//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs loop invariant code motion, attempting to remove as much // code from the body of a loop as possible. It does this by either hoisting // code into the preheader block, or by sinking code to the exit blocks if it is // safe. This pass also promotes must-aliased memory locations in the loop to // live in registers, thus hoisting and sinking "invariant" loads and stores. // // This pass uses alias analysis for two purposes: // // 1. Moving loop invariant loads and calls out of loops. If we can determine // that a load or call inside of a loop never aliases anything stored to, // we can hoist it or sink it like any other instruction. // 2. Scalar Promotion of Memory - If there is a store instruction inside of // the loop, we try to move the store to happen AFTER the loop instead of // inside of the loop. This can only happen if a few conditions are true: // A. The pointer stored through is loop invariant // B. There are no stores or loads in the loop which _may_ alias the // pointer. There are no calls in the loop which mod/ref the pointer. // If these conditions are true, we can promote the loads and stores in the // loop of the pointer to use a temporary alloca'd variable. We then use // the SSAUpdater to construct the appropriate SSA form for the value. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LICM.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/GuardUtils.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/PredIteratorCache.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include #include using namespace llvm; #define DEBUG_TYPE "licm" STATISTIC(NumSunk, "Number of instructions sunk out of loop"); STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); STATISTIC(NumPromoted, "Number of memory locations promoted to registers"); /// Memory promotion is enabled by default. static cl::opt DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), cl::desc("Disable memory promotion in LICM pass")); static cl::opt MaxNumUsesTraversed( "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), cl::desc("Max num uses visited for identifying load " "invariance in loop using invariant start (default = 8)")); // Default value of zero implies we use the regular alias set tracker mechanism // instead of the cross product using AA to identify aliasing of the memory // location we are interested in. static cl::opt LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0), cl::desc("How many instruction to cross product using AA")); static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, TargetTransformInfo *TTI, bool &FreeInLoop); static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE); static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE, bool FreeInLoop); static bool isSafeToExecuteUnconditionally(Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE, const Instruction *CtxI = nullptr); static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, AliasSetTracker *CurAST, Loop *CurLoop, AliasAnalysis *AA); static Instruction * CloneInstructionInExitBlock(Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, const LoopSafetyInfo *SafetyInfo); static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, AliasSetTracker *AST); namespace { struct LoopInvariantCodeMotion { using ASTrackerMapTy = DenseMap>; bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST); ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; } private: ASTrackerMapTy LoopToAliasSetMap; std::unique_ptr collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA); }; struct LegacyLICMPass : public LoopPass { static char ID; // Pass identification, replacement for typeid LegacyLICMPass() : LoopPass(ID) { initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *L, LPPassManager &LPM) override { if (skipLoop(L)) { // If we have run LICM on a previous loop but now we are skipping // (because we've hit the opt-bisect limit), we need to clear the // loop alias information. LICM.getLoopToAliasSetMap().clear(); return false; } auto *SE = getAnalysisIfAvailable(); MemorySSA *MSSA = EnableMSSALoopDependency ? (&getAnalysis().getMSSA()) : nullptr; // For the old PM, we can't use OptimizationRemarkEmitter as an analysis // pass. Function analyses need to be preserved across loop transformations // but ORE cannot be preserved (see comment before the pass definition). OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); return LICM.runOnLoop(L, &getAnalysis().getAAResults(), &getAnalysis().getLoopInfo(), &getAnalysis().getDomTree(), &getAnalysis().getTLI(), &getAnalysis().getTTI( *L->getHeader()->getParent()), SE ? &SE->getSE() : nullptr, MSSA, &ORE, false); } /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG... /// void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); AU.addPreserved(); AU.addRequired(); if (EnableMSSALoopDependency) AU.addRequired(); AU.addRequired(); getLoopAnalysisUsage(AU); } using llvm::Pass::doFinalization; bool doFinalization() override { assert(LICM.getLoopToAliasSetMap().empty() && "Didn't free loop alias sets"); return false; } private: LoopInvariantCodeMotion LICM; /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) override; /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias /// set. void deleteAnalysisValue(Value *V, Loop *L) override; /// Simple Analysis hook. Delete loop L from alias set map. void deleteAnalysisLoop(Loop *L) override; }; } // namespace PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &) { const auto &FAM = AM.getResult(L, AR).getManager(); Function *F = L.getHeader()->getParent(); auto *ORE = FAM.getCachedResult(*F); // FIXME: This should probably be optional rather than required. if (!ORE) report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not " "cached at a higher level"); LoopInvariantCodeMotion LICM; if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, ORE, true)) return PreservedAnalyses::all(); auto PA = getLoopPassPreservedAnalyses(); PA.preserve(); PA.preserve(); return PA; } char LegacyLICMPass::ID = 0; INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, false) Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } /// Hoist expressions out of the specified loop. Note, alias info for inner /// loop is not preserved so it is not a good idea to run LICM multiple /// times on one loop. /// We should delete AST for inner loops in the new pass manager to avoid /// memory leak. /// bool LoopInvariantCodeMotion::runOnLoop( Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) { bool Changed = false; assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); std::unique_ptr