//===- FileCheck.cpp - Check that File's Contents match what is expected --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // FileCheck does a line-by line check of a file that validates whether it // contains the expected content. This is useful for regression tests etc. // // This file implements most of the API that will be used by the FileCheck utility // as well as various unittests. //===----------------------------------------------------------------------===// #include "llvm/Support/FileCheck.h" #include "FileCheckImpl.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/CheckedArithmetic.h" #include "llvm/Support/FormatVariadic.h" #include #include #include #include using namespace llvm; StringRef ExpressionFormat::toString() const { switch (Value) { case Kind::NoFormat: return StringRef(""); case Kind::Unsigned: return StringRef("%u"); case Kind::Signed: return StringRef("%d"); case Kind::HexUpper: return StringRef("%X"); case Kind::HexLower: return StringRef("%x"); } llvm_unreachable("unknown expression format"); } Expected ExpressionFormat::getWildcardRegex() const { switch (Value) { case Kind::Unsigned: return StringRef("[0-9]+"); case Kind::Signed: return StringRef("-?[0-9]+"); case Kind::HexUpper: return StringRef("[0-9A-F]+"); case Kind::HexLower: return StringRef("[0-9a-f]+"); default: return createStringError(std::errc::invalid_argument, "trying to match value with invalid format"); } } Expected ExpressionFormat::getMatchingString(ExpressionValue IntegerValue) const { if (Value == Kind::Signed) { Expected SignedValue = IntegerValue.getSignedValue(); if (!SignedValue) return SignedValue.takeError(); return itostr(*SignedValue); } Expected UnsignedValue = IntegerValue.getUnsignedValue(); if (!UnsignedValue) return UnsignedValue.takeError(); switch (Value) { case Kind::Unsigned: return utostr(*UnsignedValue); case Kind::HexUpper: return utohexstr(*UnsignedValue, /*LowerCase=*/false); case Kind::HexLower: return utohexstr(*UnsignedValue, /*LowerCase=*/true); default: return createStringError(std::errc::invalid_argument, "trying to match value with invalid format"); } } Expected ExpressionFormat::valueFromStringRepr(StringRef StrVal, const SourceMgr &SM) const { bool ValueIsSigned = Value == Kind::Signed; StringRef OverflowErrorStr = "unable to represent numeric value"; if (ValueIsSigned) { int64_t SignedValue; if (StrVal.getAsInteger(10, SignedValue)) return ErrorDiagnostic::get(SM, StrVal, OverflowErrorStr); return ExpressionValue(SignedValue); } bool Hex = Value == Kind::HexUpper || Value == Kind::HexLower; uint64_t UnsignedValue; if (StrVal.getAsInteger(Hex ? 16 : 10, UnsignedValue)) return ErrorDiagnostic::get(SM, StrVal, OverflowErrorStr); return ExpressionValue(UnsignedValue); } static int64_t getAsSigned(uint64_t UnsignedValue) { // Use memcpy to reinterpret the bitpattern in Value since casting to // signed is implementation-defined if the unsigned value is too big to be // represented in the signed type and using an union violates type aliasing // rules. int64_t SignedValue; memcpy(&SignedValue, &UnsignedValue, sizeof(SignedValue)); return SignedValue; } Expected ExpressionValue::getSignedValue() const { if (Negative) return getAsSigned(Value); if (Value > (uint64_t)std::numeric_limits::max()) return make_error(); // Value is in the representable range of int64_t so we can use cast. return static_cast(Value); } Expected ExpressionValue::getUnsignedValue() const { if (Negative) return make_error(); return Value; } ExpressionValue ExpressionValue::getAbsolute() const { if (!Negative) return *this; int64_t SignedValue = getAsSigned(Value); int64_t MaxInt64 = std::numeric_limits::max(); // Absolute value can be represented as int64_t. if (SignedValue >= -MaxInt64) return ExpressionValue(-getAsSigned(Value)); // -X == -(max int64_t + Rem), negate each component independently. SignedValue += MaxInt64; uint64_t RemainingValueAbsolute = -SignedValue; return ExpressionValue(MaxInt64 + RemainingValueAbsolute); } Expected llvm::operator+(const ExpressionValue &LeftOperand, const ExpressionValue &RightOperand) { if (LeftOperand.isNegative() && RightOperand.isNegative()) { int64_t LeftValue = cantFail(LeftOperand.getSignedValue()); int64_t RightValue = cantFail(RightOperand.getSignedValue()); Optional Result = checkedAdd(LeftValue, RightValue); if (!Result) return make_error(); return ExpressionValue(*Result); } // (-A) + B == B - A. if (LeftOperand.isNegative()) return RightOperand - LeftOperand.getAbsolute(); // A + (-B) == A - B. if (RightOperand.isNegative()) return LeftOperand - RightOperand.getAbsolute(); // Both values are positive at this point. uint64_t LeftValue = cantFail(LeftOperand.getUnsignedValue()); uint64_t RightValue = cantFail(RightOperand.getUnsignedValue()); Optional Result = checkedAddUnsigned(LeftValue, RightValue); if (!Result) return make_error(); return ExpressionValue(*Result); } Expected llvm::operator-(const ExpressionValue &LeftOperand, const ExpressionValue &RightOperand) { // Result will be negative and thus might underflow. if (LeftOperand.isNegative() && !RightOperand.isNegative()) { int64_t LeftValue = cantFail(LeftOperand.getSignedValue()); uint64_t RightValue = cantFail(RightOperand.getUnsignedValue()); // Result <= -1 - (max int64_t) which overflows on 1- and 2-complement. if (RightValue > (uint64_t)std::numeric_limits::max()) return make_error(); Optional Result = checkedSub(LeftValue, static_cast(RightValue)); if (!Result) return make_error(); return ExpressionValue(*Result); } // (-A) - (-B) == B - A. if (LeftOperand.isNegative()) return RightOperand.getAbsolute() - LeftOperand.getAbsolute(); // A - (-B) == A + B. if (RightOperand.isNegative()) return LeftOperand + RightOperand.getAbsolute(); // Both values are positive at this point. uint64_t LeftValue = cantFail(LeftOperand.getUnsignedValue()); uint64_t RightValue = cantFail(RightOperand.getUnsignedValue()); if (LeftValue >= RightValue) return ExpressionValue(LeftValue - RightValue); else { uint64_t AbsoluteDifference = RightValue - LeftValue; uint64_t MaxInt64 = std::numeric_limits::max(); // Value might underflow. if (AbsoluteDifference > MaxInt64) { AbsoluteDifference -= MaxInt64; int64_t Result = -MaxInt64; int64_t MinInt64 = std::numeric_limits::min(); // Underflow, tested by: // abs(Result + (max int64_t)) > abs((min int64_t) + (max int64_t)) if (AbsoluteDifference > static_cast(-(MinInt64 - Result))) return make_error(); Result -= static_cast(AbsoluteDifference); return ExpressionValue(Result); } return ExpressionValue(-static_cast(AbsoluteDifference)); } } Expected llvm::max(const ExpressionValue &LeftOperand, const ExpressionValue &RightOperand) { if (LeftOperand.isNegative() && RightOperand.isNegative()) { int64_t LeftValue = cantFail(LeftOperand.getSignedValue()); int64_t RightValue = cantFail(RightOperand.getSignedValue()); return ExpressionValue(std::max(LeftValue, RightValue)); } if (!LeftOperand.isNegative() && !RightOperand.isNegative()) { uint64_t LeftValue = cantFail(LeftOperand.getUnsignedValue()); uint64_t RightValue = cantFail(RightOperand.getUnsignedValue()); return ExpressionValue(std::max(LeftValue, RightValue)); } if (LeftOperand.isNegative()) return RightOperand; return LeftOperand; } Expected