//===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===// // // The LLVM Compiler Infrastructure // // This file was developed by Nate Begeman and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for 32 bit PowerPC. // Magic number generation for integer divide from the PowerPC Compiler Writer's // Guide, section 3.2.3.5 // //===----------------------------------------------------------------------===// #include "PowerPC.h" #include "PowerPCInstrBuilder.h" #include "PowerPCInstrInfo.h" #include "PPC32TargetMachine.h" #include "llvm/Constants.h" // FIXME: REMOVE #include "llvm/Function.h" #include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/Statistic.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // PPC32TargetLowering - PPC32 Implementation of the TargetLowering interface namespace { class PPC32TargetLowering : public TargetLowering { int VarArgsFrameIndex; // FrameIndex for start of varargs area. int ReturnAddrIndex; // FrameIndex for return slot. public: PPC32TargetLowering(TargetMachine &TM) : TargetLowering(TM) { // Fold away setcc operations if possible. setSetCCIsExpensive(); // Set up the register classes. addRegisterClass(MVT::i32, PPC32::GPRCRegisterClass); addRegisterClass(MVT::f32, PPC32::FPRCRegisterClass); addRegisterClass(MVT::f64, PPC32::FPRCRegisterClass); // PowerPC has no intrinsics for these particular operations setOperationAction(ISD::MEMMOVE, MVT::Other, Expand); setOperationAction(ISD::MEMSET, MVT::Other, Expand); setOperationAction(ISD::MEMCPY, MVT::Other, Expand); // PowerPC has an i16 but no i8 (or i1) SEXTLOAD setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand); setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand); // PowerPC has no SREM/UREM instructions setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); // We don't support sin/cos/sqrt/fmod setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSQRT, MVT::f64, Expand); setOperationAction(ISD::SREM , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSQRT, MVT::f32, Expand); setOperationAction(ISD::SREM , MVT::f32, Expand); //PowerPC does not have CTPOP or CTTZ setOperationAction(ISD::CTPOP, MVT::i32 , Expand); setOperationAction(ISD::CTTZ , MVT::i32 , Expand); setSetCCResultContents(ZeroOrOneSetCCResult); addLegalFPImmediate(+0.0); // Necessary for FSEL addLegalFPImmediate(-0.0); // computeRegisterProperties(); } /// LowerArguments - This hook must be implemented to indicate how we should /// lower the arguments for the specified function, into the specified DAG. virtual std::vector LowerArguments(Function &F, SelectionDAG &DAG); /// LowerCallTo - This hook lowers an abstract call to a function into an /// actual call. virtual std::pair LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG); virtual std::pair LowerVAStart(SDOperand Chain, SelectionDAG &DAG); virtual std::pair LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG); virtual std::pair LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG); }; } std::vector PPC32TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { // // add beautiful description of PPC stack frame format, or at least some docs // MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineBasicBlock& BB = MF.front(); std::vector ArgValues; // Due to the rather complicated nature of the PowerPC ABI, rather than a // fixed size array of physical args, for the sake of simplicity let the STL // handle tracking them for us. std::vector argVR, argPR, argOp; unsigned ArgOffset = 24; unsigned GPR_remaining = 8; unsigned FPR_remaining = 13; unsigned GPR_idx = 0, FPR_idx = 0; static const unsigned GPR[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; // Add DAG nodes to load the arguments... On entry to a function on PPC, // the arguments start at offset 24, although they are likely to be passed // in registers. for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { SDOperand newroot, argt; unsigned ObjSize; bool needsLoad = false; bool ArgLive = !I->use_empty(); MVT::ValueType ObjectVT = getValueType(I->getType()); switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: ObjSize = 4; if (!ArgLive) break; if (GPR_remaining > 0) { MF.addLiveIn(GPR[GPR_idx]); argt = newroot = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, DAG.getRoot()); if (ObjectVT != MVT::i32) argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, newroot); } else { needsLoad = true; } break; case MVT::i64: ObjSize = 8; if (!ArgLive) break; if (GPR_remaining > 0) { SDOperand argHi, argLo; MF.addLiveIn(GPR[GPR_idx]); argHi = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, DAG.getRoot()); // If we have two or more remaining argument registers, then both halves // of the i64 can be sourced from there. Otherwise, the lower half will // have to come off the stack. This can happen when an i64 is preceded // by 28 bytes of arguments. if (GPR_remaining > 1) { MF.addLiveIn(GPR[GPR_idx+1]); argLo = DAG.getCopyFromReg(GPR[GPR_idx+1], MVT::i32, argHi); } else { int FI = MFI->CreateFixedObject(4, ArgOffset+4); SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); } // Build the outgoing arg thingy argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi); newroot = argLo; } else { needsLoad = true; } break; case MVT::f32: case MVT::f64: ObjSize = (ObjectVT == MVT::f64) ? 8 : 4; if (!ArgLive) break; if (FPR_remaining > 0) { MF.addLiveIn(FPR[FPR_idx]); argt = newroot = DAG.getCopyFromReg(FPR[FPR_idx], ObjectVT, DAG.getRoot()); --FPR_remaining; ++FPR_idx; } else { needsLoad = true; } break; } // We need to load the argument to a virtual register if we determined above // that we ran out of physical registers of the appropriate type if (needsLoad) { unsigned SubregOffset = 0; if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3; if (ObjectVT == MVT::i16) SubregOffset = 2; int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, DAG.getConstant(SubregOffset, MVT::i32)); argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL)); } // Every 4 bytes of argument space consumes one of the GPRs available for // argument passing. if (GPR_remaining > 0) { unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1; GPR_remaining -= delta; GPR_idx += delta; } ArgOffset += ObjSize; if (newroot.Val) DAG.setRoot(newroot.getValue(1)); ArgValues.push_back(argt); } // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (F.isVarArg()) { VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); // If this function is vararg, store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing the // result of va_next. std::vector MemOps; for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) { MF.addLiveIn(GPR[GPR_idx]); SDOperand Val = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, DAG.getRoot()); SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1), Val, FIN, DAG.getSrcValue(NULL)); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDOperand PtrOff = DAG.getConstant(4, getPointerTy()); FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff); } DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps)); } // Finally, inform the code generator which regs we return values in. switch (getValueType(F.getReturnType())) { default: assert(0 && "Unknown type!"); case MVT::isVoid: break; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: MF.addLiveOut(PPC::R3); break; case MVT::i64: MF.addLiveOut(PPC::R3); MF.addLiveOut(PPC::R4); break; case MVT::f32: case MVT::f64: MF.addLiveOut(PPC::F1); break; } return ArgValues; } std::pair PPC32TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CallingConv, bool isTailCall, SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) { // args_to_use will accumulate outgoing args for the ISD::CALL case in // SelectExpr to use to put the arguments in the appropriate registers. std::vector args_to_use; // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. unsigned NumBytes = 24; if (Args.empty()) { Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); } else { for (unsigned i = 0, e = Args.size(); i != e; ++i) switch (getValueType(Args[i].second)) { default: assert(0 && "Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::f32: NumBytes += 4; break; case MVT::i64: case MVT::f64: NumBytes += 8; break; } // Just to be safe, we'll always reserve the full 24 bytes of linkage area // plus 32 bytes of argument space in case any called code gets funky on us. if (NumBytes < 56) NumBytes = 56; // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDOperand StackPtr = DAG.getCopyFromReg(PPC::R1, MVT::i32, DAG.getEntryNode()); // Figure out which arguments are going to go in registers, and which in // memory. Also, if this is a vararg function, floating point operations // must be stored to our stack, and loaded into integer regs as well, if // any integer regs are available for argument passing. unsigned ArgOffset = 24; unsigned GPR_remaining = 8; unsigned FPR_remaining = 13; std::vector MemOps; for (unsigned i = 0, e = Args.size(); i != e; ++i) { // PtrOff will be used to store the current argument to the stack if a // register cannot be found for it. SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); MVT::ValueType