CurAST = collectAliasInfoForLoop(L, LI, AA); // Get the preheader block to move instructions into... BasicBlock *Preheader = L->getLoopPreheader(); // Compute loop safety information. ICFLoopSafetyInfo SafetyInfo(DT); SafetyInfo.computeLoopSafetyInfo(L); // We want to visit all of the instructions in this loop... that are not parts // of our subloops (they have already had their invariants hoisted out of // their loop, into this loop, so there is no need to process the BODIES of // the subloops). // // Traverse the body of the loop in depth first order on the dominator tree so // that we are guaranteed to see definitions before we see uses. This allows // us to sink instructions in one pass, without iteration. After sinking // instructions, we perform another pass to hoist them out of the loop. // if (L->hasDedicatedExits()) Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, CurAST.get(), &SafetyInfo, ORE); if (Preheader) Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L, CurAST.get(), &SafetyInfo, ORE); // Now that all loop invariants have been removed from the loop, promote any // memory references to scalars that we can. // Don't sink stores from loops without dedicated block exits. Exits // containing indirect branches are not transformed by loop simplify, // make sure we catch that. An additional load may be generated in the // preheader for SSA updater, so also avoid sinking when no preheader // is available. if (!DisablePromotion && Preheader && L->hasDedicatedExits()) { // Figure out the loop exits and their insertion points SmallVector ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); // We can't insert into a catchswitch. bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { return isa(Exit->getTerminator()); }); if (!HasCatchSwitch) { SmallVector InsertPts; InsertPts.reserve(ExitBlocks.size()); for (BasicBlock *ExitBlock : ExitBlocks) InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); PredIteratorCache PIC; bool Promoted = false; // Loop over all of the alias sets in the tracker object. for (AliasSet &AS : *CurAST) { // We can promote this alias set if it has a store, if it is a "Must" // alias set, if the pointer is loop invariant, and if we are not // eliminating any volatile loads or stores. if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || !L->isLoopInvariant(AS.begin()->getValue())) continue; assert( !AS.empty() && "Must alias set should have at least one pointer element in it!"); SmallSetVector PointerMustAliases; for (const auto &ASI : AS) PointerMustAliases.insert(ASI.getValue()); Promoted |= promoteLoopAccessesToScalars( PointerMustAliases, ExitBlocks, InsertPts, PIC, LI, DT, TLI, L, CurAST.get(), &SafetyInfo, ORE); } // Once we have promoted values across the loop body we have to // recursively reform LCSSA as any nested loop may now have values defined // within the loop used in the outer loop. // FIXME: This is really heavy handed. It would be a bit better to use an // SSAUpdater strategy during promotion that was LCSSA aware and reformed // it as it went. if (Promoted) formLCSSARecursively(*L, *DT, LI, SE); Changed |= Promoted; } } // Check that neither this loop nor its parent have had LCSSA broken. LICM is // specifically moving instructions across the loop boundary and so it is // especially in need of sanity checking here. assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && "Parent loop not left in LCSSA form after LICM!"); // If this loop is nested inside of another one, save the alias information // for when we process the outer loop. if (L->getParentLoop() && !DeleteAST) LoopToAliasSetMap[L] = std::move(CurAST); if (Changed && SE) SE->forgetLoopDispositions(L); return Changed; } /// Walk the specified region of the CFG (defined by all blocks dominated by /// the specified block, and that are in the current loop) in reverse depth /// first order w.r.t the DominatorTree. This allows us to visit uses before /// definitions, allowing us to sink a loop body in one pass without iteration. /// bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, AliasSetTracker *CurAST, ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) { // Verify inputs. assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST && SafetyInfo != nullptr && "Unexpected input to sinkRegion"); // We want to visit children before parents. We will enque all the parents // before their children in the worklist and process the worklist in reverse // order. SmallVector Worklist = collectChildrenInLoop(N, CurLoop); bool Changed = false; for (DomTreeNode *DTN : reverse(Worklist)) { BasicBlock *BB = DTN->getBlock(); // Only need to process the contents of this block if it is not part of a // subloop (which would already have been processed). if (inSubLoop(BB, CurLoop, LI)) continue; for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { Instruction &I = *--II; // If the instruction is dead, we would try to sink it because it isn't // used in the loop, instead, just delete it. if (isInstructionTriviallyDead(&I, TLI)) { LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); salvageDebugInfo(I); ++II; eraseInstruction(I, *SafetyInfo, CurAST); Changed = true; continue; } // Check to see if we can sink this instruction to the exit blocks // of the loop. We can do this if the all users of the instruction are // outside of the loop. In this case, it doesn't even matter if the // operands of the instruction are loop invariant. // bool FreeInLoop = false; if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) && canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, true, ORE) && !I.mayHaveSideEffects()) { if (sink(I, LI, DT, CurLoop, SafetyInfo, ORE, FreeInLoop)) { if (!FreeInLoop) { ++II; eraseInstruction(I, *SafetyInfo, CurAST); } Changed = true; } } } } return Changed; } /// Walk the specified region of the CFG (defined by all blocks dominated by /// the specified block, and that are in the current loop) in depth first /// order w.r.t the DominatorTree. This allows us to visit definitions before /// uses, allowing us to hoist a loop body in one pass without iteration. /// bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop, AliasSetTracker *CurAST, ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) { // Verify inputs. assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && "Unexpected input to hoistRegion"); // We want to visit parents before children. We will enque all the parents // before their children in the worklist and process the worklist in order. SmallVector Worklist = collectChildrenInLoop(N, CurLoop); bool Changed = false; for (DomTreeNode *DTN : Worklist) { BasicBlock *BB = DTN->getBlock(); // Only need to process the contents of this block if it is not part of a // subloop (which would already have been processed). if (inSubLoop(BB, CurLoop, LI)) continue; // Keep track of whether the prefix instructions could have written memory. // TODO: This may be done smarter if we keep track of all throwing and // mem-writing operations in every block, e.g. using something similar to // isGuaranteedToExecute. bool IsMemoryNotModified = CurLoop->getHeader() == BB; for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) { Instruction &I = *II++; // Try constant folding this instruction. If all the operands are // constants, it is technically hoistable, but it would be better to // just fold it. if (Constant *C = ConstantFoldInstruction( &I, I.getModule()->getDataLayout(), TLI)) { LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n'); CurAST->copyValue(&I, C); I.replaceAllUsesWith(C); if (isInstructionTriviallyDead(&I, TLI)) eraseInstruction(I, *SafetyInfo, CurAST); Changed = true; continue; } // Try hoisting the instruction out to the preheader. We can only do // this if all of the operands of the instruction are loop invariant and // if it is safe to hoist the instruction. // if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, true, ORE) && isSafeToExecuteUnconditionally( I, DT, CurLoop, SafetyInfo, ORE, CurLoop->getLoopPreheader()->getTerminator())) { hoist(I, DT, CurLoop, SafetyInfo, ORE); Changed = true; continue; } // Attempt to remove floating point division out of the loop by // converting it to a reciprocal multiplication. if (I.getOpcode() == Instruction::FDiv && CurLoop->isLoopInvariant(I.getOperand(1)) && I.hasAllowReciprocal()) { auto Divisor = I.getOperand(1); auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); SafetyInfo->insertInstructionTo(I.getParent()); ReciprocalDivisor->insertBefore(&I); auto Product = BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); Product->setFastMathFlags(I.getFastMathFlags()); SafetyInfo->insertInstructionTo(I.getParent()); Product->insertAfter(&I); I.replaceAllUsesWith(Product); eraseInstruction(I, *SafetyInfo, CurAST); hoist(*ReciprocalDivisor, DT, CurLoop, SafetyInfo, ORE); Changed = true; continue; } using namespace PatternMatch; if (((I.use_empty() && match(&I, m_Intrinsic())) || isGuard(&I)) && IsMemoryNotModified && CurLoop->hasLoopInvariantOperands(&I) && SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) { hoist(I, DT, CurLoop, SafetyInfo, ORE); Changed = true; continue; } if (IsMemoryNotModified) IsMemoryNotModified = !I.mayWriteToMemory(); } } return Changed; } // Return true if LI is invariant within scope of the loop. LI is invariant if // CurLoop is dominated by an invariant.start representing the same memory // location and size as the memory location LI loads from, and also the // invariant.start has no uses. static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, Loop *CurLoop) { Value *Addr = LI->getOperand(0); const DataLayout &DL = LI->getModule()->getDataLayout(); const uint32_t LocSizeInBits = DL.getTypeSizeInBits( cast(Addr->getType())->getElementType()); // if the type is i8 addrspace(x)*, we know this is the type of // llvm.invariant.start operand auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), LI->getPointerAddressSpace()); unsigned BitcastsVisited = 0; // Look through bitcasts until we reach the i8* type (this is invariant.start // operand type). while (Addr->getType() != PtrInt8Ty) { auto *BC = dyn_cast(Addr); // Avoid traversing high number of bitcast uses. if (++BitcastsVisited > MaxNumUsesTraversed || !BC) return false; Addr = BC->getOperand(0); } unsigned UsesVisited = 0; // Traverse all uses of the load operand value, to see if invariant.start is // one of the uses, and whether it dominates the load instruction. for (auto *U : Addr->users()) { // Avoid traversing for Load operand with high number of users. if (++UsesVisited > MaxNumUsesTraversed) return false; IntrinsicInst *II = dyn_cast(U); // If there are escaping uses of invariant.start instruction, the load maybe // non-invariant. if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || !II->use_empty()) continue; unsigned InvariantSizeInBits = cast(II->getArgOperand(0))->getSExtValue() * 8; // Confirm the invariant.start location size contains the load operand size // in bits. Also, the invariant.start should dominate the load, and we // should not hoist the load out of a loop that contains this dominating // invariant.start. if (LocSizeInBits <= InvariantSizeInBits && DT->properlyDominates(II->getParent(), CurLoop->getHeader())) return true; } return false; } namespace { /// Return true if-and-only-if we know how to (mechanically) both hoist and /// sink a given instruction out of a loop. Does not address legality /// concerns such as aliasing or speculation safety. bool isHoistableAndSinkableInst(Instruction &I) { // Only these instructions are hoistable/sinkable. return (isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I)); } /// Return true if all of the alias sets within this AST are known not to /// contain a Mod. bool isReadOnly(AliasSetTracker *CurAST) { for (AliasSet &AS : *CurAST) { if (!AS.isForwardingAliasSet() && AS.isMod()) { return false; } } return true; } } bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, Loop *CurLoop, AliasSetTracker *CurAST, bool TargetExecutesOncePerLoop, OptimizationRemarkEmitter *ORE) { // If we don't understand the instruction, bail early. if (!isHoistableAndSinkableInst(I)) return false; // Loads have extra constraints we have to verify before we can hoist them. if (LoadInst *LI = dyn_cast(&I)) { if (!LI->isUnordered()) return false; // Don't sink/hoist volatile or ordered atomic loads! // Loads from constant memory are always safe to move, even if they end up // in the same alias set as something that ends up being modified. if (AA->pointsToConstantMemory(LI->getOperand(0))) return true; if (LI->getMetadata(LLVMContext::MD_invariant_load)) return true; if (LI->isAtomic() && !TargetExecutesOncePerLoop) return false; // Don't risk duplicating unordered loads // This checks for an invariant.start dominating the load. if (isLoadInvariantInLoop(LI, DT, CurLoop)) return true; bool Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST, CurLoop, AA); // Check loop-invariant address because this may also be a sinkable load // whose address is not necessarily loop-invariant. if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) ORE->emit([&]() { return