llvm::min(const ExpressionValue &LeftOperand, const ExpressionValue &RightOperand) { if (cantFail(max(LeftOperand, RightOperand)) == LeftOperand) return RightOperand; return LeftOperand; } Expected NumericVariableUse::eval() const { Optional Value = Variable->getValue(); if (Value) return *Value; return make_error(getExpressionStr()); } Expected BinaryOperation::eval() const { Expected LeftOp = LeftOperand->eval(); Expected RightOp = RightOperand->eval(); // Bubble up any error (e.g. undefined variables) in the recursive // evaluation. if (!LeftOp || !RightOp) { Error Err = Error::success(); if (!LeftOp) Err = joinErrors(std::move(Err), LeftOp.takeError()); if (!RightOp) Err = joinErrors(std::move(Err), RightOp.takeError()); return std::move(Err); } return EvalBinop(*LeftOp, *RightOp); } Expected BinaryOperation::getImplicitFormat(const SourceMgr &SM) const { Expected LeftFormat = LeftOperand->getImplicitFormat(SM); Expected RightFormat = RightOperand->getImplicitFormat(SM); if (!LeftFormat || !RightFormat) { Error Err = Error::success(); if (!LeftFormat) Err = joinErrors(std::move(Err), LeftFormat.takeError()); if (!RightFormat) Err = joinErrors(std::move(Err), RightFormat.takeError()); return std::move(Err); } if (*LeftFormat != ExpressionFormat::Kind::NoFormat && *RightFormat != ExpressionFormat::Kind::NoFormat && *LeftFormat != *RightFormat) return ErrorDiagnostic::get( SM, getExpressionStr(), "implicit format conflict between '" + LeftOperand->getExpressionStr() + "' (" + LeftFormat->toString() + ") and '" + RightOperand->getExpressionStr() + "' (" + RightFormat->toString() + "), need an explicit format specifier"); return *LeftFormat != ExpressionFormat::Kind::NoFormat ? *LeftFormat : *RightFormat; } Expected NumericSubstitution::getResult() const { assert(ExpressionPointer->getAST() != nullptr && "Substituting empty expression"); Expected EvaluatedValue = ExpressionPointer->getAST()->eval(); if (!EvaluatedValue) return EvaluatedValue.takeError(); ExpressionFormat Format = ExpressionPointer->getFormat(); return Format.getMatchingString(*EvaluatedValue); } Expected StringSubstitution::getResult() const { // Look up the value and escape it so that we can put it into the regex. Expected VarVal = Context->getPatternVarValue(FromStr); if (!VarVal) return VarVal.takeError(); return Regex::escape(*VarVal); } bool Pattern::isValidVarNameStart(char C) { return C == '_' || isAlpha(C); } Expected Pattern::parseVariable(StringRef &Str, const SourceMgr &SM) { if (Str.empty()) return ErrorDiagnostic::get(SM, Str, "empty variable name"); size_t I = 0; bool IsPseudo = Str[0] == '@'; // Global vars start with '$'. if (Str[0] == '$' || IsPseudo) ++I; if (!isValidVarNameStart(Str[I++])) return ErrorDiagnostic::get(SM, Str, "invalid variable name"); for (size_t E = Str.size(); I != E; ++I) // Variable names are composed of alphanumeric characters and underscores. if (Str[I] != '_' && !isAlnum(Str[I])) break; StringRef Name = Str.take_front(I); Str = Str.substr(I); return VariableProperties {Name, IsPseudo}; } // StringRef holding all characters considered as horizontal whitespaces by // FileCheck input canonicalization. constexpr StringLiteral SpaceChars = " \t"; // Parsing helper function that strips the first character in S and returns it. static char popFront(StringRef &S) { char C = S.front(); S = S.drop_front(); return C; } char OverflowError::ID = 0; char UndefVarError::ID = 0; char ErrorDiagnostic::ID = 0; char NotFoundError::ID = 0; Expected Pattern::parseNumericVariableDefinition( StringRef &Expr, FileCheckPatternContext *Context, Optional LineNumber, ExpressionFormat ImplicitFormat, const SourceMgr &SM) { Expected ParseVarResult = parseVariable(Expr, SM); if (!ParseVarResult) return ParseVarResult.takeError(); StringRef Name = ParseVarResult->Name; if (ParseVarResult->IsPseudo) return ErrorDiagnostic::get( SM, Name, "definition of pseudo numeric variable unsupported"); // Detect collisions between string and numeric variables when the latter // is created later than the former. if (Context->DefinedVariableTable.find(Name) != Context->DefinedVariableTable.end()) return ErrorDiagnostic::get( SM, Name, "string variable with name '" + Name + "' already exists"); Expr = Expr.ltrim(SpaceChars); if (!Expr.empty()) return ErrorDiagnostic::get( SM, Expr, "unexpected characters after numeric variable name"); NumericVariable *DefinedNumericVariable; auto VarTableIter = Context->GlobalNumericVariableTable.find(Name); if (VarTableIter != Context->GlobalNumericVariableTable.end()) { DefinedNumericVariable = VarTableIter->second; if (DefinedNumericVariable->getImplicitFormat() != ImplicitFormat) return ErrorDiagnostic::get( SM, Expr, "format different from previous variable definition"); } else DefinedNumericVariable = Context->makeNumericVariable(Name, ImplicitFormat, LineNumber); return DefinedNumericVariable; } Expected> Pattern::parseNumericVariableUse( StringRef Name, bool IsPseudo, Optional LineNumber, FileCheckPatternContext *Context, const SourceMgr &SM) { if (IsPseudo && !Name.equals("@LINE")) return ErrorDiagnostic::get( SM, Name, "invalid pseudo numeric variable '" + Name + "'"); // Numeric variable definitions and uses are parsed in the order in which // they appear in the CHECK patterns. For each definition, the pointer to the // class instance of the corresponding numeric variable definition is stored // in GlobalNumericVariableTable in parsePattern. Therefore, if the pointer // we get below is null, it means no such variable was defined before. When // that happens, we create a dummy variable so that parsing can continue. All // uses of undefined variables, whether string or numeric, are then diagnosed // in printSubstitutions() after failing to match. auto VarTableIter = Context->GlobalNumericVariableTable.find(Name); NumericVariable *NumericVariable; if (VarTableIter != Context->GlobalNumericVariableTable.end()) NumericVariable = VarTableIter->second; else { NumericVariable = Context->makeNumericVariable( Name, ExpressionFormat(ExpressionFormat::Kind::Unsigned)); Context->GlobalNumericVariableTable[Name] = NumericVariable; } Optional DefLineNumber = NumericVariable->getDefLineNumber(); if (DefLineNumber && LineNumber && *DefLineNumber == *LineNumber) return ErrorDiagnostic::get( SM, Name, "numeric variable '" + Name + "' defined earlier in the same CHECK directive"); return std::make_unique(Name, NumericVariable); } Expected> Pattern::parseNumericOperand( StringRef &Expr, AllowedOperand AO, Optional LineNumber, FileCheckPatternContext *Context, const SourceMgr &SM) { if (Expr.startswith("(")) { if (AO != AllowedOperand::Any) return ErrorDiagnostic::get( SM, Expr, "parenthesized expression not permitted here"); return parseParenExpr(Expr, LineNumber, Context, SM); } if (AO == AllowedOperand::LineVar || AO == AllowedOperand::Any) { // Try to parse as a numeric variable use. Expected ParseVarResult = parseVariable(Expr, SM); if (ParseVarResult) { // Try to parse a function call. if (Expr.ltrim(SpaceChars).startswith("(")) { if (AO != AllowedOperand::Any) return ErrorDiagnostic::get(SM, ParseVarResult->Name, "unexpected function call"); return parseCallExpr(Expr, ParseVarResult->Name, LineNumber, Context, SM); } return parseNumericVariableUse(ParseVarResult->Name, ParseVarResult->IsPseudo, LineNumber, Context, SM); } if (AO == AllowedOperand::LineVar) return ParseVarResult.takeError(); // Ignore the error and retry parsing as a literal. consumeError(ParseVarResult.takeError()); } // Otherwise, parse it as a literal. int64_t SignedLiteralValue; uint64_t UnsignedLiteralValue; StringRef SaveExpr = Expr; // Accept both signed and unsigned literal, default to signed literal. if (!Expr.consumeInteger((AO == AllowedOperand::LegacyLiteral) ? 