//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------===// // // This file implements the MemorySSA class. // //===----------------------------------------------------------------===// #include "llvm/Transforms/Utils/MemorySSA.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/IteratedDominanceFrontier.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/PHITransAddr.h" #include "llvm/IR/AssemblyAnnotationWriter.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Transforms/Scalar.h" #include #define DEBUG_TYPE "memoryssa" using namespace llvm; STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups"); STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits"); STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts"); INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, true) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, true) INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", "Memory SSA Printer", false, false) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", "Memory SSA Printer", false, false) static cl::opt VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, cl::desc("Verify MemorySSA in legacy printer pass.")); namespace llvm { /// \brief An assembly annotator class to print Memory SSA information in /// comments. class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { friend class MemorySSA; const MemorySSA *MSSA; public: MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, formatted_raw_ostream &OS) { if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) OS << "; " << *MA << "\n"; } virtual void emitInstructionAnnot(const Instruction *I, formatted_raw_ostream &OS) { if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) OS << "; " << *MA << "\n"; } }; } namespace { struct UpwardsMemoryQuery { // True if our original query started off as a call bool IsCall; // The pointer location we started the query with. This will be empty if // IsCall is true. MemoryLocation StartingLoc; // This is the instruction we were querying about. const Instruction *Inst; // The MemoryAccess we actually got called with, used to test local domination const MemoryAccess *OriginalAccess; UpwardsMemoryQuery() : IsCall(false), Inst(nullptr), OriginalAccess(nullptr) {} UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { if (!IsCall) StartingLoc = MemoryLocation::get(Inst); } }; static bool instructionClobbersQuery(MemoryDef *MD, const MemoryLocation &Loc, const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { Instruction *DefMemoryInst = MD->getMemoryInst(); assert(DefMemoryInst && "Defining instruction not actually an instruction"); if (!Query.IsCall) return AA.getModRefInfo(DefMemoryInst, Loc) & MRI_Mod; ModRefInfo I = AA.getModRefInfo(DefMemoryInst, ImmutableCallSite(Query.Inst)); return I != MRI_NoModRef; } /// Cache for our caching MemorySSA walker. class WalkerCache { DenseMap Accesses; DenseMap Calls; public: MemoryAccess *lookup(const MemoryAccess *MA, const MemoryLocation &Loc, bool IsCall) const { ++NumClobberCacheLookups; MemoryAccess *R = IsCall ? Calls.lookup(MA) : Accesses.lookup({MA, Loc}); if (R) ++NumClobberCacheHits; return R; } bool insert(const MemoryAccess *MA, MemoryAccess *To, const MemoryLocation &Loc, bool IsCall) { // This is fine for Phis, since there are times where we can't optimize // them. Making a def its own clobber is never correct, though. assert((MA != To || isa(MA)) && "Something can't clobber itself!"); ++NumClobberCacheInserts; bool Inserted; if (IsCall) Inserted = Calls.insert({MA, To}).second; else Inserted = Accesses.insert({{MA, Loc}, To}).second; return Inserted; } bool remove(const MemoryAccess *MA, const MemoryLocation &Loc, bool IsCall) { return IsCall ? Calls.erase(MA) : Accesses.erase({MA, Loc}); } void clear() { Accesses.clear(); Calls.clear(); } bool contains(const MemoryAccess *MA) const { for (auto &P : Accesses) if (P.first.first == MA || P.second == MA) return true; for (auto &P : Calls) if (P.first == MA || P.second == MA) return true; return false; } }; /// Walks the defining uses of MemoryDefs. Stops after we hit something that has /// no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when comparing /// against a null def_chain_iterator, this will compare equal only after /// walking said Phi/liveOnEntry. struct def_chain_iterator : public iterator_facade_base { def_chain_iterator() : MA(nullptr) {} def_chain_iterator(MemoryAccess *MA) : MA(MA) {} MemoryAccess *operator*() const { return MA; } def_chain_iterator &operator++() { // N.B. liveOnEntry has a null defining access. if (auto *MUD = dyn_cast(MA)) MA = MUD->getDefiningAccess(); else MA = nullptr; return *this; } bool operator==(const def_chain_iterator &O) const { return MA == O.MA; } private: MemoryAccess *MA; }; static iterator_range def_chain(MemoryAccess *MA, MemoryAccess *UpTo = nullptr) { #ifdef EXPENSIVE_CHECKS assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator()) && "UpTo isn't in the def chain!"); #endif return make_range(def_chain_iterator(MA), def_chain_iterator(UpTo)); } /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing /// inbetween `Start` and `ClobberAt` can clobbers `Start`. /// /// This is meant to be as simple and self-contained as possible. Because it /// uses no cache, etc., it can be relatively expensive. /// /// \param Start The MemoryAccess that we want to walk from. /// \param ClobberAt A clobber for Start. /// \param StartLoc The MemoryLocation for Start. /// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to. /// \param Query The UpwardsMemoryQuery we used for our search. /// \param AA The AliasAnalysis we used for our search. static void LLVM_ATTRIBUTE_UNUSED checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, const MemoryLocation &StartLoc, const MemorySSA &MSSA, const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); if (MSSA.isLiveOnEntryDef(Start)) { assert(MSSA.isLiveOnEntryDef(ClobberAt) && "liveOnEntry must clobber itself"); return; } bool FoundClobber = false; DenseSet VisitedPhis; SmallVector Worklist; Worklist.emplace_back(Start, StartLoc); // Walk all paths from Start to ClobberAt, while looking for clobbers. If one // is found, complain. while (!Worklist.empty()) { MemoryAccessPair MAP = Worklist.pop_back_val(); // All we care about is that nothing from Start to ClobberAt clobbers Start. // We learn nothing from revisiting nodes. if (!VisitedPhis.insert(MAP).second) continue; for (MemoryAccess *MA : def_chain(MAP.first)) { if (MA == ClobberAt) { if (auto *MD = dyn_cast(MA)) { // instructionClobbersQuery isn't essentially free, so don't use `|=`, // since it won't let us short-circuit. // // Also, note that this can't be hoisted out of the `Worklist` loop, // since MD may only act as a clobber for 1 of N MemoryLocations. FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD) || instructionClobbersQuery(MD, MAP.second, Query, AA); } break; } // We should never hit liveOnEntry, unless it's the clobber. assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); if (auto *MD = dyn_cast(MA)) { (void)MD; assert(!instructionClobbersQuery(MD, MAP.second, Query, AA) && "Found