//===- CoverageMapping.cpp - Code coverage mapping support ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for clang's and llvm's instrumentation based // code coverage. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ProfileData/Coverage/CoverageMapping.h" #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" #include "llvm/ProfileData/InstrProfReader.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace coverage; #define DEBUG_TYPE "coverage-mapping" Counter CounterExpressionBuilder::get(const CounterExpression &E) { auto It = ExpressionIndices.find(E); if (It != ExpressionIndices.end()) return Counter::getExpression(It->second); unsigned I = Expressions.size(); Expressions.push_back(E); ExpressionIndices[E] = I; return Counter::getExpression(I); } void CounterExpressionBuilder::extractTerms( Counter C, int Sign, SmallVectorImpl> &Terms) { switch (C.getKind()) { case Counter::Zero: break; case Counter::CounterValueReference: Terms.push_back(std::make_pair(C.getCounterID(), Sign)); break; case Counter::Expression: const auto &E = Expressions[C.getExpressionID()]; extractTerms(E.LHS, Sign, Terms); extractTerms(E.RHS, E.Kind == CounterExpression::Subtract ? -Sign : Sign, Terms); break; } } Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { // Gather constant terms. SmallVector, 32> Terms; extractTerms(ExpressionTree, +1, Terms); // If there are no terms, this is just a zero. The algorithm below assumes at // least one term. if (Terms.size() == 0) return Counter::getZero(); // Group the terms by counter ID. std::sort(Terms.begin(), Terms.end(), [](const std::pair &LHS, const std::pair &RHS) { return LHS.first < RHS.first; }); // Combine terms by counter ID to eliminate counters that sum to zero. auto Prev = Terms.begin(); for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { if (I->first == Prev->first) { Prev->second += I->second; continue; } ++Prev; *Prev = *I; } Terms.erase(++Prev, Terms.end()); Counter C; // Create additions. We do this before subtractions to avoid constructs like // ((0 - X) + Y), as opposed to (Y - X). for (auto Term : Terms) { if (Term.second <= 0) continue; for (int I = 0; I < Term.second; ++I) if (C.isZero()) C = Counter::getCounter(Term.first); else C = get(CounterExpression(CounterExpression::Add, C, Counter::getCounter(Term.first))); } // Create subtractions. for (auto Term : Terms) { if (Term.second >= 0) continue; for (int I = 0; I < -Term.second; ++I) C = get(CounterExpression(CounterExpression::Subtract, C, Counter::getCounter(Term.first))); } return C; } Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) { return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS))); } Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) { return simplify( get(CounterExpression(CounterExpression::Subtract, LHS, RHS))); } void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { switch (C.getKind()) { case Counter::Zero: OS << '0'; return; case Counter::CounterValueReference: OS << '#' << C.getCounterID(); break; case Counter::Expression: { if (C.getExpressionID() >= Expressions.size()) return; const auto &E = Expressions[C.getExpressionID()]; OS << '('; dump(E.LHS, OS); OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); dump(E.RHS, OS); OS << ')'; break; } } if (CounterValues.empty()) return; Expected Value = evaluate(C); if (auto E = Value.takeError()) { consumeError(std::move(E)); return; } OS << '[' << *Value << ']'; } Expected CounterMappingContext::evaluate(const Counter &C) const { switch (C.getKind()) { case Counter::Zero: return 0; case Counter::CounterValueReference: if (C.getCounterID() >= CounterValues.size()) return errorCodeToError(errc::argument_out_of_domain); return CounterValues[C.getCounterID()]; case Counter::Expression: { if (C.getExpressionID() >= Expressions.size()) return errorCodeToError(errc::argument_out_of_domain); const auto &E = Expressions[C.getExpressionID()]; Expected LHS = evaluate(E.LHS); if (!LHS) return LHS; Expected RHS = evaluate(E.RHS); if (!RHS) return RHS; return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS; } } llvm_unreachable("Unhandled CounterKind"); } void FunctionRecordIterator::skipOtherFiles() { while (Current != Records.end() && !Filename.empty() && Filename != Current->Filenames[0]) ++Current; if (Current == Records.end()) *this = FunctionRecordIterator(); } Error CoverageMapping::loadFunctionRecord( const CoverageMappingRecord &Record, IndexedInstrProfReader &ProfileReader) { StringRef OrigFuncName = Record.FunctionName; if (Record.Filenames.empty()) OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); else OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); // Don't load records for functions we've already seen. if (!FunctionNames.insert(OrigFuncName).second) return Error::success(); CounterMappingContext Ctx(Record.Expressions); std::vector Counts; if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, Record.FunctionHash, Counts)) { instrprof_error IPE = InstrProfError::take(std::move(E)); if (IPE == instrprof_error::hash_mismatch) { MismatchedFunctionCount++; return Error::success(); } else if (IPE != instrprof_error::unknown_function) return make_error(IPE); Counts.assign(Record.MappingRegions.size(), 0); } Ctx.setCounts(Counts); assert(!Record.MappingRegions.empty() && "Function has no regions"); FunctionRecord Function(OrigFuncName, Record.Filenames); for (const auto &Region : Record.MappingRegions) { Expected ExecutionCount = Ctx.evaluate(Region.Count); if (auto E = ExecutionCount.takeError()) { consumeError(std::move(E)); return Error::success(); } Function.pushRegion(Region, *ExecutionCount); } if (Function.CountedRegions.size() != Record.MappingRegions.size()) { MismatchedFunctionCount++; return Error::success(); } Functions.push_back(std::move(Function)); return Error::success(); } Expected> CoverageMapping::load(CoverageMappingReader &CoverageReader, IndexedInstrProfReader &ProfileReader) { auto Coverage = std::unique_ptr(new CoverageMapping()); for (const auto &Record : CoverageReader) if (Error E = Coverage->loadFunctionRecord(Record, ProfileReader)) return std::move(E); return std::move(Coverage); } Expected> CoverageMapping::load( ArrayRef> CoverageReaders, IndexedInstrProfReader &ProfileReader) { auto Coverage = std::unique_ptr(new CoverageMapping()); for (const auto &CoverageReader : CoverageReaders) for (const auto &Record : *CoverageReader) if (Error E = Coverage->loadFunctionRecord(Record, ProfileReader)) return std::move(E); return std::move(Coverage); } Expected> CoverageMapping::load(ArrayRef ObjectFilenames, StringRef ProfileFilename, StringRef Arch) { auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename); if (Error E = ProfileReaderOrErr.takeError()) return std::move(E); auto ProfileReader = std::move(ProfileReaderOrErr.get()); SmallVector, 4> Readers; SmallVector, 4> Buffers; for (StringRef ObjectFilename : ObjectFilenames) { auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(ObjectFilename); if (std::error_code EC = CovMappingBufOrErr.getError()) return errorCodeToError(EC); auto CoverageReaderOrErr = BinaryCoverageReader::create(CovMappingBufOrErr.get(), Arch); if (Error E = CoverageReaderOrErr.takeError()) return std::move(E); Readers.push_back(std::move(CoverageReaderOrErr.get())); Buffers.push_back(std::move(CovMappingBufOrErr.get())); } return load(Readers, *ProfileReader); } namespace { /// \brief Distributes functions into instantiation sets. /// /// An instantiation set is a collection of functions that have the same source /// code, ie, template functions specializations. class FunctionInstantiationSetCollector { typedef DenseMap, std::vector> MapT; MapT InstantiatedFunctions; public: void insert(const FunctionRecord &Function, unsigned FileID) { auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); while (I != E && I->FileID != FileID) ++I; assert(I != E && "function does not cover the given file"); auto &Functions = InstantiatedFunctions[I->startLoc()]; Functions.push_back(&Function); } MapT::iterator begin() { return InstantiatedFunctions.begin(); } MapT::iterator end() { return InstantiatedFunctions.end(); } }; class SegmentBuilder { std::vector &Segments; SmallVector ActiveRegions; SegmentBuilder(std::vector &Segments) : Segments(Segments) {} /// Start a segment with no count specified. void startSegment(unsigned Line, unsigned Col) { DEBUG(dbgs() << "Top level segment at " << Line << ":" << Col << "\n"); Segments.emplace_back(Line, Col, /*IsRegionEntry=*/false); } /// Start a segment with the given Region's count. void startSegment(unsigned Line, unsigned Col, bool IsRegionEntry, const CountedRegion &Region) { // Avoid creating empty regions. if (!Segments.empty() && Segments.back().Line == Line && Segments.back().Col == Col) Segments.pop_back(); DEBUG(dbgs() << "Segment at " << Line << ":" << Col); // Set this region's count. if (Region.Kind != CounterMappingRegion::SkippedRegion) { DEBUG(dbgs() << " with count " << Region.ExecutionCount); Segments.emplace_back(Line, Col, Region.ExecutionCount, IsRegionEntry); } else Segments.emplace_back(Line, Col, IsRegionEntry); DEBUG(dbgs() << "\n"); } /// Start a segment for the given region. void startSegment(const CountedRegion &Region) { startSegment(Region.LineStart, Region.ColumnStart, true, Region); } /// Pop the top region off of the active stack, starting a new segment with /// the containing Region's count. void popRegion() { const CountedRegion *Active = ActiveRegions.back(); unsigned Line = Active->LineEnd, Col = Active->ColumnEnd; ActiveRegions.pop_back(); if (ActiveRegions.empty()) startSegment(Line, Col); else startSegment(Line, Col, false, *ActiveRegions.back()); } void buildSegmentsImpl(ArrayRef Regions) { for (const auto &Region : Regions) { // Pop any regions that end before this one starts. while (!ActiveRegions.empty() && ActiveRegions.back()->endLoc() <= Region.startLoc()) popRegion(); // Add this region to the stack. ActiveRegions.push_back(&Region); startSegment(Region); } // Pop any regions that are left in the stack. while (!ActiveRegions.empty()) popRegion(); } /// Sort a nested sequence of regions from a single file. static void sortNestedRegions(MutableArrayRef Regions) { std::sort(Regions.begin(), Regions.end(), [](const CountedRegion &LHS, const CountedRegion &RHS) { if (LHS.startLoc() != RHS.startLoc()) return LHS.startLoc() < RHS.startLoc(); if (LHS.endLoc() != RHS.endLoc()) // When LHS completely contains RHS, we sort LHS first. return RHS.endLoc() < LHS.endLoc(); // If LHS and RHS cover the same area, we need to sort them according // to their kinds so that the most suitable region will become "active" // in combineRegions(). Because we accumulate counter values only from // regions of the same kind as the first region of the area, prefer // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. static_assert(CounterMappingRegion::CodeRegion < CounterMappingRegion::ExpansionRegion && CounterMappingRegion::ExpansionRegion < CounterMappingRegion::SkippedRegion, "Unexpected order of region kind values"); return LHS.Kind < RHS.Kind; }); } /// Combine counts of regions which cover the same area. static ArrayRef combineRegions(MutableArrayRef Regions) { if (Regions.empty()) return Regions; auto Active = Regions.begin(); auto End = Regions.end(); for (auto I = Regions.begin() + 1; I != End; ++I) { if (Active->startLoc() != I->startLoc() || Active->endLoc() != I->endLoc()) { // Shift to the next region. ++Active; if (Active != I) *Active = *I; continue; } // Merge duplicate region. // If CodeRegions and ExpansionRegions cover the same area, it's probably // a macro which is fully expanded to another macro. In that case, we need // to accumulate counts only from CodeRegions, or else the area will be // counted twice. // On the other hand, a macro may have a nested macro in its body. If the // outer macro is used several times, the ExpansionRegion for the nested // macro will also be added several times. These ExpansionRegions cover // the same source locations and have to be combined to reach the correct // value for that area. // We add counts of the regions of the same kind as the active region // to handle the both situations. if (I->Kind == Active->Kind) Active->ExecutionCount += I->ExecutionCount; } return Regions.drop_back(std::distance(++Active, End)); } public: /// Build a list of CoverageSegments from a list of Regions. static std::vector buildSegments(MutableArrayRef Regions) { std::vector Segments; SegmentBuilder Builder(Segments); sortNestedRegions(Regions); ArrayRef CombinedRegions = combineRegions(Regions); Builder.buildSegmentsImpl(CombinedRegions); return Segments; } }; } // end anonymous namespace std::vector CoverageMapping::getUniqueSourceFiles() const { std::vector Filenames; for (const auto &Function : getCoveredFunctions()) Filenames.insert(Filenames.end(), Function.Filenames.begin(), Function.Filenames.end()); std::sort(Filenames.begin(), Filenames.end()); auto Last = std::unique(Filenames.begin(), Filenames.end()); Filenames.erase(Last, Filenames.end()); return Filenames; } static SmallBitVector gatherFileIDs(StringRef SourceFile, const FunctionRecord &Function) { SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) if (SourceFile == Function.Filenames[I]) FilenameEquivalence[I] = true; return FilenameEquivalence; } /// Return the ID of the file where the