10 : 0, UnsignedLiteralValue)) return std::make_unique(SaveExpr.drop_back(Expr.size()), UnsignedLiteralValue); Expr = SaveExpr; if (AO == AllowedOperand::Any && !Expr.consumeInteger(0, SignedLiteralValue)) return std::make_unique(SaveExpr.drop_back(Expr.size()), SignedLiteralValue); return ErrorDiagnostic::get(SM, Expr, "invalid operand format '" + Expr + "'"); } Expected> Pattern::parseParenExpr(StringRef &Expr, Optional LineNumber, FileCheckPatternContext *Context, const SourceMgr &SM) { Expr = Expr.ltrim(SpaceChars); assert(Expr.startswith("(")); // Parse right operand. Expr.consume_front("("); Expr = Expr.ltrim(SpaceChars); if (Expr.empty()) return ErrorDiagnostic::get(SM, Expr, "missing operand in expression"); // Note: parseNumericOperand handles nested opening parentheses. Expected> SubExprResult = parseNumericOperand(Expr, AllowedOperand::Any, LineNumber, Context, SM); Expr = Expr.ltrim(SpaceChars); while (SubExprResult && !Expr.empty() && !Expr.startswith(")")) { StringRef OrigExpr = Expr; SubExprResult = parseBinop(OrigExpr, Expr, std::move(*SubExprResult), false, LineNumber, Context, SM); Expr = Expr.ltrim(SpaceChars); } if (!SubExprResult) return SubExprResult; if (!Expr.consume_front(")")) { return ErrorDiagnostic::get(SM, Expr, "missing ')' at end of nested expression"); } return SubExprResult; } Expected> Pattern::parseBinop(StringRef Expr, StringRef &RemainingExpr, std::unique_ptr LeftOp, bool IsLegacyLineExpr, Optional LineNumber, FileCheckPatternContext *Context, const SourceMgr &SM) { RemainingExpr = RemainingExpr.ltrim(SpaceChars); if (RemainingExpr.empty()) return std::move(LeftOp); // Check if this is a supported operation and select a function to perform // it. SMLoc OpLoc = SMLoc::getFromPointer(RemainingExpr.data()); char Operator = popFront(RemainingExpr); binop_eval_t EvalBinop; switch (Operator) { case '+': EvalBinop = operator+; break; case '-': EvalBinop = operator-; break; default: return ErrorDiagnostic::get( SM, OpLoc, Twine("unsupported operation '") + Twine(Operator) + "'"); } // Parse right operand. RemainingExpr = RemainingExpr.ltrim(SpaceChars); if (RemainingExpr.empty()) return ErrorDiagnostic::get(SM, RemainingExpr, "missing operand in expression"); // The second operand in a legacy @LINE expression is always a literal. AllowedOperand AO = IsLegacyLineExpr ? AllowedOperand::LegacyLiteral : AllowedOperand::Any; Expected> RightOpResult = parseNumericOperand(RemainingExpr, AO, LineNumber, Context, SM); if (!RightOpResult) return RightOpResult; Expr = Expr.drop_back(RemainingExpr.size()); return std::make_unique(Expr, EvalBinop, std::move(LeftOp), std::move(*RightOpResult)); } Expected> Pattern::parseCallExpr(StringRef &Expr, StringRef FuncName, Optional LineNumber, FileCheckPatternContext *Context, const SourceMgr &SM) { Expr = Expr.ltrim(SpaceChars); assert(Expr.startswith("(")); auto OptFunc = StringSwitch>(FuncName) .Case("add", operator+) .Case("max", max) .Case("min", min) .Case("sub", operator-) .Default(None); if (!OptFunc) return ErrorDiagnostic::get( SM, FuncName, Twine("call to undefined function '") + FuncName + "'"); Expr.consume_front("("); Expr = Expr.ltrim(SpaceChars); // Parse call arguments, which are comma separated. SmallVector, 4> Args; while (!Expr.empty() && !Expr.startswith(")")) { if (Expr.startswith(",")) return ErrorDiagnostic::get(SM, Expr, "missing argument"); // Parse the argument, which is an arbitary expression. StringRef OuterBinOpExpr = Expr; Expected> Arg = parseNumericOperand(Expr, AllowedOperand::Any, LineNumber, Context, SM); while (Arg && !Expr.empty()) { Expr = Expr.ltrim(SpaceChars); // Have we reached an argument terminator? if (Expr.startswith(",") || Expr.startswith(")")) break; // Arg = Arg Arg = parseBinop(OuterBinOpExpr, Expr, std::move(*Arg), false, LineNumber, Context, SM); } // Prefer an expression error over a generic invalid argument message. if (!Arg) return Arg.takeError(); Args.push_back(std::move(*Arg)); // Have we parsed all available arguments? Expr = Expr.ltrim(SpaceChars); if (!Expr.consume_front(",")) break; Expr = Expr.ltrim(SpaceChars); if (Expr.startswith(")")) return ErrorDiagnostic::get(SM, Expr, "missing argument"); } if (!Expr.consume_front(")")) return ErrorDiagnostic::get(SM, Expr, "missing ')' at end of call expression"); const unsigned NumArgs = Args.size(); if (NumArgs == 2) return std::make_unique(Expr, *OptFunc, std::move(Args[0]), std::move(Args[1])); // TODO: Support more than binop_eval_t. return ErrorDiagnostic::get(SM, FuncName, Twine("function '") + FuncName + Twine("' takes 2 arguments but ") + Twine(NumArgs) + " given"); } Expected> Pattern::parseNumericSubstitutionBlock( StringRef Expr, Optional &DefinedNumericVariable, bool IsLegacyLineExpr, Optional LineNumber, FileCheckPatternContext *Context, const SourceMgr &SM) { std::unique_ptr ExpressionASTPointer = nullptr; StringRef DefExpr = StringRef(); DefinedNumericVariable = None; ExpressionFormat ExplicitFormat = ExpressionFormat(); // Parse format specifier (NOTE: ',' is also an argument seperator). size_t FormatSpecEnd = Expr.find(','); size_t FunctionStart = Expr.find('('); if (FormatSpecEnd != StringRef::npos && FormatSpecEnd < FunctionStart) { Expr = Expr.ltrim(SpaceChars); if (!Expr.consume_front("%")) return ErrorDiagnostic::get( SM, Expr, "invalid matching format specification in expression"); // Check for unknown matching format specifier and set matching format in // class instance representing this expression. SMLoc fmtloc = SMLoc::getFromPointer(Expr.data()); switch (popFront(Expr)) { case 'u': ExplicitFormat = ExpressionFormat(ExpressionFormat::Kind::Unsigned); break; case 'd': ExplicitFormat = ExpressionFormat(ExpressionFormat::Kind::Signed); break; case 'x': ExplicitFormat = ExpressionFormat(ExpressionFormat::Kind::HexLower); break; case 'X': ExplicitFormat = ExpressionFormat(ExpressionFormat::Kind::HexUpper); break; default: return ErrorDiagnostic::get(SM, fmtloc, "invalid format specifier in expression"); } Expr = Expr.ltrim(SpaceChars); if (!Expr.consume_front(",")) return ErrorDiagnostic::get( SM, Expr, "invalid matching format specification in expression"); } // Save variable definition expression if any. size_t DefEnd = Expr.find(':'); if (DefEnd != StringRef::npos) { DefExpr = Expr.substr(0, DefEnd); Expr = Expr.substr(DefEnd + 1); } // Parse the expression itself. Expr = Expr.ltrim(SpaceChars); if (!Expr.empty()) { Expr = Expr.rtrim(SpaceChars); StringRef OuterBinOpExpr = Expr; // The first operand in a legacy @LINE expression is always the @LINE // pseudo variable. AllowedOperand AO = IsLegacyLineExpr ? AllowedOperand::LineVar : AllowedOperand::Any; Expected> ParseResult = parseNumericOperand(Expr, AO, LineNumber, Context, SM); while (ParseResult && !Expr.empty()) { ParseResult = parseBinop(OuterBinOpExpr, Expr, std::move(*ParseResult), IsLegacyLineExpr, LineNumber, Context, SM); // Legacy @LINE expressions only allow 2 operands. if (ParseResult && IsLegacyLineExpr && !Expr.empty()) return ErrorDiagnostic::get( SM, Expr, "unexpected characters at end of expression '" + Expr + "'"); } if (!ParseResult) return ParseResult.takeError(); ExpressionASTPointer = std::move(*ParseResult); } // Select format of the expression, i.e. (i) its explicit format, if any, // otherwise (ii) its implicit format, if any, otherwise (iii) the default // format (unsigned). Error out in case of conflicting implicit format // without explicit format. ExpressionFormat Format; if (ExplicitFormat) Format = ExplicitFormat; else if (ExpressionASTPointer) { Expected ImplicitFormat = ExpressionASTPointer->getImplicitFormat(SM); if (!ImplicitFormat) return ImplicitFormat.takeError(); Format = *ImplicitFormat; } if (!Format) Format = ExpressionFormat(ExpressionFormat::Kind::Unsigned); std::unique_ptr ExpressionPointer = std::make_unique(std::move(ExpressionASTPointer), Format); // Parse the numeric variable definition. if (DefEnd != StringRef::npos) { DefExpr = DefExpr.ltrim(SpaceChars); Expected ParseResult = parseNumericVariableDefinition( DefExpr, Context, LineNumber, ExpressionPointer->getFormat(), SM); if (!ParseResult) return ParseResult.takeError(); DefinedNumericVariable = *ParseResult; } return std::move(ExpressionPointer); } bool Pattern::parsePattern(StringRef PatternStr, StringRef Prefix, SourceMgr &SM, const FileCheckRequest &Req) { bool MatchFullLinesHere = Req.MatchFullLines && CheckTy != Check::CheckNot; IgnoreCase = Req.IgnoreCase; PatternLoc = SMLoc::getFromPointer(PatternStr.data()); if (!(Req.NoCanonicalizeWhiteSpace && Req.MatchFullLines)) // Ignore trailing whitespace. while (!PatternStr.empty() && (PatternStr.back() == ' ' || PatternStr.back() == '\t')) PatternStr = PatternStr.substr(0, PatternStr.size() - 1); // Check that there is something on the line. if (PatternStr.empty() && CheckTy != Check::CheckEmpty) { SM.PrintMessage(PatternLoc, SourceMgr::DK_Error, "found empty check string with prefix '" + Prefix + ":'"); return true; } if (!PatternStr.empty() && CheckTy == Check::CheckEmpty) { SM.PrintMessage( PatternLoc, SourceMgr::DK_Error, "found non-empty check string for empty check with prefix '" + Prefix + ":'"); return true; } if (CheckTy == Check::CheckEmpty) { RegExStr = "(\n$)"; return false; } // Check to see if this is a fixed string, or if it has regex pieces. if (!MatchFullLinesHere && (PatternStr.size() < 2 || (PatternStr.find("{{") == StringRef::npos && PatternStr.find("[[") == StringRef::npos))) { FixedStr = PatternStr; return false; } if (MatchFullLinesHere) { RegExStr += '^'; if (!Req.NoCanonicalizeWhiteSpace) RegExStr += " *"; } // Paren value #0 is for the fully matched string. Any new parenthesized // values add from there. unsigned CurParen = 1; // Otherwise, there is at least one regex piece. Build up the regex pattern // by escaping scary characters in fixed strings, building up one big regex. while (!PatternStr.empty()) { // RegEx matches. if (PatternStr.startswith("{{")) { // This is the start of a regex match. Scan for the }}. size_t End = PatternStr.find("}}"); if (End == StringRef::npos) { SM.PrintMessage(SMLoc::getFromPointer(PatternStr.data()), SourceMgr::DK_Error, "found start of regex string with no end '}}'"); return true; } // Enclose {{}} patterns in parens just like [[]] even though we're not // capturing the result for any purpose. This is required in case the // expression contains an alternation like: CHECK: abc{{x|z}}def. We // want this to turn into: "abc(x|z)def" not "abcx|zdef". RegExStr += '('; ++CurParen; if (AddRegExToRegEx(PatternStr.substr(2, End - 2), CurParen, SM)) return true; RegExStr += ')'; PatternStr = PatternStr.substr(End + 2); continue; } // String and numeric substitution blocks. Pattern substitution blocks come // in two forms: [[foo:.*]] and [[foo]]. The former matches .* (or some // other regex) and assigns it to the string variable 'foo'. The latter // substitutes foo's value. Numeric substitution blocks recognize the same // form as string ones, but start with a '#' sign after the double // brackets. They also accept a combined form which sets a numeric variable // to the evaluation of an expression. Both string and numeric variable // names must satisfy the regular expression "[a-zA-Z_][0-9a-zA-Z_]*" to be // valid, as this helps catch some common errors. if (PatternStr.startswith("[[")) { StringRef UnparsedPatternStr = PatternStr.substr(2); // Find the closing bracket pair ending the match. End is going to be an // offset relative to the beginning of the match string. size_t End = FindRegexVarEnd(UnparsedPatternStr, SM); StringRef MatchStr = UnparsedPatternStr.substr(0, End); bool IsNumBlock = MatchStr.consume_front("#"); if (End == StringRef::npos) { SM.PrintMessage(SMLoc::getFromPointer(PatternStr.data()), SourceMgr::DK_Error, "Invalid substitution block, no ]] found"); return true; } // Strip the substitution block we are parsing. End points to the start // of the "]]" closing the expression so account for it in computing the // index of the first unparsed character. PatternStr = UnparsedPatternStr.substr(End + 2); bool IsDefinition = false; bool SubstNeeded = false; // Whether the substitution block is a legacy use of @LINE with string // substitution block syntax. bool IsLegacyLineExpr = false; StringRef DefName; StringRef SubstStr; StringRef MatchRegexp; size_t SubstInsertIdx = RegExStr.size(); // Parse string variable or legacy @LINE expression. if (!IsNumBlock) { size_t VarEndIdx = MatchStr.find(":"); size_t SpacePos = MatchStr.substr(0, VarEndIdx).find_first_of(" \t"); if (SpacePos != StringRef::npos) { SM.PrintMessage(SMLoc::getFromPointer(MatchStr.data() + SpacePos), SourceMgr::DK_Error, "unexpected whitespace"); return true; } // Get the name (e.g. "foo") and verify it is well formed. StringRef OrigMatchStr = MatchStr; Expected ParseVarResult = parseVariable(MatchStr, SM); if (!ParseVarResult) { logAllUnhandledErrors(ParseVarResult.takeError(), errs()); return true; } StringRef Name = ParseVarResult->Name; bool IsPseudo = ParseVarResult->IsPseudo; IsDefinition = (VarEndIdx != StringRef::npos); SubstNeeded = !IsDefinition; if (IsDefinition) { if ((IsPseudo || !MatchStr.consume_front(":"))) { SM.PrintMessage(SMLoc::getFromPointer(Name.data()), SourceMgr::DK_Error, "invalid name in string variable definition"); return true; } // Detect collisions between string and numeric variables when the // former is created later than the latter. if (Context->GlobalNumericVariableTable.find(Name) != Context->GlobalNumericVariableTable.end()) { SM.PrintMessage( SMLoc::getFromPointer(Name.data()), SourceMgr::DK_Error, "numeric variable with name '" + Name + "' already exists"); return true; } DefName = Name; MatchRegexp = MatchStr; } else { if (IsPseudo) { MatchStr = OrigMatchStr; IsLegacyLineExpr = IsNumBlock = true; } else SubstStr = Name; } } // Parse numeric substitution block. std::unique_ptr ExpressionPointer; Optional DefinedNumericVariable; if (IsNumBlock) { Expected> ParseResult = parseNumericSubstitutionBlock(MatchStr, DefinedNumericVariable, IsLegacyLineExpr, LineNumber, Context, SM); if (!ParseResult) { logAllUnhandledErrors(ParseResult.takeError(), errs()); return true; } ExpressionPointer = std::move(*ParseResult); SubstNeeded = ExpressionPointer->getAST() != nullptr; if (DefinedNumericVariable) { IsDefinition = true; DefName = (*DefinedNumericVariable)->getName(); } if (SubstNeeded) SubstStr = MatchStr; else { ExpressionFormat Format = ExpressionPointer->getFormat(); MatchRegexp = cantFail(Format.getWildcardRegex()); } } // Handle variable definition: [[:(...)]] and [[#(...):(...)]]