OptimizationRemarkMissed( DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) << "failed to move load with loop-invariant address " "because the loop may invalidate its value"; }); return !Invalidated; } else if (CallInst *CI = dyn_cast(&I)) { // Don't sink or hoist dbg info; it's legal, but not useful. if (isa(I)) return false; // Don't sink calls which can throw. if (CI->mayThrow()) return false; using namespace PatternMatch; if (match(CI, m_Intrinsic())) // Assumes don't actually alias anything or throw return true; // Handle simple cases by querying alias analysis. FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI); if (Behavior == FMRB_DoesNotAccessMemory) return true; if (AliasAnalysis::onlyReadsMemory(Behavior)) { // A readonly argmemonly function only reads from memory pointed to by // it's arguments with arbitrary offsets. If we can prove there are no // writes to this memory in the loop, we can hoist or sink. if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) { // TODO: expand to writeable arguments for (Value *Op : CI->arg_operands()) if (Op->getType()->isPointerTy() && pointerInvalidatedByLoop( MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()), CurAST, CurLoop, AA)) return false; return true; } // If this call only reads from memory and there are no writes to memory // in the loop, we can hoist or sink the call as appropriate. if (isReadOnly(CurAST)) return true; } // FIXME: This should use mod/ref information to see if we can hoist or // sink the call. return false; } else if (auto *FI = dyn_cast(&I)) { // Fences alias (most) everything to provide ordering. For the moment, // just give up if there are any other memory operations in the loop. auto Begin = CurAST->begin(); assert(Begin != CurAST->end() && "must contain FI"); if (std::next(Begin) != CurAST->end()) // constant memory for instance, TODO: handle better return false; auto *UniqueI = Begin->getUniqueInstruction(); if (!UniqueI) // other memory op, give up return false; (void)FI; //suppress unused variable warning assert(UniqueI == FI && "AS must contain FI"); return true; } else if (auto *SI = dyn_cast(&I)) { if (!SI->isUnordered()) return false; // Don't sink/hoist volatile or ordered atomic store! // We can only hoist a store that we can prove writes a value which is not // read or overwritten within the loop. For those cases, we fallback to // load store promotion instead. TODO: We can extend this to cases where // there is exactly one write to the location and that write dominates an // arbitrary number of reads in the loop. auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI)); if (AS.isRef() || !AS.isMustAlias()) // Quick exit test, handled by the full path below as well. return false; auto *UniqueI = AS.getUniqueInstruction(); if (!UniqueI) // other memory op, give up return false; assert(UniqueI == SI && "AS must contain SI"); return true; } assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); // We've established mechanical ability and aliasing, it's up to the caller // to check fault safety return true; } /// Returns true if a PHINode is a trivially replaceable with an /// Instruction. /// This is true when all incoming values are that instruction. /// This pattern occurs most often with LCSSA PHI nodes. /// static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { for (const Value *IncValue : PN.incoming_values()) if (IncValue != &I) return false; return true; } /// Return true if the instruction is free in the loop. static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, const TargetTransformInfo *TTI) { if (const GetElementPtrInst *GEP = dyn_cast(&I)) { if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free) return false; // For a GEP, we cannot simply use getUserCost because currently it // optimistically assume that a GEP will fold into addressing mode // regardless of its users. const BasicBlock *BB = GEP->getParent(); for (const User *U : GEP->users()) { const Instruction *UI = cast(U); if (CurLoop->contains(UI) && (BB != UI->getParent() || (!isa(UI) && !isa(UI)))) return false; } return true; } else return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free; } /// Return true if the only users of this instruction are outside of /// the loop. If this is true, we can sink the instruction to the exit /// blocks of the loop. /// /// We also return true if the instruction could be folded away in lowering. /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, TargetTransformInfo *TTI, bool &FreeInLoop) { const auto &BlockColors = SafetyInfo->getBlockColors(); bool IsFree = isFreeInLoop(I, CurLoop, TTI); for (const User *U : I.users()) { const Instruction *UI = cast(U); if (const PHINode *PN = dyn_cast(UI)) { const BasicBlock *BB = PN->getParent(); // We cannot sink uses in catchswitches. if (isa(BB->getTerminator())) return false; // We need to sink a callsite to a unique funclet. Avoid sinking if the // phi use is too muddled. if (isa(I)) if (!BlockColors.empty() && BlockColors.find(const_cast(BB))->second.size() != 1) return false; } if (CurLoop->contains(UI)) { if (IsFree) { FreeInLoop = true; continue; } return false; } } return true; } static Instruction * CloneInstructionInExitBlock(Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, const LoopSafetyInfo *SafetyInfo) { Instruction *New; if (auto *CI = dyn_cast(&I)) { const auto &BlockColors = SafetyInfo->getBlockColors(); // Sinking call-sites need to be handled differently from other // instructions. The cloned call-site needs a funclet bundle operand // appropriate for it's location in the CFG. SmallVector OpBundles; for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); BundleIdx != BundleEnd; ++BundleIdx) { OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); if (Bundle.getTagID() == LLVMContext::OB_funclet) continue; OpBundles.emplace_back(Bundle); } if (!BlockColors.empty()) { const ColorVector &CV = BlockColors.find(&ExitBlock)->second; assert(CV.size() == 1 && "non-unique color for exit block!"); BasicBlock *BBColor = CV.front(); Instruction *EHPad = BBColor->getFirstNonPHI(); if (EHPad->isEHPad()) OpBundles.emplace_back("funclet", EHPad); } New = CallInst::Create(CI, OpBundles); } else { New = I.clone(); } ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New); if (!I.getName().empty()) New->setName(I.getName() + ".le"); // Build LCSSA PHI nodes for any in-loop operands. Note that this is // particularly cheap because we can rip off the PHI node that we're // replacing for the number and blocks of the predecessors. // OPT: If this shows up in