ArgVT = getValueType(Args[i].second); switch (ArgVT) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i1: case MVT::i8: case MVT::i16: // Promote the integer to 32 bits. If the input type is signed use a // sign extend, otherwise use a zero extend. if (Args[i].second->isSigned()) Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); else Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); // FALL THROUGH case MVT::i32: if (GPR_remaining > 0) { args_to_use.push_back(Args[i].first); --GPR_remaining; } else { MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); } ArgOffset += 4; break; case MVT::i64: // If we have one free GPR left, we can place the upper half of the i64 // in it, and store the other half to the stack. If we have two or more // free GPRs, then we can pass both halves of the i64 in registers. if (GPR_remaining > 0) { SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Args[i].first, DAG.getConstant(1, MVT::i32)); SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Args[i].first, DAG.getConstant(0, MVT::i32)); args_to_use.push_back(Hi); --GPR_remaining; if (GPR_remaining > 0) { args_to_use.push_back(Lo); --GPR_remaining; } else { SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Lo, PtrOff, DAG.getSrcValue(NULL))); } } else { MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); } ArgOffset += 8; break; case MVT::f32: case MVT::f64: if (FPR_remaining > 0) { args_to_use.push_back(Args[i].first); --FPR_remaining; if (isVarArg) { SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL)); MemOps.push_back(Store); // Float varargs are always shadowed in available integer registers if (GPR_remaining > 0) { SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff, DAG.getSrcValue(NULL)); MemOps.push_back(Load); args_to_use.push_back(Load); --GPR_remaining; } if (GPR_remaining > 0 && MVT::f64 == ArgVT) { SDOperand ConstFour = DAG.getConstant(4, getPointerTy()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour); SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff, DAG.getSrcValue(NULL)); MemOps.push_back(Load); args_to_use.push_back(Load); --GPR_remaining; } } else { // If we have any FPRs remaining, we may also have GPRs remaining. // Args passed in FPRs consume either 1 (f32) or 2 (f64) available // GPRs. if (GPR_remaining > 0) { args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); --GPR_remaining; } if (GPR_remaining > 0 && MVT::f64 == ArgVT) { args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); --GPR_remaining; } } } else { MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, Args[i].first, PtrOff, DAG.getSrcValue(NULL))); } ArgOffset += (ArgVT == MVT::f32) ? 4 : 8; break; } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps); } std::vector RetVals; MVT::ValueType RetTyVT = getValueType(RetTy); if (RetTyVT != MVT::isVoid) RetVals.push_back(RetTyVT); RetVals.push_back(MVT::Other); SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, Callee, args_to_use), 0); Chain = TheCall.getValue(RetTyVT != MVT::isVoid); Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, DAG.getConstant(NumBytes, getPointerTy())); return std::make_pair(TheCall, Chain); } std::pair PPC32TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) { //vastart just returns the address of the VarArgsFrameIndex slot. return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain); } std::pair PPC32TargetLowering:: LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG) { MVT::ValueType ArgVT = getValueType(ArgTy); SDOperand Result; if (!isVANext) { Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList, DAG.getSrcValue(NULL)); } else { unsigned Amt; if (ArgVT == MVT::i32 || ArgVT == MVT::f32) Amt = 4; else { assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && "Other types should have been promoted for varargs!"); Amt = 8; } Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList, DAG.getConstant(Amt, VAList.getValueType())); } return std::make_pair(Result, Chain); } std::pair PPC32TargetLowering:: LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { assert(0 && "LowerFrameReturnAddress unimplemented"); abort(); } namespace { Statistic<>Recorded("ppc-codegen", "Number of recording ops emitted"); Statistic<>FusedFP("ppc-codegen", "Number of fused fp operations"); Statistic<>MultiBranch("ppc-codegen", "Number of setcc logical ops collapsed"); //===--------------------------------------------------------------------===// /// ISel - PPC32 specific code to select PPC32 machine instructions for /// SelectionDAG operations. //===--------------------------------------------------------------------===// class ISel : public SelectionDAGISel { PPC32TargetLowering PPC32Lowering; SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform // for sdiv and udiv until it is put into the future // dag combiner. /// ExprMap - As shared expressions are codegen'd, we keep track of which /// vreg the value is produced in, so we only emit one copy of each compiled /// tree. std::map ExprMap; unsigned GlobalBaseReg; bool GlobalBaseInitialized; bool RecordSuccess; public: ISel(TargetMachine &TM) : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM), ISelDAG(0) {} /// runOnFunction - Override this function in order to reset our per-function /// variables. virtual bool runOnFunction(Function &Fn) { // Make sure we re-emit a set of the global base reg if necessary GlobalBaseInitialized = false; return SelectionDAGISel::runOnFunction(Fn); } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); // Codegen the basic block. ISelDAG = &DAG; Select(DAG.getRoot()); // Clear state used for selection. ExprMap.clear(); ISelDAG = 0; } // dag -> dag expanders for integer divide by constant SDOperand BuildSDIVSequence(SDOperand N); SDOperand BuildUDIVSequence(SDOperand N); unsigned getGlobalBaseReg(); unsigned getConstDouble(double floatVal, unsigned Result); void MoveCRtoGPR(unsigned CCReg, bool Inv, unsigned Idx, unsigned Result); bool SelectBitfieldInsert(SDOperand OR, unsigned Result); unsigned FoldIfWideZeroExtend(SDOperand N); unsigned SelectCC(SDOperand CC, unsigned &Opc, bool &Inv, unsigned &Idx); unsigned SelectCCExpr(SDOperand N, unsigned& Opc, bool &Inv, unsigned &Idx); unsigned SelectExpr(SDOperand N, bool Recording=false); unsigned SelectExprFP(SDOperand N, unsigned Result); void Select(SDOperand N); bool SelectAddr(SDOperand N, unsigned& Reg, int& offset); void SelectBranchCC(SDOperand N); }; /// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It /// returns zero when the input is not exactly a power of two. static unsigned ExactLog2(unsigned Val) { if (Val == 0 || (Val & (Val-1))) return 0; unsigned Count = 0; while (Val != 1) { Val >>= 1; ++Count; } return Count; } // IsRunOfOnes - returns true if Val consists of one contiguous run of 1's with // any number of 0's on either side. the 1's are allowed to wrap from LSB to // MSB. so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is // not, since all 1's are not contiguous. static bool IsRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { bool isRun = true; MB = 0; ME = 0; // look for first set bit int i = 0; for (; i < 32; i++) { if ((Val & (1 << (31 - i))) != 0) { MB = i; ME = i; break; } } // look for last set bit for (; i < 32; i++) { if ((Val & (1 << (31 - i))) == 0) break; ME = i; } // look for next set bit for (; i < 32; i++) { if ((Val & (1 << (31 - i))) != 0) break; } // if we exhausted all the bits, we found a match at this point for 0*1*0* if (i == 32) return true; // since we just encountered more 1's, if it doesn't wrap around to the // most significant bit of the word, then we did not find a match to 1*0*1* so // exit. if (MB != 0) return false; // look for last set bit for (MB = i; i < 32; i++) { if ((Val & (1 << (31 - i))) == 0) break; } // if we exhausted all the bits, then we found a match for 1*0*1*, otherwise, // the value is not a run of ones. if (i == 32) return true; return false; } /// getImmediateForOpcode - This method returns a value indicating whether /// the ConstantSDNode N can be used as an immediate to Opcode. The return /// values are either 0, 1 or 2. 