//===-- HardwareLoops.cpp - Target Independent Hardware Loops --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// Insert hardware loop intrinsics into loops which are deemed profitable by /// the target, by querying TargetTransformInfo. A hardware loop comprises of /// two intrinsics: one, outside the loop, to set the loop iteration count and /// another, in the exit block, to decrement the counter. The decremented value /// can either be carried through the loop via a phi or handled in some opaque /// way by the target. /// //===----------------------------------------------------------------------===// #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" #define DEBUG_TYPE "hardware-loops" #define HW_LOOPS_NAME "Hardware Loop Insertion" using namespace llvm; static cl::opt ForceHardwareLoops("force-hardware-loops", cl::Hidden, cl::init(false), cl::desc("Force hardware loops intrinsics to be inserted")); static cl::opt ForceHardwareLoopPHI( "force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi")); static cl::opt ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops")); static cl::opt LoopDecrement("hardware-loop-decrement", cl::Hidden, cl::init(1), cl::desc("Set the loop decrement value")); static cl::opt CounterBitWidth("hardware-loop-counter-bitwidth", cl::Hidden, cl::init(32), cl::desc("Set the loop counter bitwidth")); static cl::opt ForceGuardLoopEntry( "force-hardware-loop-guard", cl::Hidden, cl::init(false), cl::desc("Force generation of loop guard intrinsic")); STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); #ifndef NDEBUG static void debugHWLoopFailure(const StringRef DebugMsg, Instruction *I) { dbgs() << "HWLoops: " << DebugMsg; if (I) dbgs() << ' ' << *I; else dbgs() << '.'; dbgs() << '\n'; } #endif static OptimizationRemarkAnalysis createHWLoopAnalysis(StringRef RemarkName, Loop *L, Instruction *I) { Value *CodeRegion = L->getHeader(); DebugLoc DL = L->getStartLoc(); if (I) { CodeRegion = I->getParent(); // If there is no debug location attached to the instruction, revert back to // using the loop's. if (I->getDebugLoc()) DL = I->getDebugLoc(); } OptimizationRemarkAnalysis R(DEBUG_TYPE, RemarkName, DL, CodeRegion); R << "hardware-loop not created: "; return R; } namespace { void reportHWLoopFailure(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I = nullptr) { LLVM_DEBUG(debugHWLoopFailure(Msg, I)); ORE->emit(createHWLoopAnalysis(ORETag, TheLoop, I) << Msg); } using TTI = TargetTransformInfo; class HardwareLoops : public FunctionPass { public: static char ID; HardwareLoops() : FunctionPass(ID) { initializeHardwareLoopsPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } // Try to convert the given Loop into a hardware loop. bool TryConvertLoop(Loop *L); // Given that the target believes the loop to be profitable, try to // convert it. bool TryConvertLoop(HardwareLoopInfo &HWLoopInfo); private: ScalarEvolution *SE = nullptr; LoopInfo *LI = nullptr; const DataLayout *DL = nullptr; OptimizationRemarkEmitter *ORE = nullptr; const TargetTransformInfo *TTI = nullptr; DominatorTree *DT = nullptr; bool PreserveLCSSA = false; AssumptionCache *AC = nullptr; TargetLibraryInfo *LibInfo = nullptr; Module *M = nullptr; bool MadeChange = false; }; class HardwareLoop { // Expand the trip count scev into a value that we can use. Value *InitLoopCount(); // Insert the set_loop_iteration intrinsic. Value *InsertIterationSetup(Value *LoopCountInit); // Insert the loop_decrement intrinsic. void InsertLoopDec(); // Insert the loop_decrement_reg intrinsic. Instruction *InsertLoopRegDec(Value *EltsRem); // If the target requires the counter value to be updated in the loop, // insert a phi to hold the value. The intended purpose is for use by // loop_decrement_reg. PHINode *InsertPHICounter(Value *NumElts, Value *EltsRem); // Create a new cmp, that checks the returned value of loop_decrement*, // and update the exit branch to use it. void UpdateBranch(Value *EltsRem); public: HardwareLoop(HardwareLoopInfo &Info, ScalarEvolution &SE, const DataLayout &DL, OptimizationRemarkEmitter *ORE) : SE(SE), DL(DL), ORE(ORE), L(Info.L), M(L->getHeader()->getModule()), TripCount(Info.TripCount), CountType(Info.CountType), ExitBranch(Info.ExitBranch), LoopDecrement(Info.LoopDecrement), UsePHICounter(Info.CounterInReg), UseLoopGuard(Info.PerformEntryTest) { } void Create(); private: ScalarEvolution &SE; const DataLayout &DL; OptimizationRemarkEmitter *ORE = nullptr; Loop *L = nullptr; Module *M = nullptr; const SCEV *TripCount = nullptr; Type *CountType = nullptr; BranchInst *ExitBranch = nullptr; Value *LoopDecrement = nullptr; bool UsePHICounter = false; bool UseLoopGuard = false; BasicBlock *BeginBB = nullptr; }; } char HardwareLoops::ID = 0; bool HardwareLoops::runOnFunction(Function &F) { if (skipFunction(F)) return false; LLVM_DEBUG(dbgs() << "HWLoops: Running on " << F.getName() << "\n"); LI = &getAnalysis().getLoopInfo(); SE = &getAnalysis().getSE(); DT = &getAnalysis().getDomTree(); TTI = &getAnalysis().getTTI(F); DL = &F.getParent()->getDataLayout(); ORE = &getAnalysis().getORE(); auto *TLIP = getAnalysisIfAvailable(); LibInfo = TLIP ? &TLIP->getTLI(F) : nullptr; PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); AC = &getAnalysis().getAssumptionCache(F); M = F.getParent(); for (Loop *L : *LI) if (L->isOutermost()) TryConvertLoop(L); return MadeChange; } // Return true if the search should stop, which will be when an inner loop is // converted and the parent loop doesn't support containing a hardware loop. bool HardwareLoops::TryConvertLoop(Loop *L) { // Process nested loops first. bool AnyChanged = false; for (Loop *SL : *L) AnyChanged |= TryConvertLoop(SL); if (AnyChanged) { reportHWLoopFailure("nested hardware-loops not supported", "HWLoopNested", ORE, L); return true; // Stop search. } LLVM_DEBUG(dbgs() << "HWLoops: Loop " << L->getHeader()->getName() << "\n"); HardwareLoopInfo HWLoopInfo(L); if (!HWLoopInfo.canAnalyze(*LI)) { reportHWLoopFailure("cannot analyze loop, irreducible control flow", "HWLoopCannotAnalyze", ORE, L); return false; } if (!ForceHardwareLoops && !TTI->isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo)) { reportHWLoopFailure("it's not profitable to create a hardware-loop", "HWLoopNotProfitable", ORE, L); return false; } // Allow overriding of the counter width and loop decrement value. if (CounterBitWidth.getNumOccurrences()) HWLoopInfo.CountType = IntegerType::get(M->getContext(), CounterBitWidth); if (LoopDecrement.getNumOccurrences()) HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, LoopDecrement); MadeChange |= TryConvertLoop(HWLoopInfo); return MadeChange && (!HWLoopInfo.IsNestingLegal && !ForceNestedLoop); } bool HardwareLoops::TryConvertLoop(HardwareLoopInfo &HWLoopInfo) { Loop *L = HWLoopInfo.L; LLVM_DEBUG(dbgs() << "HWLoops: Try to convert profitable loop: " << *L); if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT, ForceNestedLoop, ForceHardwareLoopPHI)) { // TODO: there can be many reasons a loop is not considered a // candidate, so we should let isHardwareLoopCandidate fill in the // reason and then report a better message here. reportHWLoopFailure("loop is not a candidate", "HWLoopNoCandidate", ORE, L); return false; } assert( (HWLoopInfo.ExitBlock && HWLoopInfo.ExitBranch && HWLoopInfo.TripCount) && "Hardware Loop must have set exit info."); BasicBlock *Preheader = L->getLoopPreheader(); // If we don't have a preheader, then insert one. if (!Preheader) Preheader = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA); if (!Preheader) return false; HardwareLoop HWLoop(HWLoopInfo, *SE, *DL, ORE); HWLoop.Create(); ++NumHWLoops; return true; } void HardwareLoop::Create() { LLVM_DEBUG(dbgs() << "HWLoops: Converting loop..