clobber before reaching ClobberAt!"); continue; } assert(isa(MA)); Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); } } // If ClobberAt is a MemoryPhi, we can assume something above it acted as a // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. assert((isa(ClobberAt) || FoundClobber) && "ClobberAt never acted as a clobber"); } /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up /// in one class. class ClobberWalker { /// Save a few bytes by using unsigned instead of size_t. using ListIndex = unsigned; /// Represents a span of contiguous MemoryDefs, potentially ending in a /// MemoryPhi. struct DefPath { MemoryLocation Loc; // Note that, because we always walk in reverse, Last will always dominate // First. Also note that First and Last are inclusive. MemoryAccess *First; MemoryAccess *Last; // N.B. Blocker is currently basically unused. The goal is to use it to make // cache invalidation better, but we're not there yet. MemoryAccess *Blocker; Optional Previous; DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, Optional Previous) : Loc(Loc), First(First), Last(Last), Previous(Previous) {} DefPath(const MemoryLocation &Loc, MemoryAccess *Init, Optional Previous) : DefPath(Loc, Init, Init, Previous) {} }; const MemorySSA &MSSA; AliasAnalysis &AA; DominatorTree &DT; WalkerCache &WC; UpwardsMemoryQuery *Query; bool UseCache; // Phi optimization bookkeeping SmallVector Paths; DenseSet VisitedPhis; DenseMap WalkTargetCache; void setUseCache(bool Use) { UseCache = Use; } bool shouldIgnoreCache() const { // UseCache will only be false when we're debugging, or when expensive // checks are enabled. In either case, we don't care deeply about speed. return LLVM_UNLIKELY(!UseCache); } void addCacheEntry(const MemoryAccess *What, MemoryAccess *To, const MemoryLocation &Loc) const { // EXPENSIVE_CHECKS because most of these queries are redundant. #ifdef EXPENSIVE_CHECKS assert(MSSA.dominates(To, What)); #endif if (shouldIgnoreCache()) return; WC.insert(What, To, Loc, Query->IsCall); } MemoryAccess *lookupCache(const MemoryAccess *MA, const MemoryLocation &Loc) { return shouldIgnoreCache() ? nullptr : WC.lookup(MA, Loc, Query->IsCall); } void cacheDefPath(const DefPath &DN, MemoryAccess *Target) const { if (shouldIgnoreCache()) return; for (MemoryAccess *MA : def_chain(DN.First, DN.Last)) addCacheEntry(MA, Target, DN.Loc); // DefPaths only express the path we walked. So, DN.Last could either be a // thing we want to cache, or not. if (DN.Last != Target) addCacheEntry(DN.Last, Target, DN.Loc); } /// Find the nearest def or phi that `From` can legally be optimized to. /// /// FIXME: Deduplicate this with MSSA::findDominatingDef. Ideally, MSSA should /// keep track of this information for us, and allow us O(1) lookups of this /// info. MemoryAccess *getWalkTarget(const MemoryPhi *From) { assert(From->getNumOperands() && "Phi with no operands?"); BasicBlock *BB = From->getBlock(); auto At = WalkTargetCache.find(BB); if (At != WalkTargetCache.end()) return At->second; SmallVector ToCache; ToCache.push_back(BB); MemoryAccess *Result = MSSA.getLiveOnEntryDef(); DomTreeNode *Node = DT.getNode(BB); while ((Node = Node->getIDom())) { auto At = WalkTargetCache.find(BB); if (At != WalkTargetCache.end()) { Result = At->second; break; } auto *Accesses = MSSA.getBlockAccesses(Node->getBlock()); if (Accesses) { auto Iter = find_if(reverse(*Accesses), [](const MemoryAccess &MA) { return !isa(MA); }); if (Iter != Accesses->rend()) { Result = const_cast(&*Iter); break; } } ToCache.push_back(Node->getBlock()); } for (const BasicBlock *BB : ToCache) WalkTargetCache.insert({BB, Result}); return Result; } /// Result of calling walkToPhiOrClobber. struct UpwardsWalkResult { /// The "Result" of the walk. Either a clobber, the last thing we walked, or /// both. MemoryAccess *Result; bool IsKnownClobber; bool FromCache; }; /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. /// This will update Desc.Last as it walks. It will (optionally) also stop at /// StopAt. /// /// This does not test for whether StopAt is a clobber UpwardsWalkResult walkToPhiOrClobber(DefPath &Desc, MemoryAccess *StopAt = nullptr) { assert(!isa(Desc.Last) && "Uses don't exist in my world"); for (MemoryAccess *Current : def_chain(Desc.Last)) { Desc.Last = Current; if (Current == StopAt) return {Current, false, false}; if (auto *MD = dyn_cast(Current)) if (MSSA.isLiveOnEntryDef(MD) || instructionClobbersQuery(MD, Desc.Loc, *Query, AA)) return {MD, true, false}; // Cache checks must be done last, because if Current is a clobber, the // cache will contain the clobber for Current. if (MemoryAccess *MA = lookupCache(Current, Desc.Loc)) return {MA, true, true}; } assert(isa(Desc.Last) && "Ended at a non-clobber that's not a phi?"); return {Desc.Last, false, false}; } void addSearches(MemoryPhi *Phi, SmallVectorImpl &PausedSearches, ListIndex PriorNode) { auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), upward_defs_end()); for (const MemoryAccessPair &P : UpwardDefs) { PausedSearches.push_back(Paths.size()); Paths.emplace_back(P.second, P.first, PriorNode); } } /// Represents a search that terminated after finding a clobber. This clobber /// may or may not be present in the path of defs from LastNode..SearchStart, /// since it may have been retrieved from cache. struct TerminatedPath { MemoryAccess *Clobber; ListIndex LastNode; }; /// Get an access that keeps us from optimizing to the given phi. /// /// PausedSearches is an array of indices into the Paths array. Its incoming /// value is the indices of searches that stopped at the last phi optimization /// target. It's left in an unspecified state. /// /// If this returns None, NewPaused is a vector of searches that terminated /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. Optional getBlockingAccess(MemoryAccess *StopWhere, SmallVectorImpl &PausedSearches, SmallVectorImpl &NewPaused, SmallVectorImpl &Terminated) { assert(!PausedSearches.empty() && "No searches to continue?"); // BFS vs DFS really doesn't make a difference here, so just do a DFS with // PausedSearches as our stack. while (!PausedSearches.empty()) { ListIndex PathIndex = PausedSearches.pop_back_val(); DefPath &Node = Paths[PathIndex]; // If we've already visited this path with this MemoryLocation, we don't // need to do so again. // // NOTE: That we just drop these paths on the ground makes caching // behavior sporadic. e.g. given a diamond: // A // B C // D // // ...If we walk D, B, A, C, we'll only cache the result of phi // optimization for A, B, and D; C will be skipped because it dies here. // This arguably isn't the worst thing ever, since: // - We generally query things in a top-down order, so if we got below D // without needing cache entries for {C, MemLoc}, then chances are // that those cache entries would end up ultimately unused. // - We still cache things for A, so C only needs to walk up a bit. // If this behavior becomes problematic, we can fix without a ton of extra // work. if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) continue; UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); if (Res.IsKnownClobber) { assert(Res.Result != StopWhere || Res.FromCache); // If this wasn't a cache hit, we hit a clobber when walking. That's a // failure. if (!Res.FromCache || !MSSA.dominates(Res.Result, StopWhere)) return PathIndex; // Otherwise, it's a valid thing to potentially optimize to. Terminated.push_back({Res.Result, PathIndex}); continue; } if (Res.Result == StopWhere) { // We've hit our target. Save this path off for if we want to continue // walking. NewPaused.push_back(PathIndex); continue; } assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); addSearches(cast(Res.Result), PausedSearches, PathIndex); } return None; } template struct generic_def_path_iterator : public iterator_facade_base, std::forward_iterator_tag, T *> { generic_def_path_iterator() : W(nullptr), N(None) {} generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} T &operator*() const { return curNode(); } generic_def_path_iterator &operator++() { N = curNode().Previous; return *this; } bool operator==(const generic_def_path_iterator &O) const { if (N.hasValue() != O.N.hasValue()) return false; return !N.hasValue() || *N == *O.N; } private: T &curNode() const { return W->Paths[*N]; } Walker *W; Optional N; }; using def_path_iterator = generic_def_path_iterator; using const_def_path_iterator = generic_def_path_iterator; iterator_range def_path(ListIndex From) { return make_range(def_path_iterator(this, From), def_path_iterator()); } iterator_range const_def_path(ListIndex From) const { return make_range(const_def_path_iterator(this, From), const_def_path_iterator()); } struct OptznResult { /// The path that contains our result. TerminatedPath PrimaryClobber; /// The paths that we can legally cache back from, but that aren't /// necessarily the result of the Phi optimization. SmallVector OtherClobbers; }; ListIndex defPathIndex(const DefPath &N) const { // The assert looks nicer if we don't need to do &N const DefPath *NP = &N; assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && "Out of bounds DefPath!"); return NP - &Paths.front(); } /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths /// that act as legal clobbers. Note that this won't return *all* clobbers. /// /// Phi optimization algorithm tl;dr: /// - Find the earliest def/phi, A, we can optimize to /// - Find if all paths from the starting memory access ultimately reach A /// - If not, optimization isn't possible. /// - Otherwise, walk from A to another clobber or phi, A'. /// - If A' is a def, we're done. /// - If A' is a phi, try to optimize it. /// /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, const MemoryLocation &Loc) { assert(Paths.empty() && VisitedPhis.empty() && "Reset the optimization state."); Paths.emplace_back(Loc, Start, Phi, None); // Stores how many "valid" optimization nodes we had prior to calling // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. auto PriorPathsSize = Paths.size(); SmallVector PausedSearches; SmallVector NewPaused; SmallVector TerminatedPaths; addSearches(Phi, PausedSearches, 0); // Moves the TerminatedPath with the "most dominated" Clobber to the end of // Paths. auto MoveDominatedPathToEnd = [&](SmallVectorImpl &Paths) { assert(!Paths.empty() && "Need a path to move"); auto Dom = Paths.begin(); for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) if (!MSSA.dominates(I->Clobber, Dom->Clobber)) Dom = I; auto Last = Paths.end() - 1; if (Last != Dom) std::iter_swap(Last, Dom); }; MemoryPhi *Current = Phi; while (1) { assert(!MSSA.isLiveOnEntryDef(Current) && "liveOnEntry wasn't treated as a clobber?"); MemoryAccess *Target = getWalkTarget(Current); // If a TerminatedPath doesn't dominate Target, then it wasn't a legal // optimization for the prior phi. assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { return MSSA.dominates(P.Clobber, Target); })); // FIXME: This is broken, because the Blocker may be reported to be // liveOnEntry, and we'll happily wait for that to disappear (read: never) // For the moment, this is fine, since we do basically nothing with // blocker info. if (Optional Blocker = getBlockingAccess( Target, PausedSearches, NewPaused, TerminatedPaths)) { MemoryAccess *BlockingAccess = Paths[*Blocker].Last; // Cache our work on the blocking node, since we know that's correct. cacheDefPath(Paths[*Blocker], BlockingAccess); // Find the node we started at. We can't search based on N->Last, since // we may have gone around a loop with a different MemoryLocation. auto Iter = find_if(def_path(*Blocker), [&](const DefPath &N) { return defPathIndex(N) < PriorPathsSize; }); assert(Iter != def_path_iterator()); DefPath &CurNode = *Iter; assert(CurNode.Last == Current); CurNode.Blocker = BlockingAccess; // Two things: // A. We can't reliably cache all of NewPaused back. Consider a case // where we have two paths in NewPaused; one of which can't optimize // above this phi, whereas the other can. If we cache the second path // back, we'll end up with suboptimal cache entries. We can handle // cases like this a bit better when we either try to find all // clobbers that block phi optimization, or when our cache starts // supporting unfinished searches. // B. We can't reliably cache TerminatedPaths back here without doing // extra checks; consider a case like: // T // / \ // D C // \ / // S // Where T is our target, C is a node with a clobber on it, D is a // diamond (with a clobber *only* on the left or right node, N), and // S is our start. Say we walk to D, through the node opposite N // (read: ignoring the clobber), and see a cache entry in the top // node of D. That cache entry gets put into TerminatedPaths. We then // walk up to C (N is later in our worklist), find the clobber, and // quit. If we append TerminatedPaths to OtherClobbers, we'll cache // the bottom part of D to the cached clobber, ignoring the clobber // in N. Again, this problem goes away if we start tracking all // blockers for a given phi optimization. TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; return {Result, {}}; } // If there's nothing left to search, then all paths led to valid clobbers // that we got from our cache; pick the nearest to the start, and allow // the rest to be cached back. if (NewPaused.empty()) { MoveDominatedPathToEnd(TerminatedPaths); TerminatedPath Result = TerminatedPaths.pop_back_val(); return {Result, std::move(TerminatedPaths)}; } MemoryAccess *DefChainEnd = nullptr; SmallVector Clobbers; for (ListIndex Paused : NewPaused) { UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); if (WR.IsKnownClobber) Clobbers.push_back({WR.Result, Paused}); else // Micro-opt: If we hit the end of the chain, save it. DefChainEnd = WR.Result; } if (!TerminatedPaths.empty()) { // If we couldn't find the dominating phi/liveOnEntry in the above loop, // do it now. if (!DefChainEnd) for (MemoryAccess *MA : def_chain(Target)) DefChainEnd = MA; // If any of the terminated paths don't dominate the phi we'll try to // optimize, we need to figure out what they are and quit. const