0 indicates that either N is not a /// ConstantSDNode, or is not suitable for use by that opcode. /// Return value codes for turning into an enum someday: /// 1: constant may be used in normal immediate form. /// 2: constant may be used in shifted immediate form. /// 3: log base 2 of the constant may be used. /// 4: constant is suitable for integer division conversion /// 5: constant is a bitfield mask /// static unsigned getImmediateForOpcode(SDOperand N, unsigned Opcode, unsigned& Imm, bool U = false) { if (N.getOpcode() != ISD::Constant) return 0; int v = (int)cast(N)->getSignExtended(); switch(Opcode) { default: return 0; case ISD::ADD: if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; } if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; } break; case ISD::AND: { unsigned MB, ME; if (IsRunOfOnes(v, MB, ME)) { Imm = MB << 16 | ME & 0xFFFF; return 5; } if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; } if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; } break; } case ISD::XOR: case ISD::OR: if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; } if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; } break; case ISD::MUL: if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; } break; case ISD::SUB: // handle subtract-from separately from subtract, since subi is really addi if (U && v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; } if (!U && v <= 32768 && v >= -32767) { Imm = (-v) & 0xFFFF; return 1; } break; case ISD::SETCC: if (U && (v >= 0 && v <= 65535)) { Imm = v & 0xFFFF; return 1; } if (!U && (v <= 32767 && v >= -32768)) { Imm = v & 0xFFFF; return 1; } break; case ISD::SDIV: if ((Imm = ExactLog2(v))) { return 3; } if ((Imm = ExactLog2(-v))) { Imm = -Imm; return 3; } if (v <= -2 || v >= 2) { return 4; } break; case ISD::UDIV: if (v > 1) { return 4; } break; } return 0; } /// NodeHasRecordingVariant - If SelectExpr can always produce code for /// NodeOpcode that also sets CR0 as a side effect, return true. Otherwise, /// return false. static bool NodeHasRecordingVariant(unsigned NodeOpcode) { switch(NodeOpcode) { default: return false; case ISD::AND: case ISD::OR: return true; } } /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding /// to Condition. If the Condition is unordered or unsigned, the bool argument /// U is set to true, otherwise it is set to false. static unsigned getBCCForSetCC(unsigned Condition, bool& U) { U = false; switch (Condition) { default: assert(0 && "Unknown condition!"); abort(); case ISD::SETEQ: return PPC::BEQ; case ISD::SETNE: return PPC::BNE; case ISD::SETULT: U = true; case ISD::SETLT: return PPC::BLT; case ISD::SETULE: U = true; case ISD::SETLE: return PPC::BLE; case ISD::SETUGT: U = true; case ISD::SETGT: return PPC::BGT; case ISD::SETUGE: U = true; case ISD::SETGE: return PPC::BGE; } return 0; } /// getCROpForOp - Return the condition register opcode (or inverted opcode) /// associated with the SelectionDAG opcode. static unsigned getCROpForSetCC(unsigned Opcode, bool Inv1, bool Inv2) { switch (Opcode) { default: assert(0 && "Unknown opcode!"); abort(); case ISD::AND: if (Inv1 && Inv2) return PPC::CRNOR; // De Morgan's Law if (!Inv1 && !Inv2) return PPC::CRAND; if (Inv1 ^ Inv2) return PPC::CRANDC; case ISD::OR: if (Inv1 && Inv2) return PPC::CRNAND; // De Morgan's Law if (!Inv1 && !Inv2) return PPC::CROR; if (Inv1 ^ Inv2) return PPC::CRORC; } return 0; } /// getCRIdxForSetCC - Return the index of the condition register field /// associated with the SetCC condition, and whether or not the field is /// treated as inverted. That is, lt = 0; ge = 0 inverted. static unsigned getCRIdxForSetCC(unsigned Condition, bool& Inv) { switch (Condition) { default: assert(0 && "Unknown condition!"); abort(); case ISD::SETULT: case ISD::SETLT: Inv = false; return 0; case ISD::SETUGE: case ISD::SETGE: Inv = true; return 0; case ISD::SETUGT: case ISD::SETGT: Inv = false; return 1; case ISD::SETULE: case ISD::SETLE: Inv = true; return 1; case ISD::SETEQ: Inv = false; return 2; case ISD::SETNE: Inv = true; return 2; } return 0; } /// IndexedOpForOp - Return the indexed variant for each of the PowerPC load /// and store immediate instructions. static unsigned IndexedOpForOp(unsigned Opcode) { switch(Opcode) { default: assert(0 && "Unknown opcode!"); abort(); case PPC::LBZ: return PPC::LBZX; case PPC::STB: return PPC::STBX; case PPC::LHZ: return PPC::LHZX; case PPC::STH: return PPC::STHX; case PPC::LHA: return PPC::LHAX; case PPC::STW: return PPC::STWX; case PPC::LWZ: return PPC::LWZX; case PPC::STFS: return PPC::STFSX; case PPC::LFS: return PPC::LFSX; case PPC::STFD: return PPC::STFDX; case PPC::LFD: return PPC::LFDX; } return 0; } // Structure used to return the necessary information to codegen an SDIV as // a multiply. struct ms { int m; // magic number int s; // shift amount }; struct mu { unsigned int m; // magic number int a; // add indicator int s; // shift amount }; /// magic - calculate the magic numbers required to codegen an integer sdiv as /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, /// or -1. static struct ms magic(int d) { int p; unsigned int ad, anc, delta, q1, r1, q2, r2, t; const unsigned int two31 = 2147483648U; // 2^31 struct ms mag; ad = abs(d); t = two31 + ((unsigned int)d >> 31); anc = t - 1 - t%ad; // absolute value of nc p = 31; // initialize p q1 = two31/anc; // initialize q1 = 2p/abs(nc) r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) q2 = two31/ad; // initialize q2 = 2p/abs(d) r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) do { p = p + 1; q1 = 2*q1; // update q1 = 2p/abs(nc) r1 = 2*r1; // update r1 = rem(2p/abs(nc)) if (r1 >= anc) { // must be unsigned comparison q1 = q1 + 1; r1 = r1 - anc; } q2 = 2*q2; // update q2 = 2p/abs(d) r2 = 2*r2; // update r2 = rem(2p/abs(d)) if (r2 >= ad) { // must be unsigned comparison q2 = q2 + 1; r2 = r2 - ad; } delta = ad - r2; } while (q1 < delta || (q1 == delta && r1 == 0)); mag.m = q2 + 1; if (d < 0) mag.m = -mag.m; // resulting magic number mag.s = p - 32; // resulting shift return mag; } /// magicu - calculate the magic numbers required to codegen an integer udiv as /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. static struct mu magicu(unsigned d) { int p; unsigned int nc, delta, q1, r1, q2, r2; struct mu magu; magu.a = 0; // initialize "add" indicator nc = - 1 - (-d)%d; p = 31; // initialize p q1 = 0x80000000/nc; // initialize q1 = 2p/nc r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) do { p = p + 1; if (r1 >= nc - r1 ) { q1 = 2*q1 + 1; // update q1 r1 = 2*r1 - nc; // update r1 } else { q1 = 2*q1; // update q1 r1 = 2*r1; // update r1 } if (r2 + 1 >= d - r2) { if (q2 >= 0x7FFFFFFF) magu.a = 1; q2 = 2*q2 + 1; // update q2 r2 = 2*r2 + 1 - d; // update r2 } else { if (q2 >= 0x80000000) magu.a = 1; q2 = 2*q2; // update q2 r2 = 2*r2 + 1; // update r2 } delta = d - 1 - r2; } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); magu.m = q2 + 1; // resulting magic number magu.s = p - 32; // resulting shift return magu; } } /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDOperand ISel::BuildSDIVSequence(SDOperand N) { int d = (int)cast(N.getOperand(1))->getSignExtended(); ms magics = magic(d); // Multiply the numerator (operand 0) by the magic value SDOperand Q = ISelDAG->getNode(ISD::MULHS, MVT::i32, N.getOperand(0), ISelDAG->getConstant(magics.m, MVT::i32)); // If d > 0 and m < 0, add the numerator if (d > 0 && magics.m < 0) Q = ISelDAG->getNode(ISD::ADD, MVT::i32, Q, N.getOperand(0)); // If d < 0 and m > 0, subtract the numerator. if (d < 0 && magics.m > 0) Q = ISelDAG->getNode(ISD::SUB, MVT::i32, Q, N.getOperand(0)); // Shift right algebraic if shift value is nonzero if (magics.s > 0) Q = ISelDAG->getNode(ISD::SRA, MVT::i32, Q, ISelDAG->getConstant(magics.s, MVT::i32)); // Extract the sign bit and add it to the quotient SDOperand T = ISelDAG->getNode(ISD::SRL, MVT::i32, Q, ISelDAG->getConstant(31, MVT::i32)); return ISelDAG->getNode(ISD::ADD, MVT::i32, Q, T); } /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDOperand ISel::BuildUDIVSequence(SDOperand N) { unsigned d = (unsigned)cast(N.getOperand(1))->getSignExtended(); mu magics = magicu(d); // Multiply the numerator (operand 0) by the magic value SDOperand Q = ISelDAG->getNode(ISD::MULHU, MVT::i32, N.getOperand(0), ISelDAG->getConstant(magics.m, MVT::i32)); if (magics.a == 0) { Q = ISelDAG->getNode(ISD::SRL, MVT::i32, Q, ISelDAG->getConstant(magics.s, MVT::i32)); } else { SDOperand NPQ = ISelDAG->getNode(ISD::SUB, MVT::i32, N.getOperand(0), Q); NPQ = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ, ISelDAG->getConstant(1, MVT::i32)); NPQ = ISelDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q); Q = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ, ISelDAG->getConstant(magics.s-1, MVT::i32)); } return Q; } /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. /// unsigned ISel::getGlobalBaseReg() { if (!GlobalBaseInitialized) { // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = BB->getParent()->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); GlobalBaseReg = MakeReg(MVT::i32); BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR); GlobalBaseInitialized = true; } return GlobalBaseReg; } /// getConstDouble - Loads a floating point value into a register, via the /// Constant Pool. Optionally takes a register in which to load the value. unsigned ISel::getConstDouble(double doubleVal, unsigned Result=0) { unsigned Tmp1 = MakeReg(MVT::i32); if (0 == Result) Result = MakeReg(MVT::f64); MachineConstantPool *CP = BB->getParent()->getConstantPool(); ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, doubleVal); unsigned CPI = CP->getConstantPoolIndex(CFP); BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg()) .addConstantPoolIndex(CPI); BuildMI(BB, PPC::LFD, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1); return Result; } /// MoveCRtoGPR - Move CCReg[Idx] to the least significant bit of Result. If /// Inv is true, then invert the result. void ISel::MoveCRtoGPR(unsigned CCReg, bool Inv, unsigned Idx, unsigned Result){ unsigned IntCR = MakeReg(MVT::i32); BuildMI(BB, PPC::MCRF, 