a profile, we can instead finish sinking all // invariant instructions, and then walk their operands to re-establish // LCSSA. That will eliminate creating PHI nodes just to nuke them when // sinking bottom-up. for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE; ++OI) if (Instruction *OInst = dyn_cast(*OI)) if (Loop *OLoop = LI->getLoopFor(OInst->getParent())) if (!OLoop->contains(&PN)) { PHINode *OpPN = PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), OInst->getName() + ".lcssa", &ExitBlock.front()); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); *OI = OpPN; } return New; } static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, AliasSetTracker *AST) { if (AST) AST->deleteValue(&I); SafetyInfo.removeInstruction(&I); I.eraseFromParent(); } static Instruction *sinkThroughTriviallyReplaceablePHI( PHINode *TPN, Instruction *I, LoopInfo *LI, SmallDenseMap &SunkCopies, const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop) { assert(isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"); BasicBlock *ExitBlock = TPN->getParent(); Instruction *New; auto It = SunkCopies.find(ExitBlock); if (It != SunkCopies.end()) New = It->second; else New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock(*I, *ExitBlock, *TPN, LI, SafetyInfo); return New; } static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { BasicBlock *BB = PN->getParent(); if (!BB->canSplitPredecessors()) return false; // It's not impossible to split EHPad blocks, but if BlockColors already exist // it require updating BlockColors for all offspring blocks accordingly. By // skipping such corner case, we can make updating BlockColors after splitting // predecessor fairly simple. if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) return false; for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *BBPred = *PI; if (isa(BBPred->getTerminator())) return false; } return true; } static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, LoopInfo *LI, const Loop *CurLoop, LoopSafetyInfo *SafetyInfo) { #ifndef NDEBUG SmallVector ExitBlocks; CurLoop->getUniqueExitBlocks(ExitBlocks); SmallPtrSet ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end()); #endif BasicBlock *ExitBB = PN->getParent(); assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); // Split predecessors of the loop exit to make instructions in the loop are // exposed to exit blocks through trivially replaceable PHIs while keeping the // loop in the canonical form where each predecessor of each exit block should // be contained within the loop. For example, this will convert the loop below // from // // LB1: // %v1 = // br %LE, %LB2 // LB2: // %v2 = // br %LE, %LB1 // LE: // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable // // to // // LB1: // %v1 = // br %LE.split, %LB2 // LB2: // %v2 = // br %LE.split2, %LB1 // LE.split: // %p1 = phi [%v1, %LB1] <-- trivially replaceable // br %LE // LE.split2: // %p2 = phi [%v2, %LB2] <-- trivially replaceable // br %LE // LE: // %p = phi [%p1, %LE.split], [%p2, %LE.split2] // const auto &BlockColors = SafetyInfo->getBlockColors(); SmallSetVector PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); while (!PredBBs.empty()) { BasicBlock *PredBB = *PredBBs.begin(); assert(CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"); if (PN->getBasicBlockIndex(PredBB) >= 0) { BasicBlock *NewPred = SplitBlockPredecessors( ExitBB, PredBB, ".split.loop.exit", DT, LI, nullptr, true); // Since we do not allow splitting EH-block with BlockColors in // canSplitPredecessors(), we can simply assign predecessor's color to // the new block. if (!BlockColors.empty()) // Grab a reference to the ColorVector to be inserted before getting the // reference to the vector we are copying because inserting the new // element in BlockColors might cause the map to be reallocated. SafetyInfo->copyColors(NewPred, PredBB); } PredBBs.remove(PredBB); } } /// When an instruction is found to only be used outside of the loop, this /// function moves it to the exit blocks and patches up SSA form as needed. /// This method is guaranteed to remove the original instruction from its /// position, and may either delete it or move it to outside of the loop. /// static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE, bool FreeInLoop) { LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) << "sinking " << ore::NV("Inst", &I); }); bool Changed = false; if (isa(I)) ++NumMovedLoads; else if (isa(I)) ++NumMovedCalls; ++NumSunk; // Iterate over users to be ready for actual sinking. Replace users via // unrechable blocks with undef and make all user PHIs trivially replcable. SmallPtrSet VisitedUsers; for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { auto *User = cast(*UI); Use &U = UI.getUse(); ++UI; if (VisitedUsers.count(User) || CurLoop->contains(User)) continue; if (!DT->isReachableFromEntry(User->getParent())) { U = UndefValue::get(I.getType()); Changed = true; continue; } // The user must be a PHI node. PHINode *PN = cast(User); // Surprisingly, instructions can be used outside of loops without any // exits. This can only happen in PHI nodes if the incoming block is // unreachable. BasicBlock *BB = PN->getIncomingBlock(U); if (!DT->isReachableFromEntry(BB)) { U = UndefValue::get(I.getType()); Changed = true; continue; } VisitedUsers.insert(PN); if (isTriviallyReplaceablePHI(*PN, I)) continue; if (!canSplitPredecessors(PN, SafetyInfo)) return Changed; // Split predecessors of the PHI so that we can make users trivially // replaceable. splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo); // Should rebuild the iterators, as they may be invalidated by // splitPredecessorsOfLoopExit(). UI = I.user_begin(); UE = I.user_end(); } if (VisitedUsers.empty()) return Changed; #ifndef NDEBUG SmallVector ExitBlocks; CurLoop->getUniqueExitBlocks(ExitBlocks); SmallPtrSet ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end()); #endif // Clones of this instruction. Don't create more than one per exit block! SmallDenseMap SunkCopies; // If this instruction is only used outside of the loop, then all users are // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of // the instruction. SmallSetVector Users(I.user_begin(), I.user_end()); for (auto *UI : Users) { auto *User = cast(UI); if (CurLoop->contains(User)) continue; PHINode *PN = cast(User); assert(ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"); // The PHI must be trivially replaceable. Instruction *New = sinkThroughTriviallyReplaceablePHI(PN, &I, LI, SunkCopies, SafetyInfo, CurLoop); PN->replaceAllUsesWith(New); eraseInstruction(*PN, *SafetyInfo, nullptr); Changed = true; } return Changed; } /// When an instruction is found to only use loop invariant operands that /// is safe to hoist, this instruction is called to do the dirty work. /// static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) { auto *Preheader = CurLoop->getLoopPreheader(); LLVM_DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": " << I << "\n"); ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " << ore::NV("Inst", &I); }); // Metadata can be dependent on conditions we are hoisting above. // Conservatively strip all metadata on the instruction unless we were // guaranteed to execute I if we entered the loop, in which case the metadata // is valid in the loop preheader. if (I.hasMetadataOtherThanDebugLoc() && // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning // time in isGuaranteedToExecute if we don't actually have anything to // drop. It is a compile time optimization, not required for correctness. !