BasicBlock *ChainBB = DefChainEnd->getBlock(); for (const TerminatedPath &TP : TerminatedPaths) { // Because we know that DefChainEnd is as "high" as we can go, we // don't need local dominance checks; BB dominance is sufficient. if (DT.dominates(ChainBB, TP.Clobber->getBlock())) Clobbers.push_back(TP); } } // If we have clobbers in the def chain, find the one closest to Current // and quit. if (!Clobbers.empty()) { MoveDominatedPathToEnd(Clobbers); TerminatedPath Result = Clobbers.pop_back_val(); return {Result, std::move(Clobbers)}; } assert(all_of(NewPaused, [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); // Because liveOnEntry is a clobber, this must be a phi. auto *DefChainPhi = cast(DefChainEnd); PriorPathsSize = Paths.size(); PausedSearches.clear(); for (ListIndex I : NewPaused) addSearches(DefChainPhi, PausedSearches, I); NewPaused.clear(); Current = DefChainPhi; } } /// Caches everything in an OptznResult. void cacheOptResult(const OptznResult &R) { if (R.OtherClobbers.empty()) { // If we're not going to be caching OtherClobbers, don't bother with // marking visited/etc. for (const DefPath &N : const_def_path(R.PrimaryClobber.LastNode)) cacheDefPath(N, R.PrimaryClobber.Clobber); return; } // PrimaryClobber is our answer. If we can cache anything back, we need to // stop caching when we visit PrimaryClobber. SmallBitVector Visited(Paths.size()); for (const DefPath &N : const_def_path(R.PrimaryClobber.LastNode)) { Visited[defPathIndex(N)] = true; cacheDefPath(N, R.PrimaryClobber.Clobber); } for (const TerminatedPath &P : R.OtherClobbers) { for (const DefPath &N : const_def_path(P.LastNode)) { ListIndex NIndex = defPathIndex(N); if (Visited[NIndex]) break; Visited[NIndex] = true; cacheDefPath(N, P.Clobber); } } } void verifyOptResult(const OptznResult &R) const { assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); })); } void resetPhiOptznState() { Paths.clear(); VisitedPhis.clear(); } public: ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT, WalkerCache &WC) : MSSA(MSSA), AA(AA), DT(DT), WC(WC), UseCache(true) {} void reset() { WalkTargetCache.clear(); } /// Finds the nearest clobber for the given query, optimizing phis if /// possible. MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, bool UseWalkerCache = true) { setUseCache(UseWalkerCache); Query = &Q; MemoryAccess *Current = Start; // This walker pretends uses don't exist. If we're handed one, silently grab // its def. (This has the nice side-effect of ensuring we never cache uses) if (auto *MU = dyn_cast(Start)) Current = MU->getDefiningAccess(); DefPath FirstDesc(Q.StartingLoc, Current, Current, None); // Fast path for the overly-common case (no crazy phi optimization // necessary) UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); MemoryAccess *Result; if (WalkResult.IsKnownClobber) { cacheDefPath(FirstDesc, WalkResult.Result); Result = WalkResult.Result; } else { OptznResult OptRes = tryOptimizePhi(cast(FirstDesc.Last), Current, Q.StartingLoc); verifyOptResult(OptRes); cacheOptResult(OptRes); resetPhiOptznState(); Result = OptRes.PrimaryClobber.Clobber; } #ifdef EXPENSIVE_CHECKS checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); #endif return Result; } }; struct RenamePassData { DomTreeNode *DTN; DomTreeNode::const_iterator ChildIt; MemoryAccess *IncomingVal; RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, MemoryAccess *M) : DTN(D), ChildIt(It), IncomingVal(M) {} void swap(RenamePassData &RHS) { std::swap(DTN, RHS.DTN); std::swap(ChildIt, RHS.ChildIt); std::swap(IncomingVal, RHS.IncomingVal); } }; } // anonymous namespace namespace llvm { /// \brief A MemorySSAWalker that does AA walks and caching of lookups to /// disambiguate accesses. /// /// FIXME: The current implementation of this can take quadratic space in rare /// cases. This can be fixed, but it is something to note until it is fixed. /// /// In order to trigger this behavior, you need to store to N distinct locations /// (that AA can prove don't alias), perform M stores to other memory /// locations that AA can prove don't alias any of the initial N locations, and /// then load from all of the N locations. In this case, we insert M cache /// entries for each of the N loads. /// /// For example: /// define i32 @foo() { /// %a = alloca i32, align 4 /// %b = alloca i32, align 4 /// store i32 0, i32* %a, align 4 /// store i32 0, i32* %b, align 4 /// /// ; Insert M stores to other memory that doesn't alias %a or %b here /// /// %c = load i32, i32* %a, align 4 ; Caches M entries in /// ; CachedUpwardsClobberingAccess for the /// ; MemoryLocation %a /// %d = load i32, i32* %b, align 4 ; Caches M entries in /// ; CachedUpwardsClobberingAccess for the /// ; MemoryLocation %b /// /// ; For completeness' sake, loading %a or %b again would not cache *another* /// ; M entries. /// %r = add i32 %c, %d /// ret i32 %r /// } class MemorySSA::CachingWalker final : public MemorySSAWalker { WalkerCache Cache; ClobberWalker Walker; bool AutoResetWalker; MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); void verifyRemoved(MemoryAccess *); public: CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); ~CachingWalker() override; using MemorySSAWalker::getClobberingMemoryAccess; MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, MemoryLocation &) override; void invalidateInfo(MemoryAccess *) override; /// Whether we call resetClobberWalker() after each time we *actually* walk to /// answer a clobber query. void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; } /// Drop the walker's persistent data structures. At the moment, this means /// "drop the walker's cache of BasicBlocks -> /// earliest-MemoryAccess-we-can-optimize-to". This is necessary if we're /// going to have DT updates, if we remove MemoryAccesses, etc. void resetClobberWalker() { Walker.reset(); } }; /// \brief Rename a single basic block into MemorySSA form. /// Uses the standard SSA renaming algorithm. /// \returns The new incoming value. MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal) { auto It = PerBlockAccesses.find(BB); // Skip most processing if the list is empty. if (It != PerBlockAccesses.end()) { AccessList *Accesses = It->second.get(); for (MemoryAccess &L : *Accesses) { switch (L.getValueID()) { case Value::MemoryUseVal: cast(&L)->setDefiningAccess(IncomingVal); break; case Value::MemoryDefVal: // We can't legally optimize defs, because we only allow single // memory phis/uses on operations, and if we optimize these, we can // end up with multiple reaching defs. Uses do not have this // problem, since they do not produce a value cast(&L)->setDefiningAccess(IncomingVal); IncomingVal = &L; break; case Value::MemoryPhiVal: IncomingVal = &L; break; } } } // Pass through values to our successors for (const BasicBlock *S : successors(BB)) { auto It = PerBlockAccesses.find(S); // Rename the phi nodes in our successor block if (It == PerBlockAccesses.end() || !isa(It->second->front())) continue; AccessList *Accesses = It->second.get(); auto *Phi = cast(&Accesses->front()); Phi->addIncoming(IncomingVal, BB); } return