. if (IsDefinition) { RegExStr += '('; ++SubstInsertIdx; if (IsNumBlock) { NumericVariableMatch NumericVariableDefinition = { *DefinedNumericVariable, CurParen}; NumericVariableDefs[DefName] = NumericVariableDefinition; // This store is done here rather than in match() to allow // parseNumericVariableUse() to get the pointer to the class instance // of the right variable definition corresponding to a given numeric // variable use. Context->GlobalNumericVariableTable[DefName] = *DefinedNumericVariable; } else { VariableDefs[DefName] = CurParen; // Mark string variable as defined to detect collisions between // string and numeric variables in parseNumericVariableUse() and // defineCmdlineVariables() when the latter is created later than the // former. We cannot reuse GlobalVariableTable for this by populating // it with an empty string since we would then lose the ability to // detect the use of an undefined variable in match(). Context->DefinedVariableTable[DefName] = true; } ++CurParen; } if (!MatchRegexp.empty() && AddRegExToRegEx(MatchRegexp, CurParen, SM)) return true; if (IsDefinition) RegExStr += ')'; // Handle substitutions: [[foo]] and [[#]]. if (SubstNeeded) { // Handle substitution of string variables that were defined earlier on // the same line by emitting a backreference. Expressions do not // support substituting a numeric variable defined on the same line. if (!IsNumBlock && VariableDefs.find(SubstStr) != VariableDefs.end()) { unsigned CaptureParenGroup = VariableDefs[SubstStr]; if (CaptureParenGroup < 1 || CaptureParenGroup > 9) { SM.PrintMessage(SMLoc::getFromPointer(SubstStr.data()), SourceMgr::DK_Error, "Can't back-reference more than 9 variables"); return true; } AddBackrefToRegEx(CaptureParenGroup); } else { // Handle substitution of string variables ([[]]) defined in // previous CHECK patterns, and substitution of expressions. Substitution *Substitution = IsNumBlock ? Context->makeNumericSubstitution( SubstStr, std::move(ExpressionPointer), SubstInsertIdx) : Context->makeStringSubstitution(SubstStr, SubstInsertIdx); Substitutions.push_back(Substitution); } } } // Handle fixed string matches. // Find the end, which is the start of the next regex. size_t FixedMatchEnd = PatternStr.find("{{"); FixedMatchEnd = std::min(FixedMatchEnd, PatternStr.find("[[")); RegExStr += Regex::escape(PatternStr.substr(0, FixedMatchEnd)); PatternStr = PatternStr.substr(FixedMatchEnd); } if (MatchFullLinesHere) { if (!Req.NoCanonicalizeWhiteSpace) RegExStr += " *"; RegExStr += '$'; } return false; } bool Pattern::AddRegExToRegEx(StringRef RS, unsigned &CurParen, SourceMgr &SM) { Regex R(RS); std::string Error; if (!R.isValid(Error)) { SM.PrintMessage(SMLoc::getFromPointer(RS.data()), SourceMgr::DK_Error, "invalid regex: " + Error); return true; } RegExStr += RS.str(); CurParen += R.getNumMatches(); return false; } void Pattern::AddBackrefToRegEx(unsigned BackrefNum) { assert(BackrefNum >= 1 && BackrefNum <= 9 && "Invalid backref number"); std::string Backref = std::string("\\") + std::string(1, '0' + BackrefNum); RegExStr += Backref; } Expected Pattern::match(StringRef Buffer, size_t &MatchLen, const SourceMgr &SM) const { // If this is the EOF pattern, match it immediately. if (CheckTy == Check::CheckEOF) { MatchLen = 0; return Buffer.size(); } // If this is a fixed string pattern, just match it now. if (!FixedStr.empty()) { MatchLen = FixedStr.size(); size_t Pos = IgnoreCase ? Buffer.find_lower(FixedStr) : Buffer.find(FixedStr); if (Pos == StringRef::npos) return make_error(); return Pos; } // Regex match. // If there are substitutions, we need to create a temporary string with the // actual value. StringRef RegExToMatch = RegExStr; std::string TmpStr; if (!Substitutions.empty()) { TmpStr = RegExStr; if (LineNumber) Context->LineVariable->setValue(ExpressionValue(*LineNumber)); size_t InsertOffset = 0; // Substitute all string variables and expressions whose values are only // now known. Use of string variables defined on the same line are handled // by back-references. for (const auto &Substitution : Substitutions) { // Substitute and check for failure (e.g. use of undefined variable). Expected Value = Substitution->getResult(); if (!Value) { // Convert to an ErrorDiagnostic to get location information. This is // done here rather than PrintNoMatch since now we know which // substitution block caused the overflow. Error Err = handleErrors(Value.takeError(), [&](const OverflowError &E) { return ErrorDiagnostic::get(SM, Substitution->getFromString(), "unable to substitute variable or " "numeric expression: overflow error"); }); return std::move(Err); } // Plop it into the regex at the adjusted offset. TmpStr.insert(TmpStr.begin() + Substitution->getIndex() + InsertOffset, Value->begin(), Value->end()); InsertOffset += Value->size(); } // Match the newly constructed regex. RegExToMatch = TmpStr; } SmallVector MatchInfo; unsigned int Flags = Regex::Newline; if (IgnoreCase) Flags |= Regex::IgnoreCase; if (!Regex(RegExToMatch, Flags).match(Buffer, &MatchInfo)) return make_error(); // Successful regex match. assert(!MatchInfo.empty() && "Didn't get any match"); StringRef FullMatch = MatchInfo[0]; // If this defines any string variables, remember their values. for (const auto &VariableDef : VariableDefs) { assert(VariableDef.second < MatchInfo.size() && "Internal paren error"); Context->GlobalVariableTable[VariableDef.first] = MatchInfo[VariableDef.second]; } // If this defines any numeric variables, remember their values. for (const auto &NumericVariableDef : NumericVariableDefs) { const NumericVariableMatch &NumericVariableMatch = NumericVariableDef.getValue(); unsigned CaptureParenGroup = NumericVariableMatch.CaptureParenGroup; assert(CaptureParenGroup < MatchInfo.size() && "Internal paren error"); NumericVariable *DefinedNumericVariable = NumericVariableMatch.DefinedNumericVariable; StringRef MatchedValue = MatchInfo[CaptureParenGroup]; ExpressionFormat Format = DefinedNumericVariable->getImplicitFormat(); Expected Value = Format.valueFromStringRepr(MatchedValue, SM); if (!Value) return Value.takeError(); DefinedNumericVariable->setValue(*Value); } // Like CHECK-NEXT, CHECK-EMPTY's match range is considered to start after // the required preceding newline, which is consumed by the pattern in the // case of CHECK-EMPTY but not CHECK-NEXT. size_t MatchStartSkip = CheckTy == Check::CheckEmpty; MatchLen = FullMatch.size() - MatchStartSkip; return FullMatch.data() - Buffer.data() + MatchStartSkip; } unsigned Pattern::computeMatchDistance(StringRef Buffer) const { // Just compute the number of matching characters. For