\n"); Value *LoopCountInit = InitLoopCount(); if (!LoopCountInit) { reportHWLoopFailure("could not safely create a loop count expression", "HWLoopNotSafe", ORE, L); return; } Value *Setup = InsertIterationSetup(LoopCountInit); if (UsePHICounter || ForceHardwareLoopPHI) { Instruction *LoopDec = InsertLoopRegDec(LoopCountInit); Value *EltsRem = InsertPHICounter(Setup, LoopDec); LoopDec->setOperand(0, EltsRem); UpdateBranch(LoopDec); } else InsertLoopDec(); // Run through the basic blocks of the loop and see if any of them have dead // PHIs that can be removed. for (auto I : L->blocks()) DeleteDeadPHIs(I); } static bool CanGenerateTest(Loop *L, Value *Count) { BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader->getSinglePredecessor()) return false; BasicBlock *Pred = Preheader->getSinglePredecessor(); if (!isa(Pred->getTerminator())) return false; auto *BI = cast(Pred->getTerminator()); if (BI->isUnconditional() || !isa(BI->getCondition())) return false; // Check that the icmp is checking for equality of Count and zero and that // a non-zero value results in entering the loop. auto ICmp = cast(BI->getCondition()); LLVM_DEBUG(dbgs() << " - Found condition: " << *ICmp << "\n"); if (!ICmp->isEquality()) return false; auto IsCompareZero = [](ICmpInst *ICmp, Value *Count, unsigned OpIdx) { if (auto *Const = dyn_cast(ICmp->getOperand(OpIdx))) return Const->isZero() && ICmp->getOperand(OpIdx ^ 1) == Count; return false; }; if (!IsCompareZero(ICmp, Count, 0) && !IsCompareZero(ICmp, Count, 1)) return false; unsigned SuccIdx = ICmp->getPredicate() == ICmpInst::ICMP_NE ? 0 : 1; if (BI->getSuccessor(SuccIdx) != Preheader) return false; return true; } Value *HardwareLoop::InitLoopCount() { LLVM_DEBUG(dbgs() << "HWLoops: Initialising loop counter value:\n"); // Can we replace a conditional branch with an intrinsic that sets the // loop counter and tests that is not zero? SCEVExpander SCEVE(SE, DL, "loopcnt"); // If we're trying to use the 'test and set' form of the intrinsic, we need // to replace a conditional branch that is controlling entry to the loop. It // is likely (guaranteed?) that the preheader has an unconditional branch to // the loop header, so also check if it has a single predecessor. if (SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, TripCount, SE.getZero(TripCount->getType()))) { LLVM_DEBUG(dbgs() << " - Attempting to use test.set counter.\n"); UseLoopGuard |= ForceGuardLoopEntry; } else UseLoopGuard = false; BasicBlock *BB = L->getLoopPreheader(); if (UseLoopGuard && BB->getSinglePredecessor() && cast(BB->getTerminator())->isUnconditional()) { BasicBlock *Predecessor = BB->getSinglePredecessor(); // If it's not safe to create a while loop then don't force it and create a // do-while loop instead if (!isSafeToExpandAt(TripCount, Predecessor->getTerminator(), SE)) UseLoopGuard = false; else BB = Predecessor; } if (!isSafeToExpandAt(TripCount, BB->getTerminator(), SE)) { LLVM_DEBUG(dbgs() << "- Bailing, unsafe to expand TripCount " << *TripCount << "\n"); return nullptr; } Value *Count = SCEVE.expandCodeFor(TripCount, CountType, BB->getTerminator()); // FIXME: We've expanded Count where we hope to insert the counter setting // intrinsic. But, in the case of the 'test and set' form, we may fallback to // the just 'set' form and in which case the insertion block is most likely // different. It means there will be instruction(s) in a block that possibly // aren't needed. The isLoopEntryGuardedByCond is trying to avoid this issue, // but it's doesn't appear to work in all cases. UseLoopGuard = UseLoopGuard && CanGenerateTest(L, Count); BeginBB = UseLoopGuard ? BB : L->getLoopPreheader(); LLVM_DEBUG(dbgs() << " - Loop