//===- FastISelEmitter.cpp - Generate an instruction selector -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a "fast" instruction selector. // // This instruction selection method is designed to emit very poor code // quickly. Also, it is not designed to do much lowering, so most illegal // types (e.g. i64 on 32-bit targets) and operations (e.g. calls) are not // supported and cannot easily be added. Blocks containing operations // that are not supported need to be handled by a more capable selector, // such as the SelectionDAG selector. // // The intended use for "fast" instruction selection is "-O0" mode // compilation, where the quality of the generated code is irrelevant when // weighed against the speed at which the code can be generated. // // If compile time is so important, you might wonder why we don't just // skip codegen all-together, emit LLVM bytecode files, and execute them // with an interpreter. The answer is that it would complicate linking and // debugging, and also because that isn't how a compiler is expected to // work in some circles. // // If you need better generated code or more lowering than what this // instruction selector provides, use the SelectionDAG (DAGISel) instruction // selector instead. If you're looking here because SelectionDAG isn't fast // enough, consider looking into improving the SelectionDAG infastructure // instead. At the time of this writing there remain several major // opportunities for improvement. // //===----------------------------------------------------------------------===// #include "FastISelEmitter.h" #include "Record.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Streams.h" #include "llvm/ADT/VectorExtras.h" using namespace llvm; namespace { struct OperandsSignature { std::vector Operands; bool operator<(const OperandsSignature &O) const { return Operands < O.Operands; } bool empty() const { return Operands.empty(); } void PrintParameters(std::ostream &OS) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i] == "r") { OS << "unsigned Op" << i; } else { assert("Unknown operand kind!"); abort(); } if (i + 1 != e) OS << ", "; } } void PrintArguments(std::ostream &OS) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i] == "r") { OS << "Op" << i; } else { assert("Unknown operand kind!"); abort(); } if (i + 1 != e) OS << ", "; } } void PrintManglingSuffix(std::ostream &OS) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { OS << Operands[i]; } } }; struct InstructionMemo { std::string Name; const CodeGenRegisterClass *RC; }; } static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { return CGP.getSDNodeInfo(Op).getEnumName(); } static std::string getLegalCName(std::string OpName) { std::string::size_type pos = OpName.find("::"); if (pos != std::string::npos) OpName.replace(pos, 2, "_"); return OpName; } void FastISelEmitter::run(std::ostream &OS) { EmitSourceFileHeader("\"Fast\" Instruction Selector for the " + CGP.getTargetInfo().getName() + " target", OS); const CodeGenTarget &Target = CGP.getTargetInfo(); // Get the namespace to insert instructions into. Make sure not to pick up // "TargetInstrInfo" by accidentally getting the namespace off the PHI // instruction or something. std::string InstNS; for (CodeGenTarget::inst_iterator i = Target.inst_begin(), e = Target.inst_end(); i != e; ++i) { InstNS = i->second.Namespace; if (InstNS != "TargetInstrInfo") break; } OS << "namespace llvm {\n"; OS << "namespace " << InstNS << " {\n"; OS << "class FastISel;\n"; OS << "}\n"; OS << "}\n"; OS << "\n"; if (!InstNS.empty()) InstNS += "::"; typedef std::map TypeMap; typedef std::map OpcodeTypeMap; typedef std::map OperandsOpcodeTypeMap; OperandsOpcodeTypeMap SimplePatterns; // Create the supported type signatures. OperandsSignature KnownOperands; SimplePatterns[KnownOperands] = OpcodeTypeMap(); KnownOperands.Operands.push_back("r"); SimplePatterns[KnownOperands] = OpcodeTypeMap(); KnownOperands.Operands.push_back("r"); SimplePatterns[KnownOperands] = OpcodeTypeMap(); for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); I != E; ++I) { const PatternToMatch &Pattern = *I; // For now, just look at Instructions, so that we don't have to worry // about emitting multiple instructions for a pattern. TreePatternNode *Dst = Pattern.getDstPattern(); if (Dst->isLeaf()) continue; Record *Op = Dst->getOperator(); if (!Op->isSubClassOf("Instruction")) continue; CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName()); if (II.OperandList.empty()) continue; Record *Op0Rec = II.OperandList[0].Rec; if (!Op0Rec->isSubClassOf("RegisterClass")) continue; const CodeGenRegisterClass *DstRC = &Target.getRegisterClass(Op0Rec); if (!DstRC) continue; // Inspect the pattern. TreePatternNode *InstPatNode = Pattern.getSrcPattern(); if (!InstPatNode) continue; if (InstPatNode->isLeaf()) continue; Record *InstPatOp = InstPatNode->getOperator(); std::string OpcodeName = getOpcodeName(InstPatOp, CGP); MVT::SimpleValueType VT = InstPatNode->getTypeNum(0); // For now, filter out instructions which just