1, PPC::CR7).addReg(CCReg); BuildMI(BB, PPC::MFCR, 1, IntCR).addReg(PPC::CR7); if (Inv) { unsigned Tmp1 = MakeReg(MVT::i32); BuildMI(BB, PPC::RLWINM, 4, Tmp1).addReg(IntCR).addImm(32-(3-Idx)) .addImm(31).addImm(31); BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(1); } else { BuildMI(BB, PPC::RLWINM, 4, Result).addReg(IntCR).addImm(32-(3-Idx)) .addImm(31).addImm(31); } } /// SelectBitfieldInsert - turn an or of two masked values into /// the rotate left word immediate then mask insert (rlwimi) instruction. /// Returns true on success, false if the caller still needs to select OR. /// /// Patterns matched: /// 1. or shl, and 5. or and, and /// 2. or and, shl 6. or shl, shr /// 3. or shr, and 7. or shr, shl /// 4. or and, shr bool ISel::SelectBitfieldInsert(SDOperand OR, unsigned Result) { bool IsRotate = false; unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, Amount = 0; SDOperand Op0 = OR.getOperand(0); SDOperand Op1 = OR.getOperand(1); unsigned Op0Opc = Op0.getOpcode(); unsigned Op1Opc = Op1.getOpcode(); // Verify that we have the correct opcodes if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc) return false; if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc) return false; // Generate Mask value for Target if (ConstantSDNode *CN = dyn_cast(Op0.getOperand(1).Val)) { switch(Op0Opc) { case ISD::SHL: TgtMask <<= (unsigned)CN->getValue(); break; case ISD::SRL: TgtMask >>= (unsigned)CN->getValue(); break; case ISD::AND: TgtMask &= (unsigned)CN->getValue(); break; } } else { return false; } // Generate Mask value for Insert if (ConstantSDNode *CN = dyn_cast(Op1.getOperand(1).Val)) { switch(Op1Opc) { case ISD::SHL: Amount = CN->getValue(); InsMask <<= Amount; if (Op0Opc == ISD::SRL) IsRotate = true; break; case ISD::SRL: Amount = CN->getValue(); InsMask >>= Amount; Amount = 32-Amount; if (Op0Opc == ISD::SHL) IsRotate = true; break; case ISD::AND: InsMask &= (unsigned)CN->getValue(); break; } } else { return false; } unsigned Tmp3 = 0; // If both of the inputs are ANDs and one of them has a logical shift by // constant as its input, make that the inserted value so that we can combine // the shift into the rotate part of the rlwimi instruction if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { if (Op1.getOperand(0).getOpcode() == ISD::SHL || Op1.getOperand(0).getOpcode() == ISD::SRL) { if (ConstantSDNode *CN = dyn_cast(Op1.getOperand(0).getOperand(1).Val)) { Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ? CN->getValue() : 32 - CN->getValue(); Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0)); } } else if (Op0.getOperand(0).getOpcode() == ISD::SHL || Op0.getOperand(0).getOpcode() == ISD::SRL) { if (ConstantSDNode *CN = dyn_cast(Op0.getOperand(0).getOperand(1).Val)) { std::swap(Op0, Op1); std::swap(TgtMask, InsMask); Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ? CN->getValue() : 32 - CN->getValue(); Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0)); } } } // Verify that the Target mask and Insert mask together form a full word mask // and that the Insert mask is a run of set bits (which implies both are runs // of set bits). Given that, Select the arguments and generate the rlwimi // instruction. unsigned MB, ME; if (((TgtMask & InsMask) == 0) && IsRunOfOnes(InsMask, MB, ME)) { unsigned Tmp1, Tmp2; bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF; // Check for rotlwi / rotrwi here, a special case of bitfield insert // where both bitfield halves are sourced from the same value. if (IsRotate && fullMask && OR.getOperand(0).getOperand(0) == OR.getOperand(1).getOperand(0)) { Tmp1 = SelectExpr(OR.getOperand(0).getOperand(0)); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Amount) .addImm(0).addImm(31); return true; } if (Op0Opc == ISD::AND && fullMask) Tmp1 = SelectExpr(Op0.getOperand(0)); else Tmp1 = SelectExpr(Op0); Tmp2 = Tmp3 ? Tmp3 : SelectExpr(Op1.getOperand(0)); BuildMI(BB, PPC::RLWIMI, 5, Result).addReg(Tmp1).addReg(Tmp2) .addImm(Amount).addImm(MB).addImm(ME); return true; } return false; } /// FoldIfWideZeroExtend - 32 bit PowerPC implicit masks shift amounts to the /// low six bits. If the shift amount is an ISD::AND node with a mask that is /// wider than the implicit mask, then we can get rid of the AND and let the /// shift do the mask. unsigned ISel::FoldIfWideZeroExtend(SDOperand N) { unsigned C; if (N.getOpcode() == ISD::AND && 5 == getImmediateForOpcode(N.getOperand(1), ISD::AND, C) && // isMask 31 == (C & 0xFFFF) && // ME 26 >= (C >> 16)) // MB return SelectExpr(N.getOperand(0)); else return SelectExpr(N); } unsigned ISel::SelectCC(SDOperand CC, unsigned& Opc, bool &Inv, unsigned& Idx) { unsigned Result, Tmp1, Tmp2; bool AlreadySelected = false; static const unsigned CompareOpcodes[] = { PPC::FCMPU, PPC::FCMPU, PPC::CMPW, PPC::CMPLW }; // Allocate a condition register for this expression Result = RegMap->createVirtualRegister(PPC32::CRRCRegisterClass); // If the first operand to the select is a SETCC node, then we can fold it // into the branch that selects which value to return. if (SetCCSDNode* SetCC = dyn_cast(CC.Val)) { bool U; Opc = getBCCForSetCC(SetCC->getCondition(), U); Idx = getCRIdxForSetCC(SetCC->getCondition(), Inv); // Pass the optional argument U to getImmediateForOpcode for SETCC, // so that it knows whether the SETCC immediate range is signed or not. if (1 == getImmediateForOpcode(SetCC->getOperand(1), ISD::SETCC, Tmp2, U)) { // For comparisons against zero, we can implicity set CR0 if a recording // variant (e.g. 'or.' instead of 'or') of the instruction that defines // operand zero of the SetCC node is available. if (0 == Tmp2 && NodeHasRecordingVariant(SetCC->getOperand(0).getOpcode()) && SetCC->getOperand(0).Val->hasOneUse()) { RecordSuccess = false; Tmp1 = SelectExpr(SetCC->getOperand(0), true); if (RecordSuccess) { ++Recorded; BuildMI(BB, PPC::MCRF, 1, Result).addReg(PPC::CR0); return Result; } AlreadySelected = true; } // If we could not implicitly set CR0, then emit a compare immediate // instead. if (!AlreadySelected) Tmp1 = SelectExpr(SetCC->getOperand(0)); if (U) BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(Tmp2); else BuildMI(BB, PPC::CMPWI, 2, Result).addReg(Tmp1).addSImm(Tmp2); } else { bool IsInteger = MVT::isInteger(SetCC->getOperand(0).getValueType()); unsigned CompareOpc = CompareOpcodes[2 * IsInteger + U]; Tmp1 = SelectExpr(SetCC->getOperand(0)); Tmp2 = SelectExpr(SetCC->getOperand(1)); BuildMI(BB, CompareOpc, 2, Result).addReg(Tmp1).addReg(Tmp2); } } else { if (PPCCRopts) return SelectCCExpr(CC, Opc, Inv, Idx); // If this isn't a SetCC, then select the value and compare it against zero, // treating it as if it were a boolean. Opc = PPC::BNE; Idx = getCRIdxForSetCC(ISD::SETNE, Inv); Tmp1 = SelectExpr(CC); BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(0); } return Result; } unsigned ISel::SelectCCExpr(SDOperand N, unsigned& Opc, bool &Inv, unsigned &Idx) { bool Inv0, Inv1; unsigned Idx0, Idx1, CROpc, Opc1, Tmp1, Tmp2; // Allocate a condition register for this expression unsigned Result = RegMap->createVirtualRegister(PPC32::CRRCRegisterClass); // Check for the operations we support: switch(N.getOpcode()) { default: Opc = PPC::BNE; Idx = getCRIdxForSetCC(ISD::SETNE, Inv); Tmp1 = SelectExpr(N); BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(0); break; case ISD::OR: case ISD::AND: ++MultiBranch; Tmp1 = SelectCCExpr(N.getOperand(0), Opc, Inv0, Idx0); Tmp2 = SelectCCExpr(N.getOperand(1), Opc1, Inv1, Idx1); CROpc = getCROpForSetCC(N.getOpcode(), Inv0, Inv1); if (Inv0 && !Inv1) { std::swap(Tmp1, Tmp2); std::swap(Idx0, Idx1); Opc = Opc1; } if (Inv0 && Inv1) Opc = PPC32InstrInfo::invertPPCBranchOpcode(Opc); BuildMI(BB, CROpc, 5, Result).addImm(Idx0).addReg(Tmp1).addImm(Idx0) .addReg(Tmp2).addImm(Idx1); Inv = false; Idx = Idx0; break; case ISD::SETCC: Tmp1 = SelectCC(N, Opc, Inv, Idx); Result = Tmp1; break; } return Result; } /// Check to see if the load is a constant offset from a base register bool ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset) { unsigned imm = 0, opcode = N.getOpcode(); if (N.getOpcode() == ISD::ADD) { Reg = SelectExpr(N.getOperand(0)); if (1 == getImmediateForOpcode(N.getOperand(1), opcode, imm)) { offset = imm; return false; } offset = SelectExpr(N.getOperand(1)); return true; } Reg = SelectExpr(N); offset = 0; return false; } void ISel::SelectBranchCC(SDOperand N) { MachineBasicBlock *Dest = cast(N.getOperand(2))->getBasicBlock(); bool Inv; unsigned Opc, CCReg, Idx; Select(N.getOperand(0)); //chain CCReg = SelectCC(N.getOperand(1), Opc, Inv, Idx); // Iterate to the next basic block, unless we're already at the end of the ilist::iterator It = BB, E = BB->getParent()->end(); if (++It == E) It = BB; // If this is a two way branch, then grab the fallthrough basic block argument // and build a PowerPC branch pseudo-op, suitable for long branch conversion // if necessary by the branch selection pass. Otherwise, emit a standard // conditional branch. if (N.getOpcode() == ISD::BRCONDTWOWAY) { MachineBasicBlock *Fallthrough = cast(N.getOperand(3))->getBasicBlock(); if (Dest != It) { BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) .addMBB(Dest).addMBB(Fallthrough); if (Fallthrough != It) BuildMI(BB, PPC::B, 1).addMBB(Fallthrough); } else { if (Fallthrough != It) { Opc = PPC32InstrInfo::invertPPCBranchOpcode(Opc); BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) .addMBB(Fallthrough).addMBB(Dest); } } } else { BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) .addMBB(Dest).addMBB(It); } return; } unsigned ISel::SelectExprFP(SDOperand N, unsigned Result) { unsigned Tmp1, Tmp2, Tmp3; unsigned Opc = 0; SDNode *Node = N.Val; MVT::ValueType DestType = N.getValueType(); unsigned opcode = N.getOpcode(); switch (opcode) { default: Node->dump(); assert(0 && "Node not handled!