//===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===// // // This file implements the TDDataStructures class, which represents the // Top-down Interprocedural closure of the data structure graph over the // program. This is useful (but not strictly necessary?) for applications // like pointer analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DataStructure.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "Support/Statistic.h" #include "DSCallSiteIterator.h" namespace { RegisterAnalysis // Register the pass Y("tddatastructure", "Top-down Data Structure Analysis"); Statistic<> NumTDInlines("tddatastructures", "Number of graphs inlined"); } /// FunctionHasCompleteArguments - This function returns true if it is safe not /// to mark arguments to the function complete. /// /// FIXME: Need to check if all callers have been found, or rather if a /// funcpointer escapes! /// static bool FunctionHasCompleteArguments(Function &F) { return F.hasInternalLinkage(); } // run - Calculate the top down data structure graphs for each function in the // program. // bool TDDataStructures::run(Module &M) { BUDataStructures &BU = getAnalysis(); GlobalsGraph = new DSGraph(BU.getGlobalsGraph()); // Figure out which functions must not mark their arguments complete because // they are accessible outside this compilation unit. for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!FunctionHasCompleteArguments(*I)) ArgsRemainIncomplete.insert(I); // Calculate top-down from main... if (Function *F = M.getMainFunction()) calculateGraphFrom(*F); // Next calculate the graphs for each function unreachable function... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal() && !DSInfo.count(I)) calculateGraphFrom(*I); ArgsRemainIncomplete.clear(); return false; } // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // // FIXME: This should be releaseMemory and will work fine, except that LoadVN // has no way to extend the lifetime of the pass, which screws up ds-aa. // void TDDataStructures::releaseMyMemory() { for (hash_map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) { I->second->getReturnNodes().erase(I->first); if (I->second->getReturnNodes().empty()) delete I->second; } // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); delete GlobalsGraph; GlobalsGraph = 0; } DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) { DSGraph *&G = DSInfo[&F]; if (G == 0) { // Not created yet? Clone BU graph... G = new DSGraph(getAnalysis().getDSGraph(F)); G->getAuxFunctionCalls().clear(); G->setPrintAuxCalls(); G->setGlobalsGraph(GlobalsGraph); } return *G; } void TDDataStructures::ComputePostOrder(Function &F,hash_set &Visited, std::vector &PostOrder, const BUDataStructures::ActualCalleesTy &ActualCallees) { if (F.isExternal()) return; DSGraph &G = getOrCreateDSGraph(F); if (Visited.count(&G)) return; Visited.insert(&G); // Recursively traverse all of the callee graphs. const std::vector &FunctionCalls = G.getFunctionCalls(); for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { std::pair IP = ActualCallees.equal_range(&FunctionCalls[i].getCallInst()); for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; I != IP.second; ++I) ComputePostOrder(*I->second, Visited, PostOrder, ActualCallees); } PostOrder.push_back(&G); } void TDDataStructures::calculateGraphFrom(Function &F) { // We want to traverse the call graph in reverse post-order. To do this, we // calculate a post-order traversal, then reverse it. hash_set VisitedGraph; std::vector PostOrder; ComputePostOrder(F, VisitedGraph, PostOrder, getAnalysis().getActualCallees()); VisitedGraph.clear(); // Release memory! // Visit each of the graphs in reverse post-order now! while (!PostOrder.empty()) { inlineGraphIntoCallees(*PostOrder.back()); PostOrder.pop_back(); } } void TDDataStructures::inlineGraphIntoCallees(DSGraph &Graph) { // Recompute the Incomplete markers and eliminate unreachable nodes. Graph.removeTriviallyDeadNodes(); Graph.maskIncompleteMarkers(); // If any of the functions has incomplete incoming arguments, don't mark any // of them as complete. bool HasIncompleteArgs = false; const DSGraph::ReturnNodesTy &GraphReturnNodes = Graph.getReturnNodes(); for (DSGraph::ReturnNodesTy::const_iterator I = GraphReturnNodes.begin(), E = GraphReturnNodes.end(); I != E; ++I) if (ArgsRemainIncomplete.count(I->first)) { HasIncompleteArgs = true; break; } unsigned Flags = HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs; Graph.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals); Graph.removeDeadNodes(DSGraph::RemoveUnreachableGlobals); const std::vector &FunctionCalls = Graph.getFunctionCalls(); if (FunctionCalls.empty()) { DEBUG(std::cerr << " [TD] No callees for: " << Graph.getFunctionNames() << "\n"); return; } // Now that we have information about all of the callees, propagate the // current graph into the callees. // DEBUG(std::cerr << " [TD] Inlining '" << Graph.getFunctionNames() <<"' into " << FunctionCalls.size() << " call nodes.\n"); const BUDataStructures::ActualCalleesTy &ActualCallees = getAnalysis().getActualCallees(); // Only inline this function into each real callee once. After that, just // merge information into arguments... hash_map InlinedSites; // Loop over all the callees... cloning this graph into each one exactly once, // keeping track of the node mapping information... for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { // Inline this graph into each function in the invoked function list. std::pair IP = ActualCallees.equal_range(&FunctionCalls[i].getCallInst()); int NumArgs = 0; if (IP.first != IP.second) { NumArgs = IP.first->second->getFunctionType()->getNumParams(); for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; I != IP.second; ++I) if (NumArgs != (int)I->second->getFunctionType()->getNumParams()) { NumArgs = -1; break; } } if (NumArgs == -1) { std::cerr << "ERROR: NONSAME NUMBER OF ARGUMENTS TO CALLEES\n"; } for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; I != IP.second; ++I) { DSGraph &CG = getDSGraph(*I->second); assert(&CG != &Graph && "TD need not inline graph into self!"); if (!InlinedSites.count(&CG)) { // If we haven't already inlined into CG DEBUG(std::cerr << " [TD] Inlining graph into callee graph '" << CG.getFunctionNames() << "': " << I->second->getFunctionType()->getNumParams() << " args\n"); DSGraph::ScalarMapTy OldScalarMap; DSGraph::ReturnNodesTy ReturnNodes; CG.cloneInto(Graph, OldScalarMap, ReturnNodes, InlinedSites[&CG], DSGraph::StripModRefBits | DSGraph::KeepAllocaBit | DSGraph::DontCloneCallNodes | DSGraph::DontCloneAuxCallNodes); ++NumTDInlines; } } } // Loop over all the callees... for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { // Inline this graph into each function in the invoked function list. std::pair IP = ActualCallees.equal_range(&FunctionCalls[i].getCallInst()); for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; I != IP.second; ++I) { DSGraph &CG = getDSGraph(*I->second); DEBUG(std::cerr << " [TD] Resolving arguments for callee graph '" << CG.getFunctionNames() << "'\n"); // Transform our call site information into the cloned version for CG DSCallSite CS(FunctionCalls[i], InlinedSites[&CG]); // Get the arguments bindings for the called function in CG... and merge // them with the cloned graph. CG.getCallSiteForArguments(*I->second).mergeWith(CS); } } DEBUG(std::cerr << " [TD] Done inlining into callees for: " << Graph.getFunctionNames() << " [" << Graph.getGraphSize() << "+" << Graph.getFunctionCalls().size() << "]\n"); }