set a register to // an Operand, like MOV32ri. if (InstPatOp->isSubClassOf("Operand")) continue; // Check all the operands. For now only accept register operands. OperandsSignature Operands; for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { TreePatternNode *Op = InstPatNode->getChild(i); if (!Op->isLeaf()) goto continue_label; DefInit *OpDI = dynamic_cast(Op->getLeafValue()); if (!OpDI) goto continue_label; Record *OpLeafRec = OpDI->getDef(); if (!OpLeafRec->isSubClassOf("RegisterClass")) goto continue_label; const CodeGenRegisterClass *RC = &Target.getRegisterClass(OpLeafRec); if (!RC) goto continue_label; if (Op->getTypeNum(0) != VT) goto continue_label; Operands.Operands.push_back("r"); } // If it's not a known signature, ignore it. if (!SimplePatterns.count(Operands)) continue; // Ok, we found a pattern that we can handle. Remember it. { InstructionMemo Memo = { Pattern.getDstPattern()->getOperator()->getName(), DstRC }; SimplePatterns[Operands][OpcodeName][VT] = Memo; } continue_label:; } OS << "#include \"llvm/CodeGen/FastISel.h\"\n"; OS << "\n"; OS << "namespace llvm {\n"; OS << "\n"; // Declare the target FastISel class. OS << "class " << InstNS << "FastISel : public llvm::FastISel {\n"; for (OperandsOpcodeTypeMap::const_iterator OI = SimplePatterns.begin(), OE = SimplePatterns.end(); OI != OE; ++OI) { const OperandsSignature &Operands = OI->first; const OpcodeTypeMap &OTM = OI->second; for (OpcodeTypeMap::const_iterator I = OTM.begin(), E = OTM.end(); I != E; ++I) { const std::string &Opcode = I->first; const TypeMap &TM = I->second; for (TypeMap::const_iterator TI = TM.begin(), TE = TM.end(); TI != TE; ++TI) { MVT::SimpleValueType VT = TI->first; OS << " unsigned FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "("; Operands.PrintParameters(OS); OS << ");\n"; } OS << " unsigned FastEmit_" << getLegalCName(Opcode) << "(MVT::SimpleValueType VT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ");\n"; } OS << "unsigned FastEmit_"; Operands.PrintManglingSuffix(OS); OS << "(MVT::SimpleValueType VT, ISD::NodeType Opcode"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ");\n"; } OS << "public:\n"; OS << " FastISel(MachineBasicBlock *mbb, MachineFunction *mf, "; OS << "const TargetInstrInfo *tii) : llvm::FastISel(mbb, mf, tii) {}\n"; OS << "};\n"; OS << "\n"; // Define the target FastISel creation function. OS << "llvm::FastISel *" << InstNS << "createFastISel(MachineBasicBlock *mbb, MachineFunction *mf, "; OS << "const TargetInstrInfo *tii) {\n"; OS << " return new " << InstNS << "FastISel(mbb, mf, tii);\n"; OS << "}\n"; OS << "\n"; // Now emit code for all the patterns that we collected. for (OperandsOpcodeTypeMap::const_iterator OI = SimplePatterns.begin(), OE = SimplePatterns.end(); OI != OE; ++OI) { const OperandsSignature &Operands = OI->first; const OpcodeTypeMap &OTM = OI->second; for (OpcodeTypeMap::const_iterator I = OTM.begin(), E = OTM.end(); I != E; ++I) { const std::string &Opcode = I->first; const TypeMap &TM = I->second; OS << "// FastEmit functions for " << Opcode << ".\n"; OS << "\n"; // Emit one function for each opcode,type pair. for (TypeMap::const_iterator TI = TM.begin(), TE = TM.end(); TI != TE; ++TI) { MVT::SimpleValueType VT = TI->first; const InstructionMemo &Memo = TI->second; OS << "unsigned " << InstNS << "FastISel::FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "("; Operands.PrintParameters(OS); OS << ") {\n"; OS << " return FastEmitInst_"; Operands.PrintManglingSuffix(OS); OS << "(" << InstNS << Memo.Name << ", "; OS << InstNS << Memo.RC->getName() << "RegisterClass"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS); OS << ");\n"; OS << "}\n"; OS << "\n"; } // Emit one function for the opcode that demultiplexes based on the type. OS << "unsigned " << InstNS << "FastISel::FastEmit_" << getLegalCName(Opcode) << "(MVT::SimpleValueType VT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\n"; OS << " switch (VT) {\n"; for (TypeMap::const_iterator TI = TM.begin(), TE = TM.end(); TI != TE; ++TI) { MVT::SimpleValueType VT = TI->first; std::string TypeName = getName(VT); OS << " case " << TypeName << ": return FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "("; Operands.PrintArguments(OS); OS << ");\n"; } OS << " default: return 0;\n"; OS << " }\n"; OS << "}\n"; OS << "\n"; } // Emit one function for the operand signature that demultiplexes based // on opcode and type. OS << "unsigned " << InstNS << "FastISel::FastEmit_"; Operands.PrintManglingSuffix(OS); OS << "(MVT::SimpleValueType VT, ISD::NodeType Opcode"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\n"; OS << " switch (Opcode) {\n"; for (OpcodeTypeMap::const_iterator I = OTM.begin(), E = OTM.end(); I != E; ++I) { const std::string &Opcode = I->first; OS << " case " << Opcode << ": return FastEmit_" << getLegalCName(Opcode) << "(VT"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS); OS << ");\n"; } OS << " default: return 0;\n"; OS << " }\n"; OS << "}\n"; OS << "\n"; } OS << "}\n"; } // todo: really filter out Constants