regular expressions, we // just compare against the regex itself and hope for the best. // // FIXME: One easy improvement here is have the regex lib generate a single // example regular expression which matches, and use that as the example // string. StringRef ExampleString(FixedStr); if (ExampleString.empty()) ExampleString = RegExStr; // Only compare up to the first line in the buffer, or the string size. StringRef BufferPrefix = Buffer.substr(0, ExampleString.size()); BufferPrefix = BufferPrefix.split('\n').first; return BufferPrefix.edit_distance(ExampleString); } void Pattern::printSubstitutions(const SourceMgr &SM, StringRef Buffer, SMRange MatchRange) const { // Print what we know about substitutions. if (!Substitutions.empty()) { for (const auto &Substitution : Substitutions) { SmallString<256> Msg; raw_svector_ostream OS(Msg); Expected MatchedValue = Substitution->getResult(); // Substitution failed or is not known at match time, print the undefined // variables it uses. if (!MatchedValue) { bool UndefSeen = false; handleAllErrors( MatchedValue.takeError(), [](const NotFoundError &E) {}, // Handled in PrintNoMatch(). [](const ErrorDiagnostic &E) {}, // Handled in match(). [](const OverflowError &E) {}, [&](const UndefVarError &E) { if (!UndefSeen) { OS << "uses undefined variable(s):"; UndefSeen = true; } OS << " "; E.log(OS); }); } else { // Substitution succeeded. Print substituted value. OS << "with \""; OS.write_escaped(Substitution->getFromString()) << "\" equal to \""; OS.write_escaped(*MatchedValue) << "\""; } if (MatchRange.isValid()) SM.PrintMessage(MatchRange.Start, SourceMgr::DK_Note, OS.str(), {MatchRange}); else SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), SourceMgr::DK_Note, OS.str()); } } } static SMRange ProcessMatchResult(FileCheckDiag::MatchType MatchTy, const SourceMgr &SM, SMLoc Loc, Check::FileCheckType CheckTy, StringRef Buffer, size_t Pos, size_t Len, std::vector *Diags, bool AdjustPrevDiag = false) { SMLoc Start = SMLoc::getFromPointer(Buffer.data() + Pos); SMLoc End = SMLoc::getFromPointer(Buffer.data() + Pos + Len); SMRange Range(Start, End); if (Diags) { if (AdjustPrevDiag) Diags->rbegin()->MatchTy = MatchTy; else Diags->emplace_back(SM, CheckTy, Loc, MatchTy, Range); } return Range; } void Pattern::printFuzzyMatch(const SourceMgr &SM, StringRef Buffer, std::vector *Diags) const { // Attempt to find the closest/best fuzzy match. Usually an error happens // because some string in the output didn't exactly match. In these cases, we // would like to show the user a best guess at what "should have" matched, to // save them having to actually check the input manually. size_t NumLinesForward = 0; size_t Best = StringRef::npos; double BestQuality = 0; // Use an arbitrary 4k limit on how far we will search. for (size_t i = 0, e = std::min(size_t(4096), Buffer.size()); i != e; ++i) { if (Buffer[i] == '\n') ++NumLinesForward; // Patterns have leading whitespace stripped, so skip whitespace when // looking for something which looks like a pattern. if (Buffer[i] == ' ' || Buffer[i] == '\t') continue; // Compute the "quality" of this match as an arbitrary combination of the // match distance and the number of lines skipped to get to this match. unsigned Distance = computeMatchDistance(Buffer.substr(i)); double Quality = Distance + (NumLinesForward / 100.); if (Quality < BestQuality || Best == StringRef::npos) { Best = i; BestQuality = Quality; } } // Print the "possible intended match here" line if we found something // reasonable and not equal to what we showed in the "scanning from here" // line. if (Best && Best != StringRef::npos && BestQuality < 50) { SMRange MatchRange = ProcessMatchResult(FileCheckDiag::MatchFuzzy, SM, getLoc(), getCheckTy(), Buffer, Best, 0, Diags); SM.PrintMessage(MatchRange.Start, SourceMgr::DK_Note, "possible intended match here"); // FIXME: If we wanted to be really friendly we would show why the match // failed, as it can be hard to spot simple one character differences. } } Expected FileCheckPatternContext::getPatternVarValue(StringRef VarName) { auto VarIter = GlobalVariableTable.find(VarName); if (VarIter == GlobalVariableTable.end()) return make_error(VarName); return VarIter->second; } template NumericVariable *FileCheckPatternContext::makeNumericVariable(Types... args) { NumericVariables.push_back(std::make_unique(args...)); return NumericVariables.back().get(); } Substitution * FileCheckPatternContext::makeStringSubstitution(StringRef VarName, size_t InsertIdx) { Substitutions.push_back( std::make_unique(this, VarName, InsertIdx)); return Substitutions.back().get(); } Substitution *FileCheckPatternContext::makeNumericSubstitution( StringRef ExpressionStr, std::unique_ptr Expression, size_t InsertIdx) { Substitutions.push_back(std::make_unique( this, ExpressionStr, std::move(Expression), InsertIdx)); return Substitutions.back().get(); } size_t Pattern::FindRegexVarEnd(StringRef Str, SourceMgr &SM) { // Offset keeps track of the current offset within the input Str size_t Offset = 0; // [...] Nesting depth size_t BracketDepth = 0; while (!Str.empty()) { if (Str.startswith("]]") && BracketDepth == 0) return Offset; if (Str[0] == '\\') { // Backslash escapes the next char within regexes, so skip them both. Str = Str.substr(2); Offset += 2; } else { switch (Str[0]) { default: break; case '[': BracketDepth++; break; case ']': if (BracketDepth == 0) { SM.PrintMessage(SMLoc::getFromPointer(Str.data()), SourceMgr::DK_Error, "missing closing \"]\" for regex variable"); exit(1); } BracketDepth--; break; } Str = Str.substr(1); Offset++; } } return StringRef::npos; } StringRef FileCheck::CanonicalizeFile(MemoryBuffer &MB, SmallVectorImpl &OutputBuffer) { OutputBuffer.reserve(MB.getBufferSize()); for (const char *Ptr = MB.getBufferStart(), *End = MB.getBufferEnd(); Ptr != End; ++Ptr) { // Eliminate trailing dosish \r. if (Ptr <= End - 2 && Ptr[0] == '\r' && Ptr[1] == '\n') { continue; } // If current char is not a horizontal whitespace or if horizontal // whitespace canonicalization is disabled, dump it to output as is. if (Req.NoCanonicalizeWhiteSpace || (*Ptr != ' ' && *Ptr != '\t')) { OutputBuffer.push_back(*Ptr); continue; } // Otherwise, add one space and advance over neighboring space. OutputBuffer.push_back(' '); while (Ptr + 1 != End && (Ptr[1] == ' ' || Ptr[1] == '\t')) ++Ptr; } // Add a null byte and then return all but that byte. OutputBuffer.push_back('\0'); return StringRef(OutputBuffer.data(), OutputBuffer.size() - 1); } FileCheckDiag::FileCheckDiag(const SourceMgr &SM, const Check::FileCheckType &CheckTy, SMLoc CheckLoc, MatchType MatchTy, SMRange InputRange) : CheckTy(CheckTy), CheckLoc(CheckLoc), MatchTy(MatchTy) { auto Start = SM.getLineAndColumn(InputRange.Start); auto End = SM.getLineAndColumn(InputRange.End); InputStartLine = Start.first; InputStartCol = Start.second; InputEndLine = End.first; InputEndCol = End.second; } static bool IsPartOfWord(char c) { return (isAlnum(c) || c == '-' || c == '_'); } Check::FileCheckType &Check::FileCheckType::setCount(int C) { assert(Count > 0 && "zero and negative counts are not supported"); assert((C == 1 || Kind == CheckPlain) && "count supported only for plain CHECK directives"); Count = C; return *this; } std::string Check::FileCheckType::getDescription(StringRef Prefix) const { switch (Kind) { case Check::CheckNone: return "invalid"; case Check::CheckPlain: if (Count > 1) return Prefix.str() + "-COUNT"; return std::string(Prefix); case Check::CheckNext: return Prefix.str() + "-NEXT"; case Check::CheckSame: return Prefix.str() + "-SAME"; case Check::CheckNot: return Prefix.str() + "-NOT"; case Check::CheckDAG: return Prefix.str() + "-DAG"; case Check::CheckLabel: return Prefix.str() + "-LABEL"; case Check::CheckEmpty: return Prefix.str() + "-EMPTY"; case Check::CheckComment: return std::string(Prefix); case Check::CheckEOF: return "implicit EOF"; case Check::CheckBadNot: return "bad NOT"; case Check::CheckBadCount: return "bad COUNT"; } llvm_unreachable("unknown FileCheckType"); } static std::pair FindCheckType(const FileCheckRequest &Req, StringRef Buffer, StringRef Prefix) { if (Buffer.size() <= Prefix.size()) return {Check::CheckNone, StringRef()}; char NextChar = Buffer[Prefix.size()]; StringRef Rest = Buffer.drop_front(Prefix.size() + 1); // Check for comment. if (Req.CommentPrefixes.end() != std::find(Req.CommentPrefixes.begin(), Req.CommentPrefixes.end(), Prefix)) { if (NextChar == ':') return {Check::CheckComment, Rest}; // Ignore a comment prefix if it has a suffix like "-NOT". return {Check::CheckNone, StringRef()}; } // Verify that the : is present after the prefix. if (NextChar == ':') return {Check::CheckPlain, Rest}; if (NextChar != '-') return {Check::CheckNone, StringRef()}; if (Rest.consume_front("COUNT-")) { int64_t Count; if (Rest.consumeInteger(10, Count)) // Error happened in parsing integer. return {Check::CheckBadCount, Rest}; if (Count <= 0 || Count > INT32_MAX) return {Check::CheckBadCount, Rest}; if (!Rest.consume_front(":")) return {Check::CheckBadCount, Rest}; return {Check::FileCheckType(Check::CheckPlain).setCount(Count), Rest}; } if (Rest.consume_front("NEXT:")) return {Check::CheckNext, Rest}; if (Rest.consume_front("SAME:")) return {Check::CheckSame, Rest}; if (Rest.consume_front("NOT:")) return {Check::CheckNot, Rest}; if (Rest.consume_front("DAG:")) return {Check::CheckDAG, Rest}; if (Rest.consume_front("LABEL:")) return {Check::CheckLabel, Rest}; if (Rest.consume_front("EMPTY:")) return {Check::CheckEmpty, Rest}; // You can't combine -NOT with another suffix. if (Rest.startswith("DAG-NOT:") || Rest.startswith("NOT-DAG:") || Rest.startswith("NEXT-NOT:") || Rest.startswith("NOT-NEXT:") || Rest.startswith("SAME-NOT:") || Rest.startswith("NOT-SAME:") || Rest.startswith("EMPTY-NOT:") || Rest.startswith("NOT-EMPTY:")) return {Check::CheckBadNot, Rest}; return {Check::CheckNone, Rest}; } // From the given position, find the next character after the word. static size_t SkipWord(StringRef Str, size_t Loc) { while (Loc < Str.size() && IsPartOfWord(Str[Loc])) ++Loc; return Loc; } /// Searches the buffer for the first prefix in the prefix regular expression. /// /// This searches the buffer using the provided regular expression, however it /// enforces constraints beyond that: /// 1) The found prefix must not be a suffix of something that looks like /// a valid prefix. /// 2) The found prefix must be followed by a valid check type suffix using \c /// FindCheckType above. /// /// \returns a pair of StringRefs into the Buffer, which combines: /// - the first match of the regular expression to satisfy these two is /// returned, /// otherwise an empty StringRef is returned to indicate failure. /// - buffer rewound to the location right after parsed suffix, for parsing /// to continue from /// /// If this routine returns a valid prefix, it will also shrink \p Buffer to /// start at the beginning of the returned prefix, increment \p LineNumber for /// each new line consumed from \p Buffer, and set \p CheckTy to the type of /// check found by examining the suffix. /// /// If no valid prefix is found, the state of Buffer, LineNumber, and CheckTy /// is unspecified. static std::pair FindFirstMatchingPrefix(const FileCheckRequest &Req, Regex &PrefixRE, StringRef &Buffer, unsigned &LineNumber, Check::FileCheckType &CheckTy) { SmallVector Matches; while (!Buffer.empty()) { // Find the first (longest) match using the RE. if (!PrefixRE.match(Buffer, &Matches)) // No match at all, bail. return {StringRef(), StringRef()}; StringRef Prefix = Matches[0]; Matches.clear(); assert(Prefix.data() >= Buffer.data() && Prefix.data() < Buffer.data() + Buffer.size() && "Prefix doesn't start inside of buffer!"); size_t Loc = Prefix.data() - Buffer.data(); StringRef Skipped = Buffer.substr(0, Loc); Buffer = Buffer.drop_front(Loc); LineNumber += Skipped.count('\n'); // Check that the matched prefix isn't a suffix of some other check-like // word. // FIXME: This is a very ad-hoc check. it would be better handled in some // other way. Among other things it seems hard to distinguish between // intentional and unintentional uses of this feature. if (Skipped.empty() || !IsPartOfWord(Skipped.back())) { // Now extract the type. StringRef AfterSuffix; std::tie(CheckTy, AfterSuffix) = FindCheckType(Req, Buffer, Prefix); // If we've found a valid check type for this prefix, we're done. if (CheckTy != Check::CheckNone) return {Prefix, AfterSuffix}; } // If we didn't successfully find a prefix, we need to skip this invalid // prefix and continue scanning. We directly skip the prefix that was // matched and any additional parts of that check-like word. Buffer = Buffer.drop_front(SkipWord(Buffer, Prefix.size())); } // We ran out of buffer while skipping partial matches so give up. return {StringRef(), StringRef()}; } void FileCheckPatternContext::createLineVariable() { assert(!LineVariable && "@LINE pseudo numeric variable already created"); StringRef LineName = "@LINE"; LineVariable = makeNumericVariable( LineName, ExpressionFormat(ExpressionFormat::Kind::Unsigned)); GlobalNumericVariableTable[LineName] = LineVariable; } FileCheck::FileCheck(FileCheckRequest Req) : Req(Req), PatternContext(std::make_unique()), CheckStrings(std::make_unique>()) {} FileCheck::~FileCheck() = default; bool FileCheck::readCheckFile( SourceMgr &SM, StringRef Buffer, Regex &PrefixRE, std::pair *ImpPatBufferIDRange) { if (ImpPatBufferIDRange) ImpPatBufferIDRange->first = ImpPatBufferIDRange->second = 0; Error DefineError = PatternContext->defineCmdlineVariables(Req.GlobalDefines, SM); if (DefineError) { logAllUnhandledErrors(std::move(DefineError), errs()); return true; } PatternContext->createLineVariable(); std::vector ImplicitNegativeChecks; for (StringRef PatternString : Req.ImplicitCheckNot) { // Create a buffer with fake command line content in order to display the // command line option responsible for the specific implicit CHECK-NOT. std::string Prefix = "-implicit-check-not='"; std::string Suffix = "'"; std::unique_ptr CmdLine = MemoryBuffer::getMemBufferCopy( (Prefix + PatternString + Suffix).str(), "command line"); StringRef PatternInBuffer = CmdLine->getBuffer().substr(Prefix.size(), PatternString.size()); unsigned BufferID = SM.AddNewSourceBuffer(std::move(CmdLine), SMLoc()); if (ImpPatBufferIDRange) { if (ImpPatBufferIDRange->first == ImpPatBufferIDRange->second) { ImpPatBufferIDRange->first = BufferID; ImpPatBufferIDRange->second = BufferID + 1; } else { assert(BufferID == ImpPatBufferIDRange->second && "expected consecutive source buffer IDs"); ++ImpPatBufferIDRange->second; } } ImplicitNegativeChecks.push_back( Pattern(Check::CheckNot, PatternContext.get())); ImplicitNegativeChecks.back().parsePattern(PatternInBuffer, "IMPLICIT-CHECK", SM, Req); } std::vector DagNotMatches = ImplicitNegativeChecks; // LineNumber keeps track of the line on which CheckPrefix instances are // found. unsigned LineNumber = 1; bool FoundUsedCheckPrefix = false; while (1) { Check::FileCheckType CheckTy; // See if a prefix occurs in the memory buffer. StringRef UsedPrefix; StringRef AfterSuffix; std::tie(UsedPrefix, AfterSuffix) = FindFirstMatchingPrefix(Req, PrefixRE, Buffer, LineNumber, CheckTy); if (UsedPrefix.empty()) break; if (CheckTy != Check::CheckComment) FoundUsedCheckPrefix = true; assert(UsedPrefix.data() == Buffer.data() && "Failed to move Buffer's start forward, or pointed prefix outside " "of the buffer!"); assert(AfterSuffix.data() >= Buffer.data() && AfterSuffix.data() < Buffer.data() + Buffer.size() && "Parsing after suffix doesn't start inside of buffer!"); // Location to use for error messages. const char *UsedPrefixStart = UsedPrefix.data(); // Skip the buffer to the end of parsed suffix (or just prefix, if no good // suffix was processed). Buffer = AfterSuffix.empty() ? Buffer.drop_front(UsedPrefix.size()) : AfterSuffix; // Complain about useful-looking but unsupported suffixes. if (CheckTy == Check::CheckBadNot) { SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), SourceMgr::DK_Error, "unsupported -NOT combo on prefix '" + UsedPrefix + "'"); return true; } // Complain about invalid count specification. if (CheckTy == Check::CheckBadCount) { SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), SourceMgr::DK_Error, "invalid count in -COUNT specification on prefix '" + UsedPrefix + "'"); return true; } // Okay, we found the prefix, yay. Remember the rest of the line, but ignore // leading whitespace. if (!(Req.NoCanonicalizeWhiteSpace && Req.MatchFullLines)) Buffer = Buffer.substr(Buffer.find_first_not_of(" \t")); // Scan ahead to the end of line. size_t EOL = Buffer.find_first_of("\n\r"); // Remember the location of the start of the pattern, for diagnostics. SMLoc PatternLoc = SMLoc::getFromPointer(Buffer.data()); // Extract the pattern from the buffer. StringRef PatternBuffer = Buffer.substr(0, EOL); Buffer = Buffer.substr(EOL); // If this is a comment, we're done. if (CheckTy == Check::CheckComment) continue; // Parse the pattern. Pattern P(CheckTy, PatternContext.get(), LineNumber); if (P.parsePattern(PatternBuffer, UsedPrefix, SM, Req)) return true; // Verify that CHECK-LABEL lines do not define or use variables if ((CheckTy == Check::CheckLabel) && P.hasVariable()) { SM.PrintMessage( SMLoc::getFromPointer(UsedPrefixStart), SourceMgr::DK_Error, "found '" + UsedPrefix + "-LABEL:'" " with variable definition or use"); return true; } // Verify that CHECK-NEXT/SAME/EMPTY lines have at least one CHECK line before them. if ((CheckTy == Check::CheckNext || CheckTy == Check::CheckSame || CheckTy == Check::CheckEmpty) && CheckStrings->empty()) { StringRef Type = CheckTy == Check::CheckNext ? "NEXT" : CheckTy == Check::CheckEmpty ? "EMPTY" : "SAME"; SM.PrintMessage(SMLoc::getFromPointer(UsedPrefixStart), SourceMgr::DK_Error, "found '" + UsedPrefix + "-" + Type + "' without previous '" + UsedPrefix + ": line"); return true; } // Handle CHECK-DAG/-NOT. if (CheckTy == Check::CheckDAG || CheckTy == Check::CheckNot) { DagNotMatches.push_back(P); continue; } // Okay, add the string we captured to the output vector and move on. CheckStrings->emplace_back(P, UsedPrefix, PatternLoc); std::swap(DagNotMatches, CheckStrings->back().DagNotStrings); DagNotMatches = ImplicitNegativeChecks; } // When there are no used prefixes we report an error except in the case that // no prefix is specified explicitly but -implicit-check-not is specified. if (!FoundUsedCheckPrefix && (ImplicitNegativeChecks.empty() || !Req.IsDefaultCheckPrefix)) { errs() << "error: no check strings found with prefix" << (Req.CheckPrefixes.size() > 1 ? "es " : " "); for (size_t I = 0, E = Req.CheckPrefixes.size(); I != E; ++I) { if (I != 0) errs() << ", "; errs() << "\'" << Req.CheckPrefixes[I] << ":'"; } errs() << '\n'; return true; } // Add an EOF pattern for any trailing --implicit-check-not/CHECK-DAG/-NOTs, // and use the first prefix as a filler for the error message. if (!DagNotMatches.empty()) { CheckStrings->emplace_back( Pattern(Check::CheckEOF, PatternContext.get(), LineNumber + 1), *Req.CheckPrefixes.begin(), SMLoc::getFromPointer(Buffer.data())); std::swap(DagNotMatches, CheckStrings->back().DagNotStrings); } return false; } static void PrintMatch(bool ExpectedMatch, const SourceMgr &SM, StringRef Prefix, SMLoc Loc, const Pattern &Pat, int MatchedCount, StringRef Buffer, size_t MatchPos, size_t MatchLen, const FileCheckRequest &Req, std::vector *Diags) { bool PrintDiag = true; if (ExpectedMatch) { if (!Req.Verbose) return; if (!Req.VerboseVerbose && Pat.getCheckTy() == Check::CheckEOF) return; // Due to their verbosity, we don't print verbose diagnostics here if we're // gathering them for a different rendering, but we always print other // diagnostics. PrintDiag = !Diags; } SMRange MatchRange = ProcessMatchResult( ExpectedMatch ? FileCheckDiag::MatchFoundAndExpected : FileCheckDiag::MatchFoundButExcluded, SM, Loc, Pat.getCheckTy(), Buffer, MatchPos, MatchLen, Diags); if (!PrintDiag) return; std::string Message = formatv("{0}: {1} string found in input", Pat.getCheckTy().getDescription(Prefix), (ExpectedMatch ? "expected" : "excluded")) .str(); if (Pat.getCount() > 1) Message += formatv(" ({0} out of {1})", MatchedCount, Pat.getCount()).str(); SM.PrintMessage( Loc, ExpectedMatch ? SourceMgr::DK_Remark : SourceMgr::DK_Error, Message); SM.PrintMessage(MatchRange.Start, SourceMgr::DK_Note, "found here", {MatchRange}); Pat.printSubstitutions(SM, Buffer, MatchRange); } static void PrintMatch(bool ExpectedMatch, const SourceMgr &SM, const FileCheckString &CheckStr, int MatchedCount, StringRef Buffer, size_t MatchPos, size_t MatchLen, FileCheckRequest &Req, std::vector *Diags) { PrintMatch(ExpectedMatch, SM, CheckStr.Prefix, CheckStr.Loc, CheckStr.Pat, MatchedCount, Buffer, MatchPos, MatchLen, Req, Diags); } static void PrintNoMatch(bool ExpectedMatch, const SourceMgr &SM, StringRef Prefix, SMLoc Loc, const Pattern &Pat, int MatchedCount, StringRef Buffer, bool VerboseVerbose, std::vector *Diags, Error MatchErrors) { assert(MatchErrors && "Called on successful match"); bool PrintDiag = true; if (!ExpectedMatch) { if (!VerboseVerbose) { consumeError(std::move(MatchErrors)); return; } // Due to their verbosity, we don't print verbose diagnostics here if we're // gathering them for a different rendering, but we always print other // diagnostics. PrintDiag = !Diags; } // If the current position is at the end of a line, advance to the start of // the next line. Buffer = Buffer.substr(Buffer.find_first_not_of(" \t\n\r")); SMRange SearchRange = ProcessMatchResult( ExpectedMatch ? FileCheckDiag::MatchNoneButExpected : FileCheckDiag::MatchNoneAndExcluded, SM, Loc, Pat.getCheckTy(), Buffer, 0, Buffer.size(), Diags); if