definition of the function is located. static Optional findMainViewFileID(const FunctionRecord &Function) { SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); for (const auto &CR : Function.CountedRegions) if (CR.Kind == CounterMappingRegion::ExpansionRegion) IsNotExpandedFile[CR.ExpandedFileID] = false; int I = IsNotExpandedFile.find_first(); if (I == -1) return None; return I; } /// Check if SourceFile is the file that contains the definition of /// the Function. Return the ID of the file in that case or None otherwise. static Optional findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { Optional I = findMainViewFileID(Function); if (I && SourceFile == Function.Filenames[*I]) return I; return None; } static bool isExpansion(const CountedRegion &R, unsigned FileID) { return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; } CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { CoverageData FileCoverage(Filename); std::vector Regions; for (const auto &Function : Functions) { auto MainFileID = findMainViewFileID(Filename, Function); auto FileIDs = gatherFileIDs(Filename, Function); for (const auto &CR : Function.CountedRegions) if (FileIDs.test(CR.FileID)) { Regions.push_back(CR); if (MainFileID && isExpansion(CR, *MainFileID)) FileCoverage.Expansions.emplace_back(CR, Function); } } DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); return FileCoverage; } std::vector CoverageMapping::getInstantiations(StringRef Filename) const { FunctionInstantiationSetCollector InstantiationSetCollector; for (const auto &Function : Functions) { auto MainFileID = findMainViewFileID(Filename, Function); if (!MainFileID) continue; InstantiationSetCollector.insert(Function, *MainFileID); } std::vector Result; for (const auto &InstantiationSet : InstantiationSetCollector) { if (InstantiationSet.second.size() < 2) continue; Result.insert(Result.end(), InstantiationSet.second.begin(), InstantiationSet.second.end()); } return Result; } CoverageData CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { auto MainFileID = findMainViewFileID(Function); if (!MainFileID) return CoverageData(); CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); std::vector Regions; for (const auto &CR : Function.CountedRegions) if (CR.FileID == *MainFileID) { Regions.push_back(CR); if (isExpansion(CR, *MainFileID)) FunctionCoverage.Expansions.emplace_back(CR, Function); } DEBUG(dbgs() << "Emitting segments for function: " << Function.Name << "\n"); FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); return FunctionCoverage; } CoverageData CoverageMapping::getCoverageForExpansion( const ExpansionRecord &Expansion) const { CoverageData ExpansionCoverage( Expansion.Function.Filenames[Expansion.FileID]); std::vector Regions; for (const auto &CR : Expansion.Function.CountedRegions) if (CR.FileID == Expansion.FileID) { Regions.push_back(CR); if (isExpansion(CR, Expansion.FileID)) ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); } DEBUG(dbgs() << "Emitting segments for expansion of file " << Expansion.FileID << "\n"); ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); return ExpansionCoverage; } static std::string getCoverageMapErrString(coveragemap_error Err) { switch (Err) { case coveragemap_error::success: return "Success"; case coveragemap_error::eof: return "End of File"; case coveragemap_error::no_data_found: return "No coverage data found"; case coveragemap_error::unsupported_version: return "Unsupported coverage format version"; case coveragemap_error::truncated: return "Truncated coverage data"; case coveragemap_error::malformed: return "Malformed coverage data"; } llvm_unreachable("A value of coveragemap_error has no message."); } namespace { // FIXME: This class is only here to support the transition to llvm::Error. It // will be removed once this transition is complete. Clients should prefer to // deal with the Error value directly, rather than converting to error_code. class CoverageMappingErrorCategoryType : public std::error_category { const char *name() const noexcept override { return "llvm.coveragemap"; } std::string message(int IE) const override { return getCoverageMapErrString(static_cast(IE)); } }; } // end anonymous namespace std::string CoverageMapError::message() const { return getCoverageMapErrString(Err); } static ManagedStatic ErrorCategory; const std::error_category &llvm::coverage::coveragemap_category() { return *ErrorCategory; } char CoverageMapError::ID = 0;