Count: " << *Count << "\n" << " - Expanded Count in " << BB->getName() << "\n" << " - Will insert set counter intrinsic into: " << BeginBB->getName() << "\n"); return Count; } Value* HardwareLoop::InsertIterationSetup(Value *LoopCountInit) { IRBuilder<> Builder(BeginBB->getTerminator()); Type *Ty = LoopCountInit->getType(); bool UsePhi = UsePHICounter || ForceHardwareLoopPHI; Intrinsic::ID ID = UseLoopGuard ? (UsePhi ? Intrinsic::test_start_loop_iterations : Intrinsic::test_set_loop_iterations) : (UsePhi ? Intrinsic::start_loop_iterations : Intrinsic::set_loop_iterations); Function *LoopIter = Intrinsic::getDeclaration(M, ID, Ty); Value *LoopSetup = Builder.CreateCall(LoopIter, LoopCountInit); // Use the return value of the intrinsic to control the entry of the loop. if (UseLoopGuard) { assert((isa(BeginBB->getTerminator()) && cast(BeginBB->getTerminator())->isConditional()) && "Expected conditional branch"); Value *SetCount = UsePhi ? Builder.CreateExtractValue(LoopSetup, 1) : LoopSetup; auto *LoopGuard = cast(BeginBB->getTerminator()); LoopGuard->setCondition(SetCount); if (LoopGuard->getSuccessor(0) != L->getLoopPreheader()) LoopGuard->swapSuccessors(); } LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop counter: " << *LoopSetup << "\n"); if (UsePhi && UseLoopGuard) LoopSetup = Builder.CreateExtractValue(LoopSetup, 0); return !UsePhi ? LoopCountInit : LoopSetup; } void HardwareLoop::InsertLoopDec() { IRBuilder<> CondBuilder(ExitBranch); Function *DecFunc = Intrinsic::getDeclaration(M, Intrinsic::loop_decrement, LoopDecrement->getType()); Value *Ops[] = { LoopDecrement }; Value *NewCond = CondBuilder.CreateCall(DecFunc, Ops); Value *OldCond = ExitBranch->getCondition(); ExitBranch->setCondition(NewCond); // The false branch must exit the loop. if (!L->contains(ExitBranch->getSuccessor(0))) ExitBranch->swapSuccessors(); // The old condition may be dead now, and may have even created a dead PHI // (the original induction variable). RecursivelyDeleteTriviallyDeadInstructions(OldCond); LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop dec: " << *NewCond << "\n"); } Instruction* HardwareLoop::InsertLoopRegDec(Value *EltsRem) { IRBuilder<> CondBuilder(ExitBranch); Function *DecFunc = Intrinsic::getDeclaration(M, Intrinsic::loop_decrement_reg, { EltsRem->getType() }); Value *Ops[] = { EltsRem, LoopDecrement }; Value *Call = CondBuilder.CreateCall(DecFunc, Ops); LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop dec: " << *Call << "\n"); return cast(Call); } PHINode* HardwareLoop::InsertPHICounter(Value *NumElts, Value *EltsRem) { BasicBlock *Preheader = L->getLoopPreheader(); BasicBlock *Header = L->getHeader(); BasicBlock *Latch = ExitBranch->getParent(); IRBuilder<> Builder(Header->getFirstNonPHI()); PHINode *Index = Builder.CreatePHI(NumElts->getType(), 2); Index->addIncoming(NumElts, Preheader); Index->addIncoming(EltsRem, Latch); LLVM_DEBUG(dbgs() << "HWLoops: PHI Counter: " << *Index << "\n"); return Index; } void HardwareLoop::UpdateBranch(Value *EltsRem) { IRBuilder<> CondBuilder(ExitBranch); Value *NewCond = CondBuilder.CreateICmpNE(EltsRem, ConstantInt::get(EltsRem->getType(), 0)); Value *OldCond = ExitBranch->getCondition(); ExitBranch->setCondition(NewCond); // The false branch must exit the loop. if (!L->contains(ExitBranch->getSuccessor(0))) ExitBranch->swapSuccessors(); // The old condition may be dead now, and may have even created a dead PHI // (the original induction variable). RecursivelyDeleteTriviallyDeadInstructions(OldCond); } INITIALIZE_PASS_BEGIN(HardwareLoops, DEBUG_TYPE, HW_LOOPS_NAME, false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_END(HardwareLoops, DEBUG_TYPE, HW_LOOPS_NAME, false, false) FunctionPass *llvm::createHardwareLoopsPass() { return new HardwareLoops(); }