//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declarations for the subclasses of Constant, which // represent the different flavors of constant values that live in LLVM. Note // that Constants are immutable (once created they never change) and are fully // shared by structural equivalence. This means that two structurally // equivalent constants will always have the same address. Constant's are // created on demand as needed and never deleted: thus clients don't have to // worry about the lifetime of the objects. // //===----------------------------------------------------------------------===// #ifndef LLVM_CONSTANTS_H #define LLVM_CONSTANTS_H #include "llvm/Constant.h" #include "llvm/Type.h" namespace llvm { class ArrayType; class StructType; class PointerType; class PackedType; template struct ConstantCreator; template struct ConvertConstantType; //===----------------------------------------------------------------------===// /// ConstantIntegral - Shared superclass of boolean and integer constants. /// /// This class just defines some common interfaces to be implemented. /// class ConstantIntegral : public Constant { protected: union { int64_t Signed; uint64_t Unsigned; } Val; ConstantIntegral(const Type *Ty, ValueTy VT, uint64_t V); public: /// getRawValue - return the underlying value of this constant as a 64-bit /// unsigned integer value. /// inline uint64_t getRawValue() const { return Val.Unsigned; } /// getZExtValue - Return the constant zero extended as appropriate for this /// type. inline uint64_t getZExtValue() const { unsigned Size = getType()->getPrimitiveSizeInBits(); return Val.Unsigned & (~uint64_t(0UL) >> (64-Size)); } /// getSExtValue - Return the constant sign extended as appropriate for this /// type. inline int64_t getSExtValue() const { unsigned Size = getType()->getPrimitiveSizeInBits(); return (Val.Signed << (64-Size)) >> (64-Size); } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. /// virtual bool isNullValue() const = 0; /// isMaxValue - Return true if this is the largest value that may be /// represented by this type. /// virtual bool isMaxValue() const = 0; /// isMinValue - Return true if this is the smallest value that may be /// represented by this type. /// virtual bool isMinValue() const = 0; /// isAllOnesValue - Return true if every bit in this constant is set to true. /// virtual bool isAllOnesValue() const = 0; /// Static constructor to get the maximum/minimum/allones constant of /// specified (integral) type... /// static ConstantIntegral *getMaxValue(const Type *Ty); static ConstantIntegral *getMinValue(const Type *Ty); static ConstantIntegral *getAllOnesValue(const Type *Ty); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantIntegral *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantBoolVal || V->getValueType() == ConstantSIntVal || V->getValueType() == ConstantUIntVal; } }; //===----------------------------------------------------------------------===// /// ConstantBool - Boolean Values /// class ConstantBool : public ConstantIntegral { ConstantBool(bool V); public: static ConstantBool *True, *False; // The True & False values /// get() - Static factory methods - Return objects of the specified value static ConstantBool *get(bool Value) { return Value ? True : False; } static ConstantBool *get(const Type *Ty, bool Value) { return get(Value); } /// inverted - Return the opposite value of the current value. inline ConstantBool *inverted() const { return (this==True) ? False : True; } /// getValue - return the boolean value of this constant. /// inline bool getValue() const { return static_cast(getRawValue()); } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. /// virtual bool isNullValue() const { return this == False; } virtual bool isMaxValue() const { return this == True; } virtual bool isMinValue() const { return this == False; } virtual bool isAllOnesValue() const { return this == True; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantBool *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantBoolVal; } }; //===----------------------------------------------------------------------===// /// ConstantInt - Superclass of ConstantSInt & ConstantUInt, to make dealing /// with integral constants easier. /// class ConstantInt : public ConstantIntegral { protected: ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT ConstantInt(const Type *Ty, ValueTy VT, uint64_t V); public: /// equalsInt - Provide a helper method that can be used to determine if the /// constant contained within is equal to a constant. This only works for /// very small values, because this is all that can be represented with all /// types. /// bool equalsInt(unsigned char V) const { assert(V <= 127 && "equalsInt: Can only be used with very small positive constants!"); return Val.Unsigned == V; } /// ConstantInt::get static method: return a ConstantInt with the specified /// value. as above, we work only with very small values here. /// static ConstantInt *get(const Type *Ty, unsigned char V); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return Val.Unsigned == 0; } virtual bool isMaxValue() const = 0; virtual bool isMinValue() const = 0; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantInt *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantSIntVal || V->getValueType() == ConstantUIntVal; } }; //===----------------------------------------------------------------------===// /// ConstantSInt - Signed Integer Values [sbyte, short, int, long] /// class ConstantSInt : public ConstantInt { ConstantSInt(const ConstantSInt &); // DO NOT IMPLEMENT friend struct ConstantCreator; protected: ConstantSInt(const Type *Ty, int64_t V); public: /// get() - Static factory methods - Return objects of the specified value /// static ConstantSInt *get(const Type *Ty, int64_t V); /// isValueValidForType - return true if Ty is big enough to represent V. /// static bool isValueValidForType(const Type *Ty, int64_t V); /// getValue - return the underlying value of this constant. /// inline int64_t getValue() const { return Val.Signed; } virtual bool isAllOnesValue() const { return getValue() == -1; } /// isMaxValue - Return true if this is the largest value that may be /// represented by this type. /// virtual bool isMaxValue() const { int64_t V = getValue(); if (V < 0) return false; // Be careful about wrap-around on 'long's ++V; return !isValueValidForType(getType(), V) || V < 0; } /// isMinValue - Return true if this is the smallest value that may be /// represented by this type. /// virtual bool isMinValue() const { int64_t V = getValue(); if (V > 0) return false; // Be careful about wrap-around on 'long's --V; return !isValueValidForType(getType(), V) || V > 0; } /// Methods for support type inquiry through isa, cast, and dyn_cast: /// static inline bool classof(const ConstantSInt *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantSIntVal; } }; //===----------------------------------------------------------------------===// /// ConstantUInt - Unsigned Integer Values [ubyte, ushort, uint, ulong] /// class ConstantUInt : public ConstantInt { ConstantUInt(const ConstantUInt &); // DO NOT IMPLEMENT friend struct ConstantCreator; protected: ConstantUInt(const Type *Ty, uint64_t V); public: /// get() - Static factory methods - Return objects of the specified value /// static ConstantUInt *get(const Type *Ty, uint64_t V); /// isValueValidForType - return true if Ty is big enough to represent V. /// static bool isValueValidForType(const Type *Ty, uint64_t V); /// getValue - return the underlying value of this constant. /// inline uint64_t getValue() const { return Val.Unsigned; } /// isMaxValue - Return true if this is the largest value that may be /// represented by this type. /// virtual bool isAllOnesValue() const; virtual bool isMaxValue() const { return isAllOnesValue(); } virtual bool isMinValue() const { return getValue() == 0; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantUInt *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantUIntVal; } }; //===----------------------------------------------------------------------===// /// ConstantFP - Floating Point Values [float, double] /// class ConstantFP : public Constant { double Val; friend struct ConstantCreator; friend struct ConstantCreator; ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT protected: ConstantFP(const Type *Ty, double V); public: /// get() - Static factory methods - Return objects of the specified value static ConstantFP *get(const Type *Ty, double V); /// isValueValidForType - return true if Ty is big enough to represent V. static bool isValueValidForType(const Type *Ty, double V); inline double getValue() const { return Val; } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. Don't depend on == for doubles to tell us it's zero, it /// considers -0.0 to be null as well as 0.0. :( virtual bool isNullValue() const; /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. bool isExactlyValue(double V) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantFP *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantFPVal; } }; //===----------------------------------------------------------------------===// /// ConstantAggregateZero - All zero aggregate value /// class ConstantAggregateZero : public Constant { friend struct ConstantCreator; ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT protected: ConstantAggregateZero(const Type *Ty) : Constant(Ty, ConstantAggregateZeroVal, 0, 0) {} public: /// get() - static factory method for creating a null aggregate. It is /// illegal to call this method with a non-aggregate type. static Constant *get(const Type *Ty); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return true; } virtual void destroyConstant(); /// Methods for support type inquiry through isa, cast, and dyn_cast: /// static bool classof(const ConstantAggregateZero *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantAggregateZeroVal; } }; //===----------------------------------------------------------------------===// /// ConstantArray - Constant Array Declarations /// class ConstantArray : public Constant { friend struct ConstantCreator >; ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT protected: ConstantArray(const ArrayType *T, const std::vector &Val); ~ConstantArray(); public: /// get() - Static factory methods - Return objects of the specified value static Constant *get(const ArrayType *T, const std::vector &); static Constant *get(const std::string &Initializer); /// getType - Specialize the getType() method to always return an ArrayType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const ArrayType *getType() const { return reinterpret_cast(Value::getType()); } /// isString - This method returns true if the array is an array of sbyte or /// ubyte, and if the elements of the array are all ConstantInt's. bool isString() const; /// getAsString - If this array is isString(), then this method converts the /// array to an std::string and returns it. Otherwise, it asserts out. /// std::string getAsString() const; /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero arrays are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantArray *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantArrayVal; } }; //===----------------------------------------------------------------------===// // ConstantStruct - Constant Struct Declarations // class ConstantStruct : public Constant { friend struct ConstantCreator >; ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT protected: ConstantStruct(const StructType *T, const std::vector &Val); ~ConstantStruct(); public: /// get() - Static factory methods - Return objects of the specified value /// static Constant *get(const StructType *T, const std::vector &V); static Constant *get(const std::vector &V); /// getType() specialization - Reduce amount of casting... /// inline const StructType *getType() const { return reinterpret_cast(Value::getType()); } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero structs are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantStruct *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantStructVal; } }; //===----------------------------------------------------------------------===// /// ConstantPacked - Constant Packed Declarations /// class ConstantPacked : public Constant { friend struct ConstantCreator >; ConstantPacked(const ConstantPacked &); // DO NOT IMPLEMENT protected: ConstantPacked(const PackedType *T, const std::vector &Val); ~ConstantPacked(); public: /// get() - Static factory methods - Return objects of the specified value static Constant *get(const PackedType *T, const std::vector &); static Constant *get(const std::vector &V); /// getType - Specialize the getType() method to always return an PackedType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const PackedType *getType() const { return reinterpret_cast(Value::getType()); } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero arrays are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantPacked *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantPackedVal; } }; //===----------------------------------------------------------------------===// /// ConstantPointerNull - a constant pointer value that points to null /// class ConstantPointerNull : public Constant { friend struct ConstantCreator; ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT protected: ConstantPointerNull(const PointerType *T) : Constant(reinterpret_cast(T), Value::ConstantPointerNullVal, 0, 0) {} public: /// get() - Static factory methods - Return objects of the specified value static ConstantPointerNull *get(const PointerType *T); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return true; } virtual void destroyConstant(); /// getType - Specialize the getType() method to always return an PointerType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const PointerType *getType() const { return reinterpret_cast(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantPointerNull *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantPointerNullVal; } }; /// ConstantExpr - a constant value that is initialized with an expression using /// other constant values. /// /// This class uses the standard Instruction opcodes to define the various /// constant expressions. The Opcode field for the ConstantExpr class is /// maintained in the Value::SubclassData field. class ConstantExpr : public Constant { friend struct ConstantCreator > >; friend struct ConvertConstantType; protected: ConstantExpr(const Type *Ty, unsigned Opcode, Use *Ops, unsigned NumOps) : Constant(Ty, ConstantExprVal, Ops, NumOps) { // Operation type (an Instruction opcode) is stored as the SubclassData. SubclassData = Opcode; } // These private methods are used by the type resolution code to create // ConstantExprs in intermediate forms. static Constant *getTy(const Type *Ty, unsigned Opcode, Constant *C1, Constant *C2); static Constant *getShiftTy(const Type *Ty, unsigned Opcode, Constant *C1, Constant *C2); static Constant *getSelectTy(const Type *Ty, Constant *C1, Constant *C2, Constant *C3); static Constant *getGetElementPtrTy(const Type *Ty, Constant *C, const std::vector &IdxList); static Constant *getExtractElementTy(const Type *Ty, Constant *Val, Constant *Idx); static Constant *getInsertElementTy(const Type *Ty, Constant *Val, Constant *Elt, Constant *Idx); static Constant *getShuffleVectorTy(const Type *Ty, Constant *V1, Constant *V2, Constant *Mask); public: // Static methods to construct a ConstantExpr of different kinds. Note that // these methods may return a object that is not an instance of the // ConstantExpr class, because they will attempt to fold the constant // expression into something simpler if possible. /// Cast constant expr /// static Constant *getCast(Constant *C, const Type *Ty); static Constant *getSignExtend(Constant *C, const Type *Ty); static Constant *getZeroExtend(Constant *C, const Type *Ty); /// Select constant expr /// static Constant *getSelect(Constant *C, Constant *V1, Constant *V2) { return getSelectTy(V1->getType(), C, V1, V2); } /// getSizeOf constant expr - computes the size of a type in a target /// independent way (Note: the return type is ULong but the object is not /// necessarily a ConstantUInt). /// static Constant *getSizeOf(const Type *Ty); /// getPtrPtrFromArrayPtr constant expr - given a pointer to a constant array, /// return a pointer to a pointer of the array element type. static Constant *getPtrPtrFromArrayPtr(Constant *C); /// ConstantExpr::get - Return a binary or shift operator constant expression, /// folding if possible. /// static Constant *get(unsigned Opcode, Constant *C1, Constant *C2); /// ConstantExpr::get* - Return some common constants without having to /// specify the full Instruction::OPCODE identifier. /// static Constant *getNeg(Constant *C); static Constant *getNot(Constant *C); static Constant *getAdd(Constant *C1, Constant *C2); static Constant *getSub(Constant *C1, Constant *C2); static Constant *getMul(Constant *C1, Constant *C2); static Constant *getDiv(Constant *C1, Constant *C2); static Constant *getRem(Constant *C1, Constant *C2); static Constant *getAnd(Constant *C1, Constant *C2); static Constant *getOr(Constant *C1, Constant *C2); static Constant *getXor(Constant *C1, Constant *C2); static Constant *getSetEQ(Constant *C1, Constant *C2); static Constant *getSetNE(Constant *C1, Constant *C2); static Constant *getSetLT(Constant *C1, Constant *C2); static Constant *getSetGT(Constant *C1, Constant *C2); static Constant *getSetLE(Constant *C1, Constant *C2); static Constant *getSetGE(Constant *C1, Constant *C2); static Constant *getShl(Constant *C1, Constant *C2); static Constant *getShr(Constant *C1, Constant *C2); static Constant *getUShr(Constant *C1, Constant *C2); // unsigned shr static Constant *getSShr(Constant *C1, Constant *C2); // signed shr /// Getelementptr form. std::vector is only accepted for convenience: /// all elements must be Constant's. /// static Constant *getGetElementPtr(Constant *C, const std::vector &IdxList); static Constant *getGetElementPtr(Constant *C, const std::vector &IdxList); static Constant *getExtractElement(Constant *Vec, Constant *Idx); static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx); static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return false; } /// getOpcode - Return the opcode at the root of this constant expression unsigned getOpcode() const { return SubclassData; } /// getOpcodeName - Return a string representation for an opcode. const char *getOpcodeName() const; virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Override methods to provide more type information... inline Constant *getOperand(unsigned i) { return cast(User::getOperand(i)); } inline Constant *getOperand(unsigned i) const { return const_cast(cast(User::getOperand(i))); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantExpr *) { return true; } static inline bool classof(const Value *V) { return V->getValueType() == ConstantExprVal; } }; //===----------------------------------------------------------------------===// /// UndefValue - 'undef' values are things that do not have specified contents. /// These are used for a variety of purposes, including global variable /// initializers and operands to instructions. 'undef' values can occur with /// any type. /// class UndefValue : public Constant { friend struct ConstantCreator; UndefValue(const UndefValue &); // DO NOT IMPLEMENT protected: UndefValue(const Type *T) : Constant(T, UndefValueVal, 0, 0) {} public: /// get() - Static factory methods - Return an 'undef' object of the specified /// type. /// static UndefValue *get(const Type *T); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UndefValue *) { return true; } static bool classof(const Value *V) { return V->getValueType() == UndefValueVal; } }; } // End llvm namespace #endif