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) I.dropUnknownNonDebugMetadata(); SafetyInfo->removeInstruction(&I); SafetyInfo->insertInstructionTo(Preheader); // Move the new node to the Preheader, before its terminator. I.moveBefore(Preheader->getTerminator()); // Do not retain debug locations when we are moving instructions to different // basic blocks, because we want to avoid jumpy line tables. Calls, however, // need to retain their debug locs because they may be inlined. // FIXME: How do we retain source locations without causing poor debugging // behavior? if (!isa(I)) I.setDebugLoc(DebugLoc()); if (isa(I)) ++NumMovedLoads; else if (isa(I)) ++NumMovedCalls; ++NumHoisted; } /// Only sink or hoist an instruction if it is not a trapping instruction, /// or if the instruction is known not to trap when moved to the preheader. /// or if it is a trapping instruction and is guaranteed to execute. static bool isSafeToExecuteUnconditionally(Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE, const Instruction *CtxI) { if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT)) return true; bool GuaranteedToExecute = SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); if (!GuaranteedToExecute) { auto *LI = dyn_cast(&Inst); if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) ORE->emit([&]() { return OptimizationRemarkMissed( DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) << "failed to hoist load with loop-invariant address " "because load is conditionally executed"; }); } return GuaranteedToExecute; } namespace { class LoopPromoter : public LoadAndStorePromoter { Value *SomePtr; // Designated pointer to store to. const SmallSetVector &PointerMustAliases; SmallVectorImpl &LoopExitBlocks; SmallVectorImpl &LoopInsertPts; PredIteratorCache &PredCache; AliasSetTracker &AST; LoopInfo &LI; DebugLoc DL; int Alignment; bool UnorderedAtomic; AAMDNodes AATags; ICFLoopSafetyInfo &SafetyInfo; Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { if (Instruction *I = dyn_cast(V)) if (Loop *L = LI.getLoopFor(I->getParent())) if (!L->contains(BB)) { // We need to create an LCSSA PHI node for the incoming value and // store that. PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), I->getName() + ".lcssa", &BB->front()); for (BasicBlock *Pred : PredCache.get(BB)) PN->addIncoming(I, Pred); return PN; } return V; } public: LoopPromoter(Value *SP, ArrayRef Insts, SSAUpdater &S, const SmallSetVector &PMA, SmallVectorImpl &LEB, SmallVectorImpl &LIP, PredIteratorCache &PIC, AliasSetTracker &ast, LoopInfo &li, DebugLoc dl, int alignment, bool UnorderedAtomic, const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo) : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA), LoopExitBlocks(LEB), LoopInsertPts(LIP), PredCache(PIC), AST(ast), LI(li), DL(std::move(dl)), Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags), SafetyInfo(SafetyInfo) {} bool isInstInList(Instruction *I, const SmallVectorImpl &) const override { Value *Ptr; if (LoadInst *LI = dyn_cast(I)) Ptr = LI->getOperand(0); else Ptr = cast(I)->getPointerOperand(); return PointerMustAliases.count(Ptr); } void doExtraRewritesBeforeFinalDeletion() const override { // Insert stores after in the loop exit blocks. Each exit block gets a // store of the live-out values that feed them. Since we've already told // the SSA updater about the defs in the loop and the preheader // definition, it is all set and we can start using it. for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { BasicBlock *ExitBlock = LoopExitBlocks[i]; Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); Instruction *InsertPos = LoopInsertPts[i]; StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); if (UnorderedAtomic) NewSI->setOrdering(AtomicOrdering::Unordered); NewSI->setAlignment(Alignment); NewSI->setDebugLoc(DL); if (AATags) NewSI->setAAMetadata(AATags); } } void replaceLoadWithValue(LoadInst *LI, Value *V) const override { // Update alias analysis. AST.copyValue(LI, V); } void instructionDeleted(Instruction *I) const override { SafetyInfo.removeInstruction(I); AST.deleteValue(I); } }; /// Return true iff we can prove that a caller of this function can not inspect /// the contents of the provided object in a well defined program. bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) { if (isa(Object)) // Since the alloca goes out of scope, we know the caller can't retain a // reference to it and be well defined. Thus, we don't need to check for // capture. return true; // For all other objects we need to know that the caller can't possibly // have gotten a reference to the object. There are two components of // that: // 1) Object can't be escaped by this function. This is what // PointerMayBeCaptured checks. // 2) Object can't have been captured at definition site. For this, we // need to know the return value is noalias. At the moment, we use a // weaker condition and handle only AllocLikeFunctions (which are // known to be noalias). TODO return isAllocLikeFn(Object, TLI) && !PointerMayBeCaptured(Object, true, true); } } // namespace /// Try to promote memory values to scalars by sinking stores out of the /// loop and moving loads to before the loop. We do this by looping over /// the stores in the loop, looking for stores to Must pointers which are /// loop invariant. /// bool llvm::promoteLoopAccessesToScalars( const SmallSetVector &PointerMustAliases, SmallVectorImpl &ExitBlocks, SmallVectorImpl &InsertPts, PredIteratorCache &PIC, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, Loop *CurLoop, AliasSetTracker *CurAST, ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) { // Verify inputs. assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && "Unexpected Input to promoteLoopAccessesToScalars"); Value *SomePtr = *PointerMustAliases.begin(); BasicBlock *Preheader = CurLoop->getLoopPreheader(); // It is not safe to promote a load/store from the loop if the load/store is // conditional. For example, turning: // // for () { if (c) *P += 1; } // // into: // // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; // // is not safe, because *P may only be valid to access if 'c' is true. // // The safety property divides into two parts: // p1) The memory may not be dereferenceable on entry to the loop. In this // case, we can't insert the required load in the preheader. // p2) The memory model does not allow us to insert a store along any dynamic // path which did not originally have one. // // If at least one store is guaranteed to execute, both properties are // satisfied, and promotion is legal. // // This, however, is not a necessary condition. Even if no store/load is // guaranteed to execute, we can still establish these properties. // We can establish (p1) by proving that hoisting the load into the preheader // is safe (i.e. proving dereferenceability on all paths through the loop). We // can use any access within the alias set to prove dereferenceability, // since they're all must alias. // // There are two ways establish (p2): // a) Prove the location is thread-local. In this case the memory model // requirement does not apply, and stores are safe to insert. // b) Prove a store dominates every exit block. In this case, if an exit // blocks is reached, the original dynamic path would have taken us through // the store, so inserting a store into the exit block is safe. Note that this // is different from the store being guaranteed to execute. For instance, // if an exception is thrown on the first iteration of the loop, the original // store is never executed, but the exit blocks are not executed either. bool DereferenceableInPH = false; bool SafeToInsertStore = false; SmallVector LoopUses; // We start with an alignment of one and try to find instructions that allow // us to prove better alignment. unsigned Alignment = 1; // Keep track of which types of access we see bool SawUnorderedAtomic = false; bool SawNotAtomic = false; AAMDNodes AATags; const DataLayout &MDL = Preheader->getModule()->getDataLayout(); bool IsKnownThreadLocalObject = false; if (SafetyInfo->anyBlockMayThrow()) { // If a loop can throw, we have to insert a store along each unwind edge. // That said, we can't actually make the unwind edge explicit. Therefore, // we have to prove that the store is dead along the unwind edge. We do // this by proving that the caller can't have a reference to the object // after return and thus can't possibly load from the object. Value *Object = GetUnderlyingObject(SomePtr, MDL); if (!isKnownNonEscaping(Object, TLI)) return false; // Subtlety: Alloca's aren't visible to callers, but *are* potentially // visible to other threads if captured and used during their lifetimes. IsKnownThreadLocalObject = !isa(Object); } // Check that all of the pointers in the alias set have the same type. We // cannot (yet) promote a memory location that is loaded and stored in // different sizes. While we are at it, collect alignment and AA info. for (Value *ASIV : PointerMustAliases) { // Check that all of the pointers in the alias set have the same type. We // cannot (yet) promote a memory location that is loaded and stored in // different sizes. if (SomePtr->getType() != ASIV->getType()) return false; for (User *U : ASIV->users()) { // Ignore instructions that are outside the loop. Instruction *UI = dyn_cast(U); if (!UI || !CurLoop->contains(UI)) continue; // If there is an non-load/store instruction in the loop, we can't promote // it. if (LoadInst *Load = dyn_cast(UI)) { if (!Load->isUnordered()) return false; SawUnorderedAtomic |= Load->isAtomic(); SawNotAtomic |= !Load->isAtomic(); if (!DereferenceableInPH) DereferenceableInPH = isSafeToExecuteUnconditionally( *Load, DT, CurLoop, SafetyInfo, ORE, Preheader->getTerminator()); } else if (const StoreInst *Store = dyn_cast(UI)) { // Stores *of* the pointer are not interesting, only stores *to* the // pointer. if (UI->getOperand(1) != ASIV) continue; if (!Store->isUnordered()) return false; SawUnorderedAtomic |= Store->isAtomic(); SawNotAtomic |= !Store->isAtomic(); // If the store is guaranteed to execute, both properties are satisfied. // We may want to check if a store is guaranteed to execute even if we // already know that promotion is safe, since it may have higher // alignment than any other guaranteed stores, in which case we can // raise the alignment on the promoted store. unsigned InstAlignment = Store->getAlignment(); if (!InstAlignment) InstAlignment = MDL.getABITypeAlignment(Store->getValueOperand()->getType()); if (!DereferenceableInPH || !SafeToInsertStore || (InstAlignment > Alignment)) { if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) { DereferenceableInPH = true; SafeToInsertStore = true; Alignment = std::max(Alignment, InstAlignment); } } // If a store dominates all exit blocks, it is safe to sink. // As explained above, if an exit block was executed, a dominating // store must have been executed at least once, so we are not // introducing stores on paths that did not have them. // Note that this only looks at explicit exit blocks. If we ever // start sinking stores into unwind edges (see above), this will break. if (!SafeToInsertStore) SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { return DT->dominates(Store->getParent(), Exit); }); // If the store is not guaranteed to execute, we may still get // deref info through it. if (!DereferenceableInPH) { DereferenceableInPH = isDereferenceableAndAlignedPointer( Store->getPointerOperand(), Store->getAlignment(), MDL, Preheader->getTerminator(), DT); } } else return false; // Not a load or store. // Merge the AA tags. if (LoopUses.empty()) { // On the first load/store, just take its AA tags. UI->getAAMetadata(AATags); } else if (AATags) { UI->getAAMetadata(AATags, /* Merge = */ true); } LoopUses.push_back(UI); } } // If we found both an unordered atomic instruction and a non-atomic memory // access, bail. We can't blindly promote non-atomic to atomic since we // might not be able to lower the result. We can't downgrade since that // would violate memory model. Also, align 0 is an error for atomics. if (SawUnorderedAtomic && SawNotAtomic) return false; // If we couldn't prove we can hoist the