IncomingVal; } /// \brief This is the standard SSA renaming algorithm. /// /// We walk the dominator tree in preorder, renaming accesses, and then filling /// in phi nodes in our successors. void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, SmallPtrSet &Visited) { SmallVector WorkStack; IncomingVal = renameBlock(Root->getBlock(), IncomingVal); WorkStack.push_back({Root, Root->begin(), IncomingVal}); Visited.insert(Root->getBlock()); while (!WorkStack.empty()) { DomTreeNode *Node = WorkStack.back().DTN; DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; IncomingVal = WorkStack.back().IncomingVal; if (ChildIt == Node->end()) { WorkStack.pop_back(); } else { DomTreeNode *Child = *ChildIt; ++WorkStack.back().ChildIt; BasicBlock *BB = Child->getBlock(); Visited.insert(BB); IncomingVal = renameBlock(BB, IncomingVal); WorkStack.push_back({Child, Child->begin(), IncomingVal}); } } } /// \brief Compute dominator levels, used by the phi insertion algorithm above. void MemorySSA::computeDomLevels(DenseMap &DomLevels) { for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode()); DFI != DFE; ++DFI) DomLevels[*DFI] = DFI.getPathLength() - 1; } /// \brief This handles unreachable block accesses by deleting phi nodes in /// unreachable blocks, and marking all other unreachable MemoryAccess's as /// being uses of the live on entry definition. void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { assert(!DT->isReachableFromEntry(BB) && "Reachable block found while handling unreachable blocks"); // Make sure phi nodes in our reachable successors end up with a // LiveOnEntryDef for our incoming edge, even though our block is forward // unreachable. We could just disconnect these blocks from the CFG fully, // but we do not right now. for (const BasicBlock *S : successors(BB)) { if (!DT->isReachableFromEntry(S)) continue; auto It = PerBlockAccesses.find(S); // Rename the phi nodes in our successor block if (It == PerBlockAccesses.end() || !isa(It->second->front())) continue; AccessList *Accesses = It->second.get(); auto *Phi = cast(&Accesses->front()); Phi->addIncoming(LiveOnEntryDef.get(), BB); } auto It = PerBlockAccesses.find(BB); if (It == PerBlockAccesses.end()) return; auto &Accesses = It->second; for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { auto Next = std::next(AI); // If we have a phi, just remove it. We are going to replace all // users with live on entry. if (auto *UseOrDef = dyn_cast(AI)) UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); else Accesses->erase(AI); AI = Next; } } MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), NextID(0) { buildMemorySSA(); } MemorySSA::MemorySSA(MemorySSA &&MSSA) : AA(MSSA.AA), DT(MSSA.DT), F(MSSA.F), ValueToMemoryAccess(std::move(MSSA.ValueToMemoryAccess)), PerBlockAccesses(std::move(MSSA.PerBlockAccesses)), LiveOnEntryDef(std::move(MSSA.LiveOnEntryDef)), Walker(std::move(MSSA.Walker)), NextID(MSSA.NextID) { // Update the Walker MSSA pointer so it doesn't point to the moved-from MSSA // object any more. Walker->MSSA = this; } MemorySSA::~MemorySSA() { // Drop all our references for (const auto &Pair : PerBlockAccesses) for (MemoryAccess &MA : *Pair.second) MA.dropAllReferences(); } MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); if (Res.second) Res.first->second = make_unique(); return Res.first->second.get(); } void MemorySSA::buildMemorySSA() { // We create an access to represent "live on entry", for things like // arguments or users of globals, where the memory they use is defined before // the beginning of the function. We do not actually insert it into the IR. // We do not define a live on exit for the immediate uses, and thus our // semantics do *not* imply that something with no immediate uses can simply // be removed. BasicBlock &StartingPoint = F.getEntryBlock(); LiveOnEntryDef = make_unique(F.getContext(), nullptr, nullptr, &StartingPoint, NextID++); // We maintain lists of memory accesses per-block, trading memory for time. We // could just look up the memory access for every possible instruction in the // stream. SmallPtrSet DefiningBlocks; SmallPtrSet DefUseBlocks; // Go through each block, figure out where defs occur, and chain together all // the accesses. for (BasicBlock &B : F) { bool InsertIntoDef = false; AccessList *Accesses = nullptr; for (Instruction &I : B) { MemoryUseOrDef *MUD = createNewAccess(&I); if (!MUD) continue; InsertIntoDef |= isa(MUD); if (!Accesses) Accesses = getOrCreateAccessList(&B); Accesses->push_back(MUD); } if (InsertIntoDef) DefiningBlocks.insert(&B); if (Accesses) DefUseBlocks.insert(&B); } // Compute live-in. // Live in is normally defined as "all the blocks on the path from each def to // each of it's uses". // MemoryDef's are implicit uses of previous state, so they are also uses. // This means we don't really have def-only instructions. The only // MemoryDef's that are not really uses are those that are of the LiveOnEntry // variable (because LiveOnEntry can reach anywhere, and every def is a // must-kill of LiveOnEntry). // In theory, you could precisely compute live-in by using alias-analysis to // disambiguate defs and uses to see which really pair up with which. // In practice, this would be really expensive and difficult. So we simply // assume all defs are also uses that need to be kept live. // Because of this, the end result of this live-in computation will be "the // entire set of basic blocks that reach any use". SmallPtrSet LiveInBlocks; SmallVector LiveInBlockWorklist(DefUseBlocks.begin(), DefUseBlocks.end()); // Now that we have a set of blocks where a value is live-in, recursively add // predecessors until we find the full region the value is live. while (!LiveInBlockWorklist.empty()) { BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); // The block really is live in here, insert it into the set. If already in // the set, then it has already been processed. if (!LiveInBlocks.insert(BB).second) continue; // Since the value is live into BB, it is either defined in a predecessor or // live into it to. LiveInBlockWorklist.append(pred_begin(BB), pred_end(BB)); } // Determine where our MemoryPhi's should go ForwardIDFCalculator IDFs(*DT); IDFs.setDefiningBlocks(DefiningBlocks); IDFs.setLiveInBlocks(LiveInBlocks); SmallVector IDFBlocks; IDFs.calculate(IDFBlocks); // Now place MemoryPhi nodes. for (auto &BB : IDFBlocks) { // Insert phi node AccessList *Accesses = getOrCreateAccessList(BB); MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); ValueToMemoryAccess[BB] = Phi; // Phi's always are placed at the front of the block. Accesses->push_front(Phi); } // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get // filled in with all blocks. SmallPtrSet Visited; renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); CachingWalker *Walker = getWalkerImpl(); // We're doing a batch of updates; don't drop useful caches between them. Walker->setAutoResetWalker(false); // Now optimize the MemoryUse's defining access to point to the nearest // dominating clobbering def. // This ensures that MemoryUse's that