//===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===// // // This file implements the TDDataStructures class, which represents the // Top-down Interprocedural closure of the data structure graph over the // program. This is useful (but not strictly necessary?) for applications // like pointer analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DataStructure.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "DSCallSiteIterator.h" namespace { RegisterAnalysis // Register the pass Y("tddatastructure", "Top-down Data Structure Analysis"); Statistic<> NumTDInlines("tddatastructures", "Number of graphs inlined"); } /// FunctionHasCompleteArguments - This function returns true if it is safe not /// to mark arguments to the function complete. /// /// FIXME: Need to check if all callers have been found, or rather if a /// funcpointer escapes! /// static bool FunctionHasCompleteArguments(Function &F) { return F.hasInternalLinkage(); } // run - Calculate the top down data structure graphs for each function in the // program. // bool TDDataStructures::run(Module &M) { BUDataStructures &BU = getAnalysis(); GlobalsGraph = new DSGraph(BU.getGlobalsGraph()); // Figure out which functions must not mark their arguments complete because // they are accessible outside this compilation unit. for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!FunctionHasCompleteArguments(*I)) ArgsRemainIncomplete.insert(I); // We want to traverse the call graph in reverse post-order. To do this, we // calculate a post-order traversal, then reverse it. hash_set VisitedGraph; std::vector PostOrder; const BUDataStructures::ActualCalleesTy &ActualCallees = getAnalysis().getActualCallees(); // Calculate top-down from main... if (Function *F = M.getMainFunction()) ComputePostOrder(*F, VisitedGraph, PostOrder, ActualCallees); // Next calculate the graphs for each unreachable function... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) ComputePostOrder(*I, VisitedGraph, PostOrder, ActualCallees); VisitedGraph.clear(); // Release memory! // Visit each of the graphs in reverse post-order now! while (!PostOrder.empty()) { inlineGraphIntoCallees(*PostOrder.back()); PostOrder.pop_back(); } ArgsRemainIncomplete.clear(); return false; } DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) { DSGraph *&G = DSInfo[&F]; if (G == 0) { // Not created yet? Clone BU graph... G = new DSGraph(getAnalysis().getDSGraph(F)); G->getAuxFunctionCalls().clear(); G->setPrintAuxCalls(); G->setGlobalsGraph(GlobalsGraph); } return *G; } void TDDataStructures::ComputePostOrder(Function &F,hash_set &Visited, std::vector &PostOrder, const BUDataStructures::ActualCalleesTy &ActualCallees) { if (F.isExternal()) return; DSGraph &G = getOrCreateDSGraph(F); if (Visited.count(&G)) return; Visited.insert(&G); // Recursively traverse all of the callee graphs. const std::vector &FunctionCalls = G.getFunctionCalls(); for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { std::pair IP = ActualCallees.equal_range(&FunctionCalls[i].getCallInst()); for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; I != IP.second; ++I) ComputePostOrder(*I->second, Visited, PostOrder, ActualCallees); } PostOrder.push_back(&G); } // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // // FIXME: This should be releaseMemory and will work fine, except that LoadVN // has no way to extend the lifetime of the pass, which screws up ds-aa. // void TDDataStructures::releaseMyMemory() { for (hash_map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) { I->second->getReturnNodes().erase(I->first); if (I->second->getReturnNodes().empty()) delete I->second; } // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); delete GlobalsGraph; GlobalsGraph = 0; } void TDDataStructures::inlineGraphIntoCallees(DSGraph &Graph) { // Recompute the Incomplete markers and eliminate unreachable nodes. Graph.removeTriviallyDeadNodes(); Graph.maskIncompleteMarkers(); // If any of the functions has incomplete incoming arguments, don't mark any // of them as complete. bool HasIncompleteArgs = false; const DSGraph::ReturnNodesTy &GraphReturnNodes = Graph.getReturnNodes(); for (DSGraph::ReturnNodesTy::const_iterator I = GraphReturnNodes.begin(), E = GraphReturnNodes.end(); I != E; ++I) if (ArgsRemainIncomplete.count(I->first)) { HasIncompleteArgs = true; break; } // Now fold in the necessary globals from the GlobalsGraph. A global G // must be folded in if it exists in the current graph (i.e., is not dead) // and it was not inlined from any of my callers. If it was inlined from // a caller, it would have been fully consistent with the GlobalsGraph // in the caller so folding in is not necessary. Otherwise, this node came // solely from this function's BU graph and so has to be made consistent. // Graph.updateFromGlobalGraph(); // Recompute the Incomplete markers. Depends on whether args are complete unsigned Flags = HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs; Graph.