands /// that is safe to hoist, this instruction is called to do the dirty work. /// void Hoist(MachineInstr *MI); /// InitCSEMap - Initialize the CSE map with instructions that are in the /// current loop preheader that may become duplicates of instructions that /// are hoisted out of the loop. void InitCSEMap(MachineBasicBlock *BB); }; } // end anonymous namespace char MachineLICM::ID = 0; static RegisterPass X("machinelicm", "Machine Loop Invariant Code Motion"); FunctionPass *llvm::createMachineLICMPass() { return new MachineLICM(); } /// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most /// loop that has a preheader. static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) { for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) if (L->getLoopPreheader()) return false; return true; } /// Hoist expressions out of the specified loop. Note, alias info for inner loop /// is not preserved so it is not a good idea to run LICM multiple times on one /// loop. /// bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { DEBUG(dbgs() << "******** Machine LICM ********\n"); Changed = FirstInLoop = false; MCP = MF.getConstantPool(); TM = &MF.getTarget(); TII = TM->getInstrInfo(); TRI = TM->getRegisterInfo(); RegInfo = &MF.getRegInfo(); AllocatableSet = TRI->getAllocatableSet(MF); // Get our Loop information... LI = &getAnalysis(); DT = &getAnalysis(); AA = &getAnalysis(); for (MachineLoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) { CurLoop = *I; // Only visit outer-most preheader-sporting loops. if (!LoopIsOuterMostWithPreheader(CurLoop)) continue; // Determine the block to which to hoist instructions. If we can't find a // suitable loop preheader, we can't do any hoisting. // // FIXME: We are only hoisting if the basic block coming into this loop // has only one successor. This isn't the case in general because we haven't // broken critical edges or added preheaders. CurPreheader = CurLoop->getLoopPreheader(); if (!CurPreheader) continue; // CSEMap is initialized for loop header when the first instruction is // being hoisted. FirstInLoop = true; HoistRegion(DT->getNode(CurLoop->getHeader())); CSEMap.clear(); } return Changed; } /// HoistRegion - Walk the specified region of the CFG (defined by all blocks /// dominated by the specified block, and that are in the current loop) in depth /// first order w.r.t the DominatorTree. This allows us to visit definitions /// before uses, allowing us to hoist a loop body in one pass without iteration. /// void MachineLICM::HoistRegion(MachineDomTreeNode *N) { assert(N != 0 && "Null dominator tree node?"); MachineBasicBlock *BB = N->getBlock(); // If this subregion is not in the top level loop at all, exit. if (!CurLoop->contains(BB)) return; for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); MII != E; ) { MachineBasicBlock::iterator NextMII = MII; ++NextMII; Hoist(&*MII); MII = NextMII; } const std::vector &Children = N->getChildren(); for (unsigned I = 0, E = Children.size(); I != E; ++I) HoistRegion(Children[I]); } /// IsLoopInvariantInst - Returns true if the instruction is loop /// invariant. I.e., all virtual register operands are defined outside of the /// loop, physical registers aren't accessed explicitly, and there are no side /// effects that aren't captured by the operands or other flags. /// bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { const TargetInstrDesc &TID = I.getDesc(); // Ignore stuff that we obviously can't hoist. if (TID.mayStore() || TID.isCall() || TID.isTerminator() || TID.hasUnmodeledSideEffects()) return false; if (TID.mayLoad()) { // Okay, this instruction does a load. As a refinement, we allow the target // to decide whether the loaded value is actually a constant. If so, we can // actually use it as a load. if (!I.isInvariantLoad(AA)) // FIXME: we should be able to hoist loads with no other side effects if // there are no other instructions which can change memory in this loop. // This is a trivial form of alias analysis. return false; } // The instruction is loop invariant if all of its operands are. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { const MachineOperand &MO = I.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; // Don't hoist an instruction that uses or defines a physical register. if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!RegInfo->def_empty(Reg)) return false; if (AllocatableSet.test(Reg)) return false; // Check for a def among the register's aliases too. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; if (!RegInfo->def_empty(AliasReg)) return false; if (AllocatableSet.test(AliasReg)) return false; } // Otherwise it's safe to move. continue; } else if (!MO.isDead()) { // A def that isn't dead. We can't move it. return false; } else if (CurLoop->getHeader()->isLiveIn(Reg)) { // If the reg is live into the loop, we can't hoist an instruction // which would clobber it. return false; } } if (!MO.isUse()) continue; assert(RegInfo->getVRegDef(Reg) && "Machine instr not mapped for this vreg?!"); // If the loop contains the definition of an operand, then the instruction // isn't loop invariant. if (CurLoop->contains(RegInfo->getVRegDef(Reg))) return false; } // If we got this far, the instruction is loop invariant! return true; } /// HasPHIUses - Return true if the specified register has any PHI use. static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) { for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg), UE = RegInfo->use_end(); UI != UE; ++UI) { MachineInstr *UseMI = &*UI; if (UseMI->isPHI()) return true; } return false; } /// isLoadFromConstantMemory - Return true if the given instruction is a /// load from constant memory. Machine LICM will hoist these even if they are /// not re-materializable. bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) { if (!MI->getDesc().mayLoad()) return false; if (!MI->hasOneMemOperand()) return false; MachineMemOperand *MMO = *MI->memoperands_begin(); if (MMO->isVolatile()) return false; if (!MMO->getValue()) return false; const PseudoSourceValue *PSV = dyn_cast(MMO->getValue()); if (PSV) { MachineFunction &MF = *MI->getParent()->getParent(); return PSV->isConstant(MF.getFrameInfo()); } else { return AA->pointsToConstantMemory(MMO->getValue()); } } /// IsProfitableToHoist - Return true if it is potentially profitable to hoist /// the given loop invariant. bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { if (MI.isImplicitDef()) return false; // FIXME: For now, only hoist re-materilizable instructions. LICM will // increase register pressure. We want to make sure it doesn't increase // spilling. // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting // these tend to help performance in low register pressure situation. The // trade off is it may cause spill in high pressure situation. It will end up // adding a store in the loop preheader. But the reload is no more expensive. // The side benefit is these loads are frequently CSE'ed. if (!TII->isTriviallyReMaterializable(&MI, AA)) { if (!isLoadFromConstantMemory(&MI)) return false; } // If result(s) of this instruction is used by PHIs, then don't hoist it. // The presence of joins makes it difficult for current register allocator // implementation to perform remat. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; if (HasPHIUses(MO.getReg(), RegInfo)) return false; } return true; } MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { // If not, we may be able to unfold a load and hoist that. // First test whether the instruction is loading from an amenable // memory location. if (!isLoadFromConstantMemory(MI)) return 0; // Next determine the register class for a temporary register. unsigned LoadRegIndex; unsigned NewOpc = TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), /*UnfoldLoad=*/true, /*UnfoldStore=*/false, &LoadRegIndex); if (NewOpc == 0) return 0; const TargetInstrDesc &TID = TII->get(NewOpc); if (TID.getNumDefs() != 1) return 0; const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI); // Ok, we're unfolding. Create a temporary register and do the unfold. unsigned Reg = RegInfo->createVirtualRegister(RC); MachineFunction &MF = *MI->getParent()->getParent(); SmallVector NewMIs; bool Success = TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad=*/true, /*UnfoldStore=*/false, NewMIs); (void)Success; assert(Success && "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " "succeeded!"); assert(NewMIs.size() == 2 && "Unfolded a load into multiple instructions!"); MachineBasicBlock *MBB = MI->getParent(); MBB->insert(MI, NewMIs[0]); MBB->insert(MI, NewMIs[1]); // If unfolding produced a load that wasn't loop-invariant or profitable to // hoist, discard the new instructions and bail. if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { NewMIs[0]->eraseFromParent(); NewMIs[1]->eraseFromParent(); return 0; } // Otherwise we successfully unfolded a load that we can hoist. MI->eraseFromParent(); return NewMIs[0]; } void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { const MachineInstr *MI = &*I; // FIXME: For now, only hoist re-materilizable instructions. LICM will // increase register pressure. We want to make sure it doesn't increase // spilling. if (TII->isTriviallyReMaterializable(MI, AA)) { unsigned Opcode = MI->getOpcode(); DenseMap >::iterator CI = CSEMap.find(Opcode); if (CI != CSEMap.end()) CI->second.push_back(MI); else { std::vector CSEMIs; CSEMIs.push_back(MI); CSEMap.insert(std::make_pair(Opcode, CSEMIs)); } } } } const MachineInstr* MachineLICM::LookForDuplicate(const MachineInstr *MI, std::vector &PrevMIs) { for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { const MachineInstr *PrevMI = PrevMIs[i]; if (TII->isIdentical(MI, PrevMI, RegInfo)) return PrevMI; } return 0; } bool MachineLICM::EliminateCSE(MachineInstr *MI, DenseMap >::iterator &CI) { if (CI == CSEMap.end()) return false; if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); // Replace virtual registers defined by MI by their counterparts defined // by Dup. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); // Physical registers may not differ here. assert((!MO.isReg() || MO.getReg() == 0 || !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || MO.getReg() == Dup->getOperand(i).getReg()) && "Instructions with different phys regs are not identical!"); if (MO.isReg() && MO.isDef() && !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg()); } MI->eraseFromParent(); ++NumCSEed; return true; } return false; } /// Hoist - When an instruction is found to use only loop invariant operands /// that are safe to hoist, this instruction is called to do the dirty work. /// void MachineLICM::Hoist(MachineInstr *MI) { // First check whether we should hoist this instruction. if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { // If not, try unfolding a hoistable load. MI = ExtractHoistableLoad(MI); if (!MI) return; } // Now move the instructions to the predecessor, inserting it before any // terminator instructions. DEBUG({ dbgs() << "Hoisting " << *MI; if (CurPreheader->getBasicBlock()) dbgs() << " to MachineBasicBlock " << CurPreheader->getName(); if (MI->getParent()->getBasicBlock()) dbgs() << " from MachineBasicBlock " << MI->getParent()->getName(); dbgs() << "\n"; }); // If this is the first instruction being hoisted to the preheader, // initialize the CSE map with potential common expressions. InitCSEMap(CurPreheader); // Look for opportunity to CSE the hoisted instruction. unsigned Opcode = MI->getOpcode(); DenseMap >::iterator CI = CSEMap.find(Opcode); if (!EliminateCSE(MI, CI)) { // Otherwise, splice the instruction to the preheader. CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI); // Add to the CSE map. if (CI != CSEMap.end()) CI->second.push_back(MI); else { std::vector CSEMIs; CSEMIs.push_back(MI); CSEMap.insert(std::make_pair(Opcode, CSEMIs)); } } ++NumHoisted; Changed = true; }