are killed by the same store are // immediate users of that store, one of the invariants we guarantee. for (auto DomNode : depth_first(DT)) { BasicBlock *BB = DomNode->getBlock(); auto AI = PerBlockAccesses.find(BB); if (AI == PerBlockAccesses.end()) continue; AccessList *Accesses = AI->second.get(); for (auto &MA : *Accesses) { if (auto *MU = dyn_cast(&MA)) { Instruction *Inst = MU->getMemoryInst(); MU->setDefiningAccess(Walker->getClobberingMemoryAccess(Inst)); } } } Walker->setAutoResetWalker(true); Walker->resetClobberWalker(); // Mark the uses in unreachable blocks as live on entry, so that they go // somewhere. for (auto &BB : F) if (!Visited.count(&BB)) markUnreachableAsLiveOnEntry(&BB); } MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { if (Walker) return Walker.get(); Walker = make_unique(this, AA, DT); return Walker.get(); } MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); AccessList *Accesses = getOrCreateAccessList(BB); MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); ValueToMemoryAccess[BB] = Phi; // Phi's always are placed at the front of the block. Accesses->push_front(Phi); BlockNumberingValid.erase(BB); return Phi; } MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, MemoryAccess *Definition) { assert(!isa(I) && "Cannot create a defined access for a PHI"); MemoryUseOrDef *NewAccess = createNewAccess(I); assert( NewAccess != nullptr && "Tried to create a memory access for a non-memory touching instruction"); NewAccess->setDefiningAccess(Definition); return NewAccess; } MemoryAccess *MemorySSA::createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, InsertionPlace Point) { MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); auto *Accesses = getOrCreateAccessList(BB); if (Point == Beginning) { // It goes after any phi nodes auto AI = std::find_if( Accesses->begin(), Accesses->end(), [](const MemoryAccess &MA) { return !isa(MA); }); Accesses->insert(AI, NewAccess); } else { Accesses->push_back(NewAccess); } BlockNumberingValid.erase(BB); return NewAccess; } MemoryAccess *MemorySSA::createMemoryAccessBefore(Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { assert(I->getParent() == InsertPt->getBlock() && "New and old access must be in the same block"); MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); auto *Accesses = getOrCreateAccessList(InsertPt->getBlock()); Accesses->insert(AccessList::iterator(InsertPt), NewAccess); BlockNumberingValid.erase(InsertPt->getBlock()); return NewAccess; } MemoryAccess *MemorySSA::createMemoryAccessAfter(Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { assert(I->getParent() == InsertPt->getBlock() && "New and old access must be in the same block"); MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); auto *Accesses = getOrCreateAccessList(InsertPt->getBlock()); Accesses->insertAfter(AccessList::iterator(InsertPt), NewAccess); BlockNumberingValid.erase(InsertPt->getBlock()); return NewAccess; } /// \brief Helper function to create new memory accesses MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { // The assume intrinsic has a control dependency which we model by claiming // that it writes arbitrarily. Ignore that fake memory dependency here. // FIXME: Replace this special casing with a more accurate modelling of // assume's control dependency. if (IntrinsicInst *II = dyn_cast(I)) if (II->getIntrinsicID() == Intrinsic::assume) return nullptr; // Find out what affect this instruction has on memory. ModRefInfo ModRef = AA->getModRefInfo(I); bool Def = bool(ModRef & MRI_Mod); bool Use = bool(ModRef & MRI_Ref); // It's possible for an instruction to not modify memory at all. During // construction, we ignore them. if (!Def && !Use) return nullptr; assert((Def || Use) && "Trying to create a memory access with a non-memory instruction"); MemoryUseOrDef *MUD; if (Def) MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); else MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); ValueToMemoryAccess[I] = MUD; return MUD; } MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock, enum InsertionPlace Where) { // Handle the initial case if (Where == Beginning) // The only thing that could define us at the beginning is a phi node if (MemoryPhi *Phi = getMemoryAccess(UseBlock)) return Phi; DomTreeNode *CurrNode = DT->getNode(UseBlock); // Need to be defined by our dominator if (Where == Beginning) CurrNode = CurrNode->getIDom(); Where = End; while (CurrNode) { auto It = PerBlockAccesses.find(CurrNode->getBlock()); if (It != PerBlockAccesses.end()) { auto &Accesses = It->second; for (MemoryAccess &RA : reverse(*Accesses)) { if (isa(RA) || isa(RA)) return &RA; } } CurrNode = CurrNode->getIDom(); } return LiveOnEntryDef.get(); } /// \brief Returns true if \p Replacer dominates \p Replacee . bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, const MemoryAccess *Replacee) const { if (isa(Replacee)) return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); const auto *MP = cast(Replacee); // For a phi node, the use occurs in the predecessor block of the phi node. // Since we may occur multiple times in the phi node, we have to check each // operand to ensure Replacer dominates each operand where Replacee occurs. for (const Use &Arg : MP->operands()) { if (Arg.get() != Replacee && !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) return false; } return true; } /// \brief If all arguments of a MemoryPHI are defined by the same incoming /// argument, return that argument. static MemoryAccess *onlySingleValue(MemoryPhi *MP) { MemoryAccess *MA = nullptr; for (auto &Arg : MP->operands()) { if (!MA) MA = cast(Arg); else if (MA != Arg) return nullptr; } return MA; } /// \brief Properly remove \p MA from all of MemorySSA's lookup tables. /// /// Because of the way the intrusive list and use lists work, it is important to /// do removal in the right order. void MemorySSA::removeFromLookups(MemoryAccess *MA) { assert(MA->use_empty() && "Trying to remove memory access that still has uses"); BlockNumbering.erase(MA); if (MemoryUseOrDef *MUD = dyn_cast(MA)) MUD->setDefiningAccess(nullptr); // Invalidate our walker's cache if necessary if (!isa(MA)) Walker->invalidateInfo(MA); // The call below to erase will destroy MA, so we can't change the order we // are doing things here Value *MemoryInst; if (MemoryUseOrDef *MUD = dyn_cast(MA)) { MemoryInst = MUD->getMemoryInst(); } else { MemoryInst = MA->getBlock(); } auto VMA = ValueToMemoryAccess.find(MemoryInst); if (VMA->second == MA) ValueToMemoryAccess.erase(VMA); auto AccessIt = PerBlockAccesses.find(MA->getBlock()); std::unique_ptr &Accesses = AccessIt->second; Accesses->erase(MA); if (Accesses->empty()) PerBlockAccesses.erase(AccessIt); } void MemorySSA::removeMemoryAccess(MemoryAccess *MA) { assert(!isLiveOnEntryDef(MA) && "Trying to remove the live on entry def"); // We can only delete phi nodes if they have no uses, or we can replace all // uses with a single definition. MemoryAccess *NewDefTarget = nullptr; if (MemoryPhi *MP = dyn_cast(MA)) { // Note that it is sufficient to know that all edges of the phi