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals); // Delete dead nodes. Treat globals that are unreachable as dead also. Graph.removeDeadNodes(DSGraph::RemoveUnreachableGlobals); // We are done with computing the current TD Graph! Now move on to // inlining the current graph into the graphs for its callees, if any. // const std::vector &FunctionCalls = Graph.getFunctionCalls(); if (FunctionCalls.empty()) { DEBUG(std::cerr << " [TD] No callees for: " << Graph.getFunctionNames() << "\n"); return; } // Now that we have information about all of the callees, propagate the // current graph into the callees. Clone only the reachable subgraph at // each call-site, not the entire graph (even though the entire graph // would be cloned only once, this should still be better on average). // DEBUG(std::cerr << " [TD] Inlining '" << Graph.getFunctionNames() <<"' into " << FunctionCalls.size() << " call nodes.\n"); const BUDataStructures::ActualCalleesTy &ActualCallees = getAnalysis().getActualCallees(); // Loop over all the call sites and all the callees at each call site. // Clone and merge the reachable subgraph from the call into callee's graph. // for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { // For each function in the invoked function list at this call site... std::pair IP = ActualCallees.equal_range(&FunctionCalls[i].getCallInst()); // Multiple callees may have the same graph, so try to inline and merge // only once for each pair, not once for each // pair; the latter will be correct but slower. hash_set GraphsSeen; // Loop over each actual callee at this call site for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first; I != IP.second; ++I) { DSGraph& CalleeGraph = getDSGraph(*I->second); assert(&CalleeGraph != &Graph && "TD need not inline graph into self!"); // if this callee graph is already done at this site, skip this callee if (GraphsSeen.find(&CalleeGraph) != GraphsSeen.end()) continue; GraphsSeen.insert(&CalleeGraph); // Get the root nodes for cloning the reachable subgraph into each callee: // -- all global nodes that appear in both the caller and the callee // -- return value at this call site, if any // -- actual arguments passed at this call site // -- callee node at this call site, if this is an indirect call (this may // not be needed for merging, but allows us to create CS and therefore // simplify the merging below). hash_set RootNodeSet; for (DSGraph::ScalarMapTy::const_iterator SI = CalleeGraph.getScalarMap().begin(), SE = CalleeGraph.getScalarMap().end(); SI != SE; ++SI) if (GlobalValue* GV = dyn_cast(SI->first)) { DSGraph::ScalarMapTy::const_iterator GI=Graph.getScalarMap().find(GV); if (GI != Graph.getScalarMap().end()) RootNodeSet.insert(GI->second.getNode()); } if (const DSNode* RetNode = FunctionCalls[i].getRetVal().getNode()) RootNodeSet.insert(RetNode); for (unsigned j=0, N=FunctionCalls[i].getNumPtrArgs(); j < N; ++j) if (const DSNode* ArgTarget = FunctionCalls[i].getPtrArg(j).getNode()) RootNodeSet.insert(ArgTarget); if (FunctionCalls[i].isIndirectCall()) RootNodeSet.insert(FunctionCalls[i].getCalleeNode()); DEBUG(std::cerr << " [TD] Resolving arguments for callee graph '" << CalleeGraph.getFunctionNames() << "': " << I->second->getFunctionType()->getNumParams() << " args\n at call site (DSCallSite*) 0x" << &FunctionCalls[i] << "\n"); DSGraph::NodeMapTy NodeMapInCallee; // map from nodes to clones in callee DSGraph::NodeMapTy CompletedMap; // unused map for nodes not to do CalleeGraph.cloneReachableSubgraph(Graph, RootNodeSet, NodeMapInCallee, CompletedMap, DSGraph::StripModRefBits | DSGraph::KeepAllocaBit); // Transform our call site info into the cloned version for CalleeGraph DSCallSite CS(FunctionCalls[i], NodeMapInCallee); // Get the formal argument and return nodes for the called function // and merge them with the cloned subgraph. Global nodes were merged // already by cloneReachableSubgraph() above. CalleeGraph.getCallSiteForArguments(*I->second).mergeWith(CS); ++NumTDInlines; } } DEBUG(std::cerr << " [TD] Done inlining into callees for: " << Graph.getFunctionNames() << " [" << Graph.getGraphSize() << "+" << Graph.getFunctionCalls().size() << "]\n"); }