\n"); case ISD::SELECT: { // Attempt to generate FSEL. We can do this whenever we have an FP result, // and an FP comparison in the SetCC node. SetCCSDNode* SetCC = dyn_cast(N.getOperand(0).Val); if (SetCC && N.getOperand(0).getOpcode() == ISD::SETCC && !MVT::isInteger(SetCC->getOperand(0).getValueType()) && SetCC->getCondition() != ISD::SETEQ && SetCC->getCondition() != ISD::SETNE) { MVT::ValueType VT = SetCC->getOperand(0).getValueType(); unsigned TV = SelectExpr(N.getOperand(1)); // Use if TRUE unsigned FV = SelectExpr(N.getOperand(2)); // Use if FALSE ConstantFPSDNode *CN = dyn_cast(SetCC->getOperand(1)); if (CN && (CN->isExactlyValue(-0.0) || CN->isExactlyValue(0.0))) { switch(SetCC->getCondition()) { default: assert(0 && "Invalid FSEL condition"); abort(); case ISD::SETULT: case ISD::SETLT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETUGE: case ISD::SETGE: Tmp1 = SelectExpr(SetCC->getOperand(0)); // Val to compare against BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp1).addReg(TV).addReg(FV); return Result; case ISD::SETUGT: case ISD::SETGT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETULE: case ISD::SETLE: { if (SetCC->getOperand(0).getOpcode() == ISD::FNEG) { Tmp2 = SelectExpr(SetCC->getOperand(0).getOperand(0)); } else { Tmp2 = MakeReg(VT); Tmp1 = SelectExpr(SetCC->getOperand(0)); // Val to compare against BuildMI(BB, PPC::FNEG, 1, Tmp2).addReg(Tmp1); } BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp2).addReg(TV).addReg(FV); return Result; } } } else { Opc = (MVT::f64 == VT) ? PPC::FSUB : PPC::FSUBS; Tmp1 = SelectExpr(SetCC->getOperand(0)); // Val to compare against Tmp2 = SelectExpr(SetCC->getOperand(1)); Tmp3 = MakeReg(VT); switch(SetCC->getCondition()) { default: assert(0 && "Invalid FSEL condition"); abort(); case ISD::SETULT: case ISD::SETLT: BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV); return Result; case ISD::SETUGE: case ISD::SETGE: BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV); return Result; case ISD::SETUGT: case ISD::SETGT: BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV); return Result; case ISD::SETULE: case ISD::SETLE: BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV); return Result; } } assert(0 && "Should never get here"); return 0; } bool Inv; unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE unsigned CCReg = SelectCC(N.getOperand(0), Opc, Inv, Tmp3); // Create an iterator with which to insert the MBB for copying the false // value and the MBB to hold the PHI instruction for this SetCC. MachineBasicBlock *thisMBB = BB; const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); BuildMI(BB, Opc, 2).addReg(CCReg).addMBB(sinkMBB); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue) .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); return Result; } case ISD::FNEG: if (!NoExcessFPPrecision && ISD::ADD == N.getOperand(0).getOpcode() && N.getOperand(0).Val->hasOneUse() && ISD::MUL == N.getOperand(0).getOperand(0).getOpcode() && N.getOperand(0).getOperand(0).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(0).getOperand(1)); Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); } else if (!NoExcessFPPrecision && ISD::ADD == N.getOperand(0).getOpcode() && N.getOperand(0).Val->hasOneUse() && ISD::MUL == N.getOperand(0).getOperand(1).getOpcode() && N.getOperand(0).getOperand(1).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(0).getOperand(0)); Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); } else if (ISD::FABS == N.getOperand(0).getOpcode()) { Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); BuildMI(BB, PPC::FNABS, 1, Result).addReg(Tmp1); } else { Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::FNEG, 1, Result).addReg(Tmp1); } return Result; case ISD::FABS: Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::FABS, 1, Result).addReg(Tmp1); return Result; case ISD::FP_ROUND: assert (DestType == MVT::f32 && N.getOperand(0).getValueType() == MVT::f64 && "only f64 to f32 conversion supported here"); Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1); return Result; case ISD::FP_EXTEND: assert (DestType == MVT::f64 && N.getOperand(0).getValueType() == MVT::f32 && "only f32 to f64 conversion supported here"); Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1); return Result; case ISD::CopyFromReg: if (Result == 1) Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Tmp1 = dyn_cast(Node)->getReg(); BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1); return Result; case ISD::ConstantFP: { ConstantFPSDNode *CN = cast(N); Result = getConstDouble(CN->getValue(), Result); return Result; } case ISD::ADD: if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL && N.getOperand(0).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(1)); Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); return Result; } if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::MUL && N.getOperand(1).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(1).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(0)); Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); return Result; } Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::SUB: if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL && N.getOperand(0).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(1)); Opc = DestType == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); return Result; } if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::MUL && N.getOperand(1).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(1).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(0)); Opc = DestType == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); return Result; } Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::MUL: case ISD::SDIV: switch( opcode ) { case ISD::MUL: Opc = DestType == MVT::f64 ? PPC::FMUL : PPC::FMULS; break; case ISD::SDIV: Opc = DestType == MVT::f64 ? PPC::FDIV : PPC::FDIVS; break; }; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: { assert (N.getOperand(0).getValueType() == MVT::i32 && "int to float must operate on i32"); bool IsUnsigned = (ISD::UINT_TO_FP == opcode); Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register Tmp2 = MakeReg(MVT::f64); // temp reg to load the integer value into Tmp3 = MakeReg(MVT::i32); // temp reg to hold the conversion constant int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8); MachineConstantPool *CP = BB->getParent()->getConstantPool(); if (IsUnsigned) { unsigned ConstF = getConstDouble(0x1.000000p52); // Store the hi & low halves of the fp value, currently in int regs BuildMI(BB, PPC::LIS, 1, Tmp3).addSImm(0x4330); addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp3), FrameIdx); addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp1), FrameIdx, 4); addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx); // Generate the return value with a subtract BuildMI(BB, PPC::FSUB, 2, Result).addReg(Tmp2).addReg(ConstF); } else { unsigned ConstF = getConstDouble(0x1.000008p52); unsigned TmpL = MakeReg(MVT::i32); // Store the hi & low halves of the fp value, currently in int regs BuildMI(BB, PPC::LIS, 1, Tmp3).addSImm(0x4330); addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp3), FrameIdx); BuildMI(BB, PPC::XORIS, 2, TmpL).addReg(Tmp1).addImm(0x8000); addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(TmpL), FrameIdx, 4); addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx); // Generate the return value with a subtract BuildMI(BB, PPC::FSUB, 2, Result).addReg(Tmp2).addReg(ConstF); } return Result; } } assert(0 && "Should never get here"); return 0; } unsigned ISel::SelectExpr(SDOperand N, bool Recording) { unsigned Result; unsigned Tmp1, Tmp2, Tmp3; unsigned Opc = 0; unsigned opcode = N.getOpcode(); SDNode *Node = N.Val; MVT::ValueType DestType = N.getValueType(); if (Node->getOpcode() == ISD::CopyFromReg && MRegisterInfo::isVirtualRegister(cast(Node)->getReg())) // Just use the specified register as our input. return cast(Node)->getReg(); unsigned &Reg = ExprMap[N]; if (Reg) return Reg; switch (N.getOpcode()) { default: Reg = Result = (N.getValueType() != MVT::Other) ? MakeReg(N.getValueType()) : 1; break; case ISD::TAILCALL: case ISD::CALL: // If this is a call instruction, make sure to prepare ALL of the result // values as well as the chain. if (Node->getNumValues() == 1) Reg = Result = 1; // Void call, just a chain. else { Result = MakeReg(Node->getValueType(0)); ExprMap[N.getValue(0)] = Result; for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; } break; case ISD::ADD_PARTS: case ISD::SUB_PARTS: case ISD::SHL_PARTS: case ISD::SRL_PARTS: case ISD::SRA_PARTS: Result = MakeReg(Node->getValueType(0)); ExprMap[N.getValue(0)] = Result; for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i) ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); break; } if (ISD::CopyFromReg == opcode) DestType = N.getValue(0).getValueType(); if (DestType == MVT::f64 || DestType == MVT::f32) if (ISD::LOAD != opcode && ISD::EXTLOAD != opcode && ISD::UNDEF != opcode && ISD::CALL != opcode && ISD::TAILCALL != opcode) return SelectExprFP(N, Result); switch (opcode) { default: Node->dump(); assert(0 && "Node not handled!\n"); case ISD::UNDEF: BuildMI(BB, PPC::IMPLICIT_DEF, 0, Result); return Result; case ISD::DYNAMIC_STACKALLOC: // Generate both result values. FIXME: Need a better commment here? if (Result != 1) ExprMap[N.getValue(1)] = 1; else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); // FIXME: We are currently ignoring the requested alignment for handling // greater than the stack alignment. This will need to be revisited at some // point. Align = N.getOperand(2); if (!isa(N.getOperand(2)) || cast(N.getOperand(2))->getValue() != 0) { std::cerr << "Cannot allocate stack object with greater alignment than" << " the stack alignment yet!"; abort(); } Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1); // Put a pointer to the space into the result register by copying the SP BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R1).addReg(PPC::R1); return Result; case ISD::ConstantPool: Tmp1 = cast(N)->getIndex(); Tmp2 = MakeReg(MVT::i32); BuildMI(BB, PPC::LOADHiAddr, 2, Tmp2).addReg(getGlobalBaseReg()) .addConstantPoolIndex(Tmp1); BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1); return Result; case ISD::FrameIndex: Tmp1 = cast(N)->getIndex(); addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1, 0, false); return Result; case ISD::GlobalAddress: { GlobalValue *GV = cast(N)->getGlobal(); Tmp1 = MakeReg(MVT::i32); BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg()) .addGlobalAddress(GV); if (GV->hasWeakLinkage() || GV->isExternal()) { BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1); } else { BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV); } return Result; } case ISD::LOAD: case ISD::EXTLOAD: case ISD::ZEXTLOAD: case ISD::SEXTLOAD: { MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ? Node->getValueType(0) : cast(Node)->getExtraValueType(); bool sext = (ISD::SEXTLOAD == opcode); // Make sure we generate both values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); SDOperand Chain = N.getOperand(0); SDOperand Address = N.getOperand(1); Select(Chain); switch (TypeBeingLoaded) { default: Node->dump(); assert(0 && "Cannot load this type!"); case MVT::i1: Opc = PPC::LBZ; break; case MVT::i8: Opc = PPC::LBZ; break; case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break; case MVT::i32: Opc = PPC::LWZ; break; case MVT::f32: Opc = PPC::LFS; break; case MVT::f64: Opc = PPC::LFD; break; } if (ConstantPoolSDNode *CP = dyn_cast(Address)) { Tmp1 = MakeReg(MVT::i32); int CPI = CP->getIndex(); BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg()) .addConstantPoolIndex(CPI); BuildMI(BB, Opc, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1); } else if(Address.getOpcode() == ISD::FrameIndex) { Tmp1 = cast(Address)->getIndex(); addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1); } else { int offset; bool idx = SelectAddr(Address, Tmp1, offset); if (idx) { Opc = IndexedOpForOp(Opc); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(offset); } else { BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1); } } return Result; } case ISD::TAILCALL: case ISD::CALL: { unsigned GPR_idx = 0, FPR_idx = 0; static const unsigned GPR[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; // Lower the chain for this call. Select(N.getOperand(0)); ExprMap[N.getValue(Node->getNumValues()-1)] = 1; MachineInstr *CallMI; // Emit the correct call instruction based on the type of symbol called. if (GlobalAddressSDNode *GASD = dyn_cast(N.getOperand(1))) { CallMI = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(), true); } else if (ExternalSymbolSDNode *ESSDN = dyn_cast(N.getOperand(1))) { CallMI = BuildMI(PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(), true); } else { Tmp1 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1); BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12); CallMI = BuildMI(PPC::CALLindirect, 3).addImm(20).addImm(0) .addReg(PPC::R12); } // Load the register args to virtual regs std::vector ArgVR; for(int i = 2, e = Node->getNumOperands(); i < e; ++i) ArgVR.push_back(SelectExpr(N.getOperand(i))); // Copy the virtual registers into the appropriate argument register for(int i = 0, e = ArgVR.size(); i < e; ++i) { switch(N.getOperand(i+2).getValueType()) { default: Node->dump(); assert(0 && "Unknown value type for call"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: assert(GPR_idx < 8 && "Too many int args"); if (N.getOperand(i+2).getOpcode() != ISD::UNDEF) { BuildMI(BB, PPC::OR,2,GPR[GPR_idx]).addReg(ArgVR[i]).addReg(ArgVR[i]); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } ++GPR_idx; break; case MVT::f64: case MVT::f32: assert(FPR_idx < 13 && "Too many fp args"); BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgVR[i]); CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); ++FPR_idx; break; } } // Put the call instruction in the correct place in the MachineBasicBlock BB->push_back(CallMI); switch (Node->getValueType(0)) { default: assert(0 && "Unknown value type for call result!"); case MVT::Other: return 1; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (Node->getValueType(1) == MVT::i32) { BuildMI(BB, PPC::OR, 2, Result+1).addReg(PPC::R3).addReg(PPC::R3); BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R4).addReg(PPC::R4); } else { BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R3).addReg(PPC::R3); } break; case MVT::f32: case MVT::f64: BuildMI(BB, PPC::FMR, 1, Result).addReg(PPC::F1); break; } return Result+N.ResNo; } case ISD::SIGN_EXTEND: case ISD::SIGN_EXTEND_INREG: Tmp1 = SelectExpr(N.getOperand(0)); switch(cast(Node)->getExtraValueType()) { default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break; case MVT::i16: BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1); break; case MVT::i8: BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1); break; case MVT::i1: BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp1).addSImm(0); break; } return Result; case ISD::CopyFromReg: if (Result == 1) Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); Tmp1 = dyn_cast(Node)->getReg(); BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1); return Result; case ISD::SHL: Tmp1 = SelectExpr(N.getOperand(0)); if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Tmp2 = CN->getValue() & 0x1F; BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Tmp2).addImm(0) .addImm(31-Tmp2); } else { Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::SRL: Tmp1 = SelectExpr(N.getOperand(0)); if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Tmp2 = CN->getValue() & 0x1F; BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(32-Tmp2) .addImm(Tmp2).addImm(31); } else { Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::SRA: Tmp1 = SelectExpr(N.getOperand(0)); if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { Tmp2 = CN->getValue() & 0x1F; BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2); } else { Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::CTLZ: Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::CNTLZW, 1, Result).addReg(Tmp1); return Result; case ISD::ADD: assert (DestType == MVT::i32 && "Only do arithmetic on i32s!"); Tmp1 = SelectExpr(N.getOperand(0)); switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { default: assert(0 && "unhandled result code"); case 0: // No immediate Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case 1: // Low immediate BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2); break; case 2: // Shifted immediate BuildMI(BB, PPC::ADDIS, 2, Result).addReg(Tmp1).addSImm(Tmp2); break; } return Result; case ISD::AND: if (PPCCRopts) { if (N.getOperand(0).getOpcode() == ISD::SETCC || N.getOperand(1).getOpcode() == ISD::SETCC) { bool Inv; Tmp1 = SelectCCExpr(N, Opc, Inv, Tmp2); MoveCRtoGPR(Tmp1, Inv, Tmp2, Result); return Result; } } // FIXME: should add check in getImmediateForOpcode to return a value // indicating the immediate is a run of set bits so we can emit a bitfield // clear with RLWINM instead. switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { default: assert(0 && "unhandled result code"); case 0: // No immediate // Check for andc: and, (xor a, -1), b if (N.getOperand(0).getOpcode() == ISD::XOR && N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant && cast(N.getOperand(0).getOperand(1))->isAllOnesValue()) { Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::ANDC, 2, Result).addReg(Tmp2).addReg(Tmp1); return Result; } // It wasn't and-with-complement, emit a regular and Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); Opc = Recording ? PPC::ANDo : PPC::AND; BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case 1: // Low immediate Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::ANDIo, 2, Result).addReg(Tmp1).addImm(Tmp2); break; case 2: // Shifted immediate Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::ANDISo, 2, Result).addReg(Tmp1).addImm(Tmp2); break; case 5: // Bitfield mask Opc = Recording ? PPC::RLWINMo : PPC::RLWINM; Tmp3 = Tmp2 >> 16; // MB Tmp2 &= 0xFFFF; // ME if (N.getOperand(0).getOpcode() == ISD::SRL) if (ConstantSDNode *SA = dyn_cast(N.getOperand(0).getOperand(1))) { // We can fold the RLWINM and the SRL together if the mask is // clearing the top bits which are rotated around. unsigned RotAmt = 32-(SA->getValue() & 31); if (Tmp2 <= RotAmt) { Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); BuildMI(BB, Opc, 4, Result).addReg(Tmp1).addImm(RotAmt) .addImm(Tmp3).addImm(Tmp2); break; } } Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, Opc, 4, Result).addReg(Tmp1).addImm(0) .addImm(Tmp3).addImm(Tmp2); break; } RecordSuccess = true; return Result; case ISD::OR: if (SelectBitfieldInsert(N, Result)) return Result; if (PPCCRopts) { if (N.getOperand(0).getOpcode() == ISD::SETCC || N.getOperand(1).getOpcode() == ISD::SETCC) { bool Inv; Tmp1 = SelectCCExpr(N, Opc, Inv, Tmp2); MoveCRtoGPR(Tmp1, Inv, Tmp2, Result); return Result; } } Tmp1 = SelectExpr(N.getOperand(0)); switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { default: assert(0 && "unhandled result code"); case 0: // No immediate Tmp2 = SelectExpr(N.getOperand(1)); Opc = Recording ? PPC::ORo : PPC::OR; RecordSuccess = true; BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case 1: // Low immediate BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(Tmp2); break; case 2: // Shifted immediate BuildMI(BB, PPC::ORIS, 2, Result).addReg(Tmp1).addImm(Tmp2); break; } return Result; case ISD::XOR: { // Check for EQV: xor, (xor a, -1), b if (N.getOperand(0).getOpcode() == ISD::XOR && N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant && cast(N.getOperand(0).getOperand(1))->isAllOnesValue()) { Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; } // Check for NOT, NOR, EQV, and NAND: xor (copy, or, xor, and), -1 if (N.getOperand(1).getOpcode() == ISD::Constant && cast(N.getOperand(1))->isAllOnesValue()) { switch(N.getOperand(0).getOpcode()) { case ISD::OR: Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::AND: Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); BuildMI(BB, PPC::NAND, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::XOR: Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2); break; default: Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp1); break; } return Result; } Tmp1 = SelectExpr(N.getOperand(0)); switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { default: assert(0 && "unhandled result code"); case 0: // No immediate Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case 1: // Low immediate BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(Tmp2); break; case 2: // Shifted immediate BuildMI(BB, PPC::XORIS, 2, Result).addReg(Tmp1).addImm(Tmp2); break; } return Result; } case ISD::SUB: if (1 == getImmediateForOpcode(N.getOperand(0), opcode, Tmp1, true)) { Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp2).addSImm(Tmp1); } else if (1 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) { Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2); } else { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1); } return Result; case ISD::MUL: Tmp1 = SelectExpr(N.getOperand(0)); if (1 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2); else { Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::MULLW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::MULHS: case ISD::MULHU: Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); Opc = (ISD::MULHU == opcode) ? PPC::MULHWU : PPC::MULHW; BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::SDIV: case ISD::UDIV: switch (getImmediateForOpcode(N.getOperand(1), opcode, Tmp3)) { default: break; // If this is an sdiv by a power of two, we can use an srawi/addze pair. case 3: Tmp1 = MakeReg(MVT::i32); Tmp2 = SelectExpr(N.getOperand(0)); if ((int)Tmp3 < 0) { unsigned Tmp4 = MakeReg(MVT::i32); BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(-Tmp3); BuildMI(BB, PPC::ADDZE, 1, Tmp4).addReg(Tmp1); BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp4); } else { BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3); BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp1); } return Result; // If this is a divide by constant, we can emit code using some magic // constants to implement it as a multiply instead. case 4: ExprMap.erase(N); if (opcode == ISD::SDIV) return SelectExpr(BuildSDIVSequence(N)); else return SelectExpr(BuildUDIVSequence(N)); } Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW; BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::ADD_PARTS: case ISD::SUB_PARTS: { assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 && "Not an i64 add/sub!"); // Emit all of the operands. std::vector InVals; for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) InVals.push_back(SelectExpr(N.getOperand(i))); if (N.getOpcode() == ISD::ADD_PARTS) { BuildMI(BB, PPC::ADDC, 2, Result).addReg(InVals[0]).addReg(InVals[2]); BuildMI(BB, PPC::ADDE, 2, Result+1).addReg(InVals[1]).addReg(InVals[3]); } else { BuildMI(BB, PPC::SUBFC, 2, Result).addReg(InVals[2]).addReg(InVals[0]); BuildMI(BB, PPC::SUBFE, 2, Result+1).addReg(InVals[3]).addReg(InVals[1]); } return Result+N.ResNo; } case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: { assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 && "Not an i64 shift!"); unsigned ShiftOpLo = SelectExpr(N.getOperand(0)); unsigned ShiftOpHi = SelectExpr(N.getOperand(1)); unsigned SHReg = FoldIfWideZeroExtend(N.getOperand(2)); Tmp1 = MakeReg(MVT::i32); Tmp2 = MakeReg(MVT::i32); Tmp3 = MakeReg(MVT::i32); unsigned Tmp4 = MakeReg(MVT::i32); unsigned Tmp5 = MakeReg(MVT::i32); unsigned Tmp6 = MakeReg(MVT::i32); BuildMI(BB, PPC::SUBFIC, 2, Tmp1).addReg(SHReg).addSImm(32); if (ISD::SHL_PARTS == opcode) { BuildMI(BB, PPC::SLW, 2, Tmp2).addReg(ShiftOpHi).addReg(SHReg); BuildMI(BB, PPC::SRW, 2, Tmp3).addReg(ShiftOpLo).addReg(Tmp1); BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3); BuildMI(BB, PPC::ADDI, 2, Tmp5).addReg(SHReg).addSImm(-32); BuildMI(BB, PPC::SLW, 2, Tmp6).addReg(ShiftOpLo).addReg(Tmp5); BuildMI(BB, PPC::OR, 2, Result+1).addReg(Tmp4).addReg(Tmp6); BuildMI(BB, PPC::SLW, 2, Result).addReg(ShiftOpLo).addReg(SHReg); } else if (ISD::SRL_PARTS == opcode) { BuildMI(BB, PPC::SRW, 2, Tmp2).addReg(ShiftOpLo).addReg(SHReg); BuildMI(BB, PPC::SLW, 2, Tmp3).addReg(ShiftOpHi).addReg(Tmp1); BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3); BuildMI(BB, PPC::ADDI, 2, Tmp5).addReg(SHReg).addSImm(-32); BuildMI(BB, PPC::SRW, 2, Tmp6).addReg(ShiftOpHi).addReg(Tmp5); BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp4).addReg(Tmp6); BuildMI(BB, PPC::SRW, 2, Result+1).addReg(ShiftOpHi).addReg(SHReg); } else { MachineBasicBlock *TmpMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *OldMBB = BB; MachineFunction *F = BB->getParent(); ilist::iterator It = BB; ++It; F->getBasicBlockList().insert(It, TmpMBB); F->getBasicBlockList().insert(It, PhiMBB); BB->addSuccessor(TmpMBB); BB->addSuccessor(PhiMBB); BuildMI(BB, PPC::SRW, 2, Tmp2).addReg(ShiftOpLo).addReg(SHReg); BuildMI(BB, PPC::SLW, 2, Tmp3).addReg(ShiftOpHi).addReg(Tmp1); BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3); BuildMI(BB, PPC::ADDICo, 2, Tmp5).addReg(SHReg).addSImm(-32); BuildMI(BB, PPC::SRAW, 2, Tmp6).addReg(ShiftOpHi).addReg(Tmp5); BuildMI(BB, PPC::SRAW, 2, Result+1).addReg(ShiftOpHi).addReg(SHReg); BuildMI(BB, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB); // Select correct least significant half if the shift amount > 32 BB = TmpMBB; unsigned Tmp7 = MakeReg(MVT::i32); BuildMI(BB, PPC::OR, 2, Tmp7).addReg(Tmp6).addReg(Tmp6); TmpMBB->addSuccessor(PhiMBB); BB = PhiMBB; BuildMI(BB, PPC::PHI, 4, Result).addReg(Tmp4).addMBB(OldMBB) .addReg(Tmp7).addMBB(TmpMBB); } return Result+N.ResNo; } case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: { bool U = (ISD::FP_TO_UINT == opcode); Tmp1 = SelectExpr(N.getOperand(0)); if (!U) { Tmp2 = MakeReg(MVT::f64); BuildMI(BB, PPC::FCTIWZ, 1, Tmp2).addReg(Tmp1); int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8); addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(Tmp2), FrameIdx); addFrameReference(BuildMI(BB, PPC::LWZ, 2, Result), FrameIdx, 4); return Result; } else { unsigned Zero = getConstDouble(0.0); unsigned MaxInt = getConstDouble((1LL << 32) - 1); unsigned Border = getConstDouble(1LL << 31); unsigned UseZero = MakeReg(MVT::f64); unsigned UseMaxInt = MakeReg(MVT::f64); unsigned UseChoice = MakeReg(MVT::f64); unsigned TmpReg = MakeReg(MVT::f64); unsigned TmpReg2 = MakeReg(MVT::f64); unsigned ConvReg = MakeReg(MVT::f64); unsigned IntTmp = MakeReg(MVT::i32); unsigned XorReg = MakeReg(MVT::i32); MachineFunction *F = BB->getParent(); int FrameIdx = F->getFrameInfo()->CreateStackObject(8, 8); // Update machine-CFG edges MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *OldMBB = BB; ilist::iterator It = BB; ++It; F->getBasicBlockList().insert(It, XorMBB); F->getBasicBlockList().insert(It, PhiMBB); BB->addSuccessor(XorMBB); BB->addSuccessor(PhiMBB); // Convert from floating point to unsigned 32-bit value // Use 0 if incoming value is < 0.0 BuildMI(BB, PPC::FSEL, 3, UseZero).addReg(Tmp1).addReg(Tmp1).addReg(Zero); // Use 2**32 - 1 if incoming value is >= 2**32 BuildMI(BB, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(Tmp1); BuildMI(BB, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt).addReg(UseZero) .addReg(MaxInt); // Subtract 2**31 BuildMI(BB, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border); // Use difference if >= 2**31 BuildMI(BB, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice).addReg(Border); BuildMI(BB, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg) .addReg(UseChoice); // Convert to integer BuildMI(BB, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2); addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(ConvReg), FrameIdx); addFrameReference(BuildMI(BB, PPC::LWZ, 2, IntTmp), FrameIdx, 4); BuildMI(BB, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB); BuildMI(BB, PPC::B, 1).addMBB(XorMBB); // XorMBB: // add 2**31 if input was >= 2**31 BB = XorMBB; BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000); XorMBB->addSuccessor(PhiMBB); // PhiMBB: // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ] BB = PhiMBB; BuildMI(BB, PPC::PHI, 4, Result).addReg(IntTmp).addMBB(OldMBB) .addReg(XorReg).addMBB(XorMBB); return Result; } assert(0 && "Should never get here"); return 0; } case ISD::SETCC: if (SetCCSDNode *SetCC = dyn_cast(Node)) { if (ConstantSDNode *CN = dyn_cast(SetCC->getOperand(1).Val)) { // We can codegen setcc op, imm very efficiently compared to a brcond. // Check for those cases here. // setcc op, 0 if (CN->getValue() == 0) { Tmp1 = SelectExpr(SetCC->getOperand(0)); switch (SetCC->getCondition()) { default: SetCC->dump(); assert(0 && "Unhandled SetCC condition"); abort(); case ISD::SETEQ: Tmp2 = MakeReg(MVT::i32); BuildMI(BB, PPC::CNTLZW, 1, Tmp2).addReg(Tmp1); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp2).addImm(27) .addImm(5).addImm(31); break; case ISD::SETNE: Tmp2 = MakeReg(MVT::i32); BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(-1); BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp2).addReg(Tmp1); break; case ISD::SETLT: BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(1) .addImm(31).addImm(31); break; case ISD::SETGT: Tmp2 = MakeReg(MVT::i32); Tmp3 = MakeReg(MVT::i32); BuildMI(BB, PPC::NEG, 2, Tmp2).addReg(Tmp1); BuildMI(BB, PPC::ANDC, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1) .addImm(31).addImm(31); break; } return Result; } // setcc op, -1 if (CN->isAllOnesValue()) { Tmp1 = SelectExpr(SetCC->getOperand(0)); switch (SetCC->getCondition()) { default: assert(0 && "Unhandled SetCC condition"); abort(); case ISD::SETEQ: Tmp2 = MakeReg(MVT::i32); Tmp3 = MakeReg(MVT::i32); BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(1); BuildMI(BB, PPC::LI, 1, Tmp3).addSImm(0); BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp3); break; case ISD::SETNE: Tmp2 = MakeReg(MVT::i32); Tmp3 = MakeReg(MVT::i32); BuildMI(BB, PPC::NOR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); BuildMI(BB, PPC::ADDIC, 2, Tmp3).addReg(Tmp2).addSImm(-1); BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp3).addReg(Tmp2); break; case ISD::SETLT: Tmp2 = MakeReg(MVT::i32); Tmp3 = MakeReg(MVT::i32); BuildMI(BB, PPC::ADDI, 2, Tmp2).addReg(Tmp1).addSImm(1); BuildMI(BB, PPC::AND, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1) .addImm(31).addImm(31); break; case ISD::SETGT: Tmp2 = MakeReg(MVT::i32); BuildMI(BB, PPC::RLWINM, 4, Tmp2).addReg(Tmp1).addImm(1) .addImm(31).addImm(31); BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp2).addImm(1); break; } return Result; } } bool Inv; unsigned CCReg = SelectCC(N, Opc, Inv, Tmp2); MoveCRtoGPR(CCReg, Inv, Tmp2, Result); return Result; } assert(0 && "Is this legal?"); return 0; case ISD::SELECT: { bool Inv; unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE unsigned CCReg = SelectCC(N.getOperand(0), Opc, Inv, Tmp3); // Create an iterator with which to insert the MBB for copying the false // value and the MBB to hold the PHI instruction for this SetCC. MachineBasicBlock *thisMBB = BB; const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); BuildMI(BB, Opc, 2).addReg(CCReg).addMBB(sinkMBB); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue) .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); return Result; } case ISD::Constant: switch (N.getValueType()) { default: assert(0 && "Cannot use constants of this type!"); case MVT::i1: BuildMI(BB, PPC::LI, 1, Result) .addSImm(!cast(N)->isNullValue()); break; case MVT::i32: { int v = (int)cast(N)->getSignExtended(); if (v < 32768 && v >= -32768) { BuildMI(BB, PPC::LI, 1, Result).addSImm(v); } else { Tmp1 = MakeReg(MVT::i32); BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(v >> 16); BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(v & 0xFFFF); } } } return Result; } return 0; } void ISel::Select(SDOperand N) { unsigned Tmp1, Tmp2, Opc; unsigned opcode = N.getOpcode(); if (!ExprMap.insert(std::make_pair(N, 1)).second) return; // Already selected. SDNode *Node = N.Val; switch (Node->getOpcode()) { default: Node->dump(); std::cerr << "\n"; assert(0 && "Node not handled yet!"); case ISD::EntryToken: return; // Noop case ISD::TokenFactor: for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Select(Node->getOperand(i)); return; case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: Select(N.getOperand(0)); Tmp1 = cast(N.getOperand(1))->getValue(); Opc = N.getOpcode() == ISD::CALLSEQ_START ? PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP; BuildMI(BB, Opc, 1).addImm(Tmp1); return; case ISD::BR: { MachineBasicBlock *Dest = cast(N.getOperand(1))->getBasicBlock(); Select(N.getOperand(0)); BuildMI(BB, PPC::B, 1).addMBB(Dest); return; } case ISD::BRCOND: case ISD::BRCONDTWOWAY: SelectBranchCC(N); return; case ISD::CopyToReg: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = cast(N)->getReg(); if (Tmp1 != Tmp2) { if (N.getOperand(1).getValueType() == MVT::f64 || N.getOperand(1).getValueType() == MVT::f32) BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1); else BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); } return; case ISD::ImplicitDef: Select(N.getOperand(0)); BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast(N)->getReg()); return; case ISD::RET: switch (N.getNumOperands()) { default: assert(0 && "Unknown return instruction!"); case 3: assert(N.getOperand(1).getValueType() == MVT::i32 && N.getOperand(2).getValueType() == MVT::i32 && "Unknown two-register value!"); Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = SelectExpr(N.getOperand(2)); BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp2).addReg(Tmp2); BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp1).addReg(Tmp1); break; case 2: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); switch (N.getOperand(1).getValueType()) { default: assert(0 && "Unknown return type!"); case MVT::f64: case MVT::f32: BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1); break; case MVT::i32: BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1); break; } case 1: Select(N.getOperand(0)); break; } BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction return; case ISD::TRUNCSTORE: case ISD::STORE: { SDOperand Chain = N.getOperand(0); SDOperand Value = N.getOperand(1); SDOperand Address = N.getOperand(2); Select(Chain); Tmp1 = SelectExpr(Value); //value if (opcode == ISD::STORE) { switch(Value.getValueType()) { default: assert(0 && "unknown Type in store"); case MVT::i32: Opc = PPC::STW; break; case MVT::f64: Opc = PPC::STFD; break; case MVT::f32: Opc = PPC::STFS; break; } } else { //ISD::TRUNCSTORE switch(cast(Node)->getExtraValueType()) { default: assert(0 && "unknown Type in store"); case MVT::i1: case MVT::i8: Opc = PPC::STB; break; case MVT::i16: Opc = PPC::STH; break; } } if(Address.getOpcode() == ISD::FrameIndex) { Tmp2 = cast(Address)->getIndex(); addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2); } else { int offset; bool idx = SelectAddr(Address, Tmp2, offset); if (idx) { Opc = IndexedOpForOp(Opc); BuildMI(BB, Opc, 3).addReg(Tmp1).addReg(Tmp2).addReg(offset); } else { BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2); } } return; } case ISD::EXTLOAD: case ISD::SEXTLOAD: case ISD::ZEXTLOAD: case ISD::LOAD: case ISD::CopyFromReg: case ISD::TAILCALL: case ISD::CALL: case ISD::DYNAMIC_STACKALLOC: ExprMap.erase(N); SelectExpr(N); return; } assert(0 && "Should not be reached!"); } /// createPPC32PatternInstructionSelector - This pass converts an LLVM function /// into a machine code representation using pattern matching and a machine /// description file. /// FunctionPass *llvm::createPPC32ISelPattern(TargetMachine &TM) { return new ISel(TM); }