node have // the same argument. If they do, by the definition of dominance frontiers // (which we used to place this phi), that argument must dominate this phi, // and thus, must dominate the phi's uses, and so we will not hit the assert // below. NewDefTarget = onlySingleValue(MP); assert((NewDefTarget || MP->use_empty()) && "We can't delete this memory phi"); } else { NewDefTarget = cast(MA)->getDefiningAccess(); } // Re-point the uses at our defining access if (!MA->use_empty()) MA->replaceAllUsesWith(NewDefTarget); // The call below to erase will destroy MA, so we can't change the order we // are doing things here removeFromLookups(MA); } void MemorySSA::print(raw_ostream &OS) const { MemorySSAAnnotatedWriter Writer(this); F.print(OS, &Writer); } void MemorySSA::dump() const { MemorySSAAnnotatedWriter Writer(this); F.print(dbgs(), &Writer); } void MemorySSA::verifyMemorySSA() const { verifyDefUses(F); verifyDomination(F); verifyOrdering(F); } /// \brief Verify that the order and existence of MemoryAccesses matches the /// order and existence of memory affecting instructions. void MemorySSA::verifyOrdering(Function &F) const { // Walk all the blocks, comparing what the lookups think and what the access // lists think, as well as the order in the blocks vs the order in the access // lists. SmallVector ActualAccesses; for (BasicBlock &B : F) { const AccessList *AL = getBlockAccesses(&B); MemoryAccess *Phi = getMemoryAccess(&B); if (Phi) ActualAccesses.push_back(Phi); for (Instruction &I : B) { MemoryAccess *MA = getMemoryAccess(&I); assert((!MA || AL) && "We have memory affecting instructions " "in this block but they are not in the " "access list"); if (MA) ActualAccesses.push_back(MA); } // Either we hit the assert, really have no accesses, or we have both // accesses and an access list if (!AL) continue; assert(AL->size() == ActualAccesses.size() && "We don't have the same number of accesses in the block as on the " "access list"); auto ALI = AL->begin(); auto AAI = ActualAccesses.begin(); while (ALI != AL->end() && AAI != ActualAccesses.end()) { assert(&*ALI == *AAI && "Not the same accesses in the same order"); ++ALI; ++AAI; } ActualAccesses.clear(); } } /// \brief Verify the domination properties of MemorySSA by checking that each /// definition dominates all of its uses. void MemorySSA::verifyDomination(Function &F) const { for (BasicBlock &B : F) { // Phi nodes are attached to basic blocks if (MemoryPhi *MP = getMemoryAccess(&B)) { for (User *U : MP->users()) { BasicBlock *UseBlock; // Phi operands are used on edges, we simulate the right domination by // acting as if the use occurred at the end of the predecessor block. if (MemoryPhi *P = dyn_cast(U)) { for (const auto &Arg : P->operands()) { if (Arg == MP) { UseBlock = P->getIncomingBlock(Arg); break; } } } else { UseBlock = cast(U)->getBlock(); } (void)UseBlock; assert(DT->dominates(MP->getBlock(), UseBlock) && "Memory PHI does not dominate it's uses"); } } for (Instruction &I : B) { MemoryAccess *MD = dyn_cast_or_null(getMemoryAccess(&I)); if (!MD) continue; for (User *U : MD->users()) { BasicBlock *UseBlock; (void)UseBlock; // Things are allowed to flow to phi nodes over their predecessor edge. if (auto *P = dyn_cast(U)) { for (const auto &Arg : P->operands()) { if (Arg == MD) { UseBlock = P->getIncomingBlock(Arg); break; } } } else { UseBlock = cast(U)->getBlock(); } assert(DT->dominates(MD->getBlock(), UseBlock) && "Memory Def does not dominate it's uses"); } } } } /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use /// appears in the use list of \p Def. /// /// llvm_unreachable is used instead of asserts because this may be called in /// a build without asserts. In that case, we don't want this to turn into a /// nop. void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { // The live on entry use may cause us to get a NULL def here if (!Def) { if (!isLiveOnEntryDef(Use)) llvm_unreachable("Null def but use not point to live on entry def"); } else if (std::find(Def->user_begin(), Def->user_end(), Use) == Def->user_end()) { llvm_unreachable("Did not find use in def's use list"); } } /// \brief Verify the immediate use information, by walking all the memory /// accesses and verifying that, for each use, it appears in the /// appropriate def's use list void MemorySSA::verifyDefUses(Function &F) const { for (BasicBlock &B : F) { // Phi nodes are attached to basic blocks if (MemoryPhi *Phi = getMemoryAccess(&B)) { assert(Phi->getNumOperands() == static_cast(std::distance( pred_begin(&B), pred_end(&B))) && "Incomplete MemoryPhi Node"); for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) verifyUseInDefs(Phi->getIncomingValue(I), Phi); } for (Instruction &I : B) { if (MemoryAccess *MA = getMemoryAccess(&I)) { assert(isa(MA) && "Found a phi node not attached to a bb"); verifyUseInDefs(cast(MA)->getDefiningAccess(), MA); } } } } MemoryAccess *MemorySSA::getMemoryAccess(const Value *I) const { return ValueToMemoryAccess.lookup(I); } MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { return cast_or_null(getMemoryAccess((const Value *)BB)); } /// Perform a local numbering on blocks so that instruction ordering can be /// determined in constant time. /// TODO: We currently just number in order. If we numbered by N, we could /// allow at least N-1 sequences of insertBefore or insertAfter (and at least /// log2(N) sequences of mixed before and after) without needing to invalidate /// the numbering. void MemorySSA::renumberBlock(const BasicBlock *B) const { // The pre-increment ensures the numbers really start at 1. unsigned long CurrentNumber = 0; const AccessList *AL = getBlockAccesses(B); assert(AL != nullptr && "Asking to renumber an empty block"); for (const auto &I : *AL) BlockNumbering[&I] = ++CurrentNumber; BlockNumberingValid.insert(B); } /// \brief Determine, for two memory accesses in the same block, /// whether \p Dominator dominates \p Dominatee. /// \returns True if \p Dominator dominates \p Dominatee. bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, const MemoryAccess *Dominatee) const { const BasicBlock *DominatorBlock = Dominator->getBlock(); assert((DominatorBlock == Dominatee->getBlock()) && "Asking for local domination when accesses are in different blocks!"); // A node dominates itself. if (Dominatee == Dominator) return true; // When Dominatee is defined on function entry, it is not dominated by another // memory access. if (isLiveOnEntryDef(Dominatee)) return false; // When Dominator is defined on function entry, it dominates the other memory // access. if (isLiveOnEntryDef(Dominator)) return true; if (!BlockNumberingValid.count(DominatorBlock)) renumberBlock(DominatorBlock); unsigned long DominatorNum = BlockNumbering.lookup(Dominator); // All numbers start with 1 assert(DominatorNum != 0 && "Block was not numbered properly"); unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); assert(DominateeNum != 0 && "Block was not numbered properly"); return DominatorNum < DominateeNum; } bool MemorySSA::dominates(const MemoryAccess *Dominator, const MemoryAccess *Dominatee) const { if (Dominator == Dominatee) return true; if (isLiveOnEntryDef(Dominatee)) return false; if (Dominator->getBlock() != Dominatee->getBlock()) return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); return locallyDominates(Dominator, Dominatee); } const static char LiveOnEntryStr[] = "liveOnEntry"; void MemoryDef::print(raw_ostream &OS) const { MemoryAccess *UO = getDefiningAccess(); OS << getID() << " = MemoryDef("; if (UO && UO->getID()) OS << UO->getID(); else OS << LiveOnEntryStr; OS << ')'; } void MemoryPhi::print(raw_ostream &OS) const { bool First = true; OS << getID() << " = MemoryPhi("; for (const auto &Op : operands()) { BasicBlock *BB = getIncomingBlock(Op); MemoryAccess *MA = cast(Op); if (!First) OS << ','; else First = false; OS << '{'; if (BB->hasName()) OS << BB->getName(); else BB->printAsOperand(OS, false); OS << ','; if (unsigned ID = MA->getID()) OS << ID; else OS << LiveOnEntryStr; OS << '}'; } OS << ')'; } MemoryAccess::~MemoryAccess() {} void MemoryUse::print(raw_ostream &OS) const { MemoryAccess *UO = getDefiningAccess(); OS << "MemoryUse("; if (UO && UO->getID()) OS << UO->getID(); else OS << LiveOnEntryStr; OS << ')'; } void MemoryAccess::dump() const { print(dbgs()); dbgs() << "\n"; } char MemorySSAPrinterLegacyPass::ID = 0; MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); } void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); AU.addPreserved(); } bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { auto &MSSA = getAnalysis().getMSSA(); MSSA.print(dbgs()); if (VerifyMemorySSA) MSSA.verifyMemorySSA(); return false; } char MemorySSAAnalysis::PassID; MemorySSA MemorySSAAnalysis::run(Function &F, AnalysisManager &AM) { auto &DT = AM.getResult(F); auto &AA = AM.getResult(F); return MemorySSA(F, &AA, &DT); } PreservedAnalyses MemorySSAPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { OS << "MemorySSA for function: " << F.getName() << "\n"; AM.getResult(F).print(OS); return PreservedAnalyses::all(); } PreservedAnalyses MemorySSAVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { AM.getResult(F).verifyMemorySSA(); return PreservedAnalyses::all(); } char MemorySSAWrapperPass::ID = 0; MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); } void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); } bool MemorySSAWrapperPass::runOnFunction(Function &F) { auto &DT = getAnalysis().getDomTree(); auto &AA = getAnalysis().getAAResults(); MSSA.reset(new MemorySSA(F, &AA, &DT)); return false; } void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { MSSA->print(OS); } MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, DominatorTree *D) : MemorySSAWalker(M), Walker(*M, *A, *D, Cache), AutoResetWalker(true) {} MemorySSA::CachingWalker::~CachingWalker() {} void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { // TODO: We can do much better cache invalidation with differently stored // caches. For now, for MemoryUses, we simply remove them // from the cache, and kill the entire call/non-call cache for everything // else. The problem is for phis or defs, currently we'd need to follow use // chains down and invalidate anything below us in the chain that currently // terminates at this access. // See if this is a MemoryUse, if so, just remove the cached info. MemoryUse // is by definition never a barrier, so nothing in the cache could point to // this use. In that case, we only need invalidate the info for the use // itself. if (MemoryUse *MU = dyn_cast(MA)) { UpwardsMemoryQuery Q(MU->getMemoryInst(), MU); Cache.remove(MU, Q.StartingLoc, Q.IsCall); } else { // If it is not a use, the best we can do right now is destroy the cache. Cache.clear(); } #ifdef EXPENSIVE_CHECKS verifyRemoved(MA); #endif } /// \brief Walk the use-def chains starting at \p MA and find /// the MemoryAccess that actually clobbers Loc. /// /// \returns our clobbering memory access MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { MemoryAccess *New = Walker.findClobber(StartingAccess, Q); #ifdef EXPENSIVE_CHECKS MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q, /*UseWalkerCache=*/false); assert(NewNoCache == New && "Cache made us hand back a different result?"); #endif if (AutoResetWalker) resetClobberWalker(); return New; } MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( MemoryAccess *StartingAccess, MemoryLocation &Loc) { if (isa(StartingAccess)) return StartingAccess; auto *StartingUseOrDef = cast(StartingAccess); if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) return StartingUseOrDef; Instruction *I = StartingUseOrDef->getMemoryInst(); // Conservatively, fences are always clobbers, so don't perform the walk if we // hit a fence. if (!ImmutableCallSite(I) && I->isFenceLike()) return StartingUseOrDef; UpwardsMemoryQuery Q; Q.OriginalAccess = StartingUseOrDef; Q.StartingLoc = Loc; Q.Inst = I; Q.IsCall = false; if (auto *CacheResult = Cache.lookup(StartingUseOrDef, Loc, Q.IsCall)) return CacheResult; // Unlike the other function, do not walk to the def of a def, because we are // handed something we already believe is the clobbering access. MemoryAccess *DefiningAccess = isa(StartingUseOrDef) ? StartingUseOrDef->getDefiningAccess() : StartingUseOrDef; MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); DEBUG(dbgs() << *StartingUseOrDef << "\n"); DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); DEBUG(dbgs() << *Clobber << "\n"); return Clobber; } MemoryAccess * MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { auto *StartingAccess = dyn_cast(MA); // If this is a MemoryPhi, we can't do anything. if (!StartingAccess) return MA; const Instruction *I = StartingAccess->getMemoryInst(); UpwardsMemoryQuery Q(I, StartingAccess); // We can't sanely do anything with a fences, they conservatively // clobber all memory, and have no locations to get pointers from to // try to disambiguate. if (!Q.IsCall && I->isFenceLike()) return StartingAccess; if (auto *CacheResult = Cache.lookup(StartingAccess, Q.StartingLoc, Q.IsCall)) return CacheResult; // Start with the thing we already think clobbers this location MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); // At this point, DefiningAccess may be the live on entry def. // If it is, we will not get a better result. if (MSSA->isLiveOnEntryDef(DefiningAccess)) return DefiningAccess; MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); DEBUG(dbgs() << *DefiningAccess << "\n"); DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); DEBUG(dbgs() << *Result << "\n"); return Result; } // Verify that MA doesn't exist in any of the caches. void MemorySSA::CachingWalker::verifyRemoved(MemoryAccess *MA) { assert(!Cache.contains(MA) && "Found removed MemoryAccess in cache."); } MemoryAccess * DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { if (auto *Use = dyn_cast(MA)) return Use->getDefiningAccess(); return MA; } MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( MemoryAccess *StartingAccess, MemoryLocation &) { if (auto *Use = dyn_cast(StartingAccess)) return Use->getDefiningAccess(); return StartingAccess; } } // namespace llvm