load, bail. if (!DereferenceableInPH) return false; // We know we can hoist the load, but don't have a guaranteed store. // Check whether the location is thread-local. If it is, then we can insert // stores along paths which originally didn't have them without violating the // memory model. if (!SafeToInsertStore) { if (IsKnownThreadLocalObject) SafeToInsertStore = true; else { Value *Object = GetUnderlyingObject(SomePtr, MDL); SafeToInsertStore = (isAllocLikeFn(Object, TLI) || isa(Object)) && !PointerMayBeCaptured(Object, true, true); } } // If we've still failed to prove we can sink the store, give up. if (!SafeToInsertStore) return false; // Otherwise, this is safe to promote, lets do it! LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr << '\n'); ORE->emit([&]() { return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", LoopUses[0]) << "Moving accesses to memory location out of the loop"; }); ++NumPromoted; // Grab a debug location for the inserted loads/stores; given that the // inserted loads/stores have little relation to the original loads/stores, // this code just arbitrarily picks a location from one, since any debug // location is better than none. DebugLoc DL = LoopUses[0]->getDebugLoc(); // We use the SSAUpdater interface to insert phi nodes as required. SmallVector NewPHIs; SSAUpdater SSA(&NewPHIs); LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, InsertPts, PIC, *CurAST, *LI, DL, Alignment, SawUnorderedAtomic, AATags, *SafetyInfo); // Set up the preheader to have a definition of the value. It is the live-out // value from the preheader that uses in the loop will use. LoadInst *PreheaderLoad = new LoadInst( SomePtr, SomePtr->getName() + ".promoted", Preheader->getTerminator()); if (SawUnorderedAtomic) PreheaderLoad->setOrdering(AtomicOrdering::Unordered); PreheaderLoad->setAlignment(Alignment); PreheaderLoad->setDebugLoc(DL); if (AATags) PreheaderLoad->setAAMetadata(AATags); SSA.AddAvailableValue(Preheader, PreheaderLoad); // Rewrite all the loads in the loop and remember all the definitions from // stores in the loop. Promoter.run(LoopUses); // If the SSAUpdater didn't use the load in the preheader, just zap it now. if (PreheaderLoad->use_empty()) eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST); return true; } /// Returns an owning pointer to an alias set which incorporates aliasing info /// from L and all subloops of L. /// FIXME: In new pass manager, there is no helper function to handle loop /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed /// from scratch for every loop. Hook up with the helper functions when /// available in the new pass manager to avoid redundant computation. std::unique_ptr LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA) { std::unique_ptr CurAST; SmallVector RecomputeLoops; for (Loop *InnerL : L->getSubLoops()) { auto MapI = LoopToAliasSetMap.find(InnerL); // If the AST for this inner loop is missing it may have been merged into // some other loop's AST and then that loop unrolled, and so we need to // recompute it. if (MapI == LoopToAliasSetMap.end()) { RecomputeLoops.push_back(InnerL); continue; } std::unique_ptr InnerAST = std::move(MapI->second); if (CurAST) { // What if InnerLoop was modified by other passes ? // Once we've incorporated the inner loop's AST into ours, we don't need // the subloop's anymore. CurAST->add(*InnerAST); } else { CurAST = std::move(InnerAST); } LoopToAliasSetMap.erase(MapI); } if (!CurAST) CurAST = make_unique(*AA); // Add everything from the sub loops that are no longer directly available. for (Loop *InnerL : RecomputeLoops) for (BasicBlock *BB : InnerL->blocks()) CurAST->add(*BB); // And merge in this loop (without anything from inner loops). for (BasicBlock *BB : L->blocks()) if (LI->getLoopFor(BB) == L) CurAST->add(*BB); return CurAST; } /// Simple analysis hook. Clone alias set info. /// void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) { auto ASTIt = LICM.getLoopToAliasSetMap().find(L); if (ASTIt == LICM.getLoopToAliasSetMap().end()) return; ASTIt->second->copyValue(From, To); } /// Simple Analysis hook. Delete value V from alias set /// void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) { auto ASTIt = LICM.getLoopToAliasSetMap().find(L); if (ASTIt == LICM.getLoopToAliasSetMap().end()) return; ASTIt->second->deleteValue(V); } /// Simple Analysis hook. Delete value L from alias set map. /// void LegacyLICMPass::deleteAnalysisLoop(Loop *L) { if (!LICM.getLoopToAliasSetMap().count(L)) return; LICM.getLoopToAliasSetMap().erase(L); } static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, AliasSetTracker *CurAST, Loop *CurLoop, AliasAnalysis *AA) { // First check to see if any of the basic blocks in CurLoop invalidate *V. bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod(); if (!isInvalidatedAccordingToAST || !LICMN2Theshold) return isInvalidatedAccordingToAST; // Check with a diagnostic analysis if we can refine the information above. // This is to identify the limitations of using the AST. // The alias set mechanism used by LICM has a major weakness in that it // combines all things which may alias into a single set *before* asking // modref questions. As a result, a single readonly call within a loop will // collapse all loads and stores into a single alias set and report // invalidation if the loop contains any store. For example, readonly calls // with deopt states have this form and create a general alias set with all // loads and stores. In order to get any LICM in loops containing possible // deopt states we need a more precise invalidation of checking the mod ref // info of each instruction within the loop and LI. This has a complexity of // O(N^2), so currently, it is used only as a diagnostic tool since the // default value of LICMN2Threshold is zero. // Don't look at nested loops. if (CurLoop->begin() != CurLoop->end()) return true; int N = 0; for (BasicBlock *BB : CurLoop->getBlocks()) for (Instruction &I : *BB) { if (N >= LICMN2Theshold) { LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for " << *(MemLoc.Ptr) << "\n"); return true; } N++; auto Res = AA->getModRefInfo(&I, MemLoc); if (isModSet(Res)) { LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for " << *(MemLoc.Ptr) << "\n"); return true; } } LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n"); return false; } /// Little predicate that returns true if the specified basic block is in /// a subloop of the current one, not the current one itself. /// static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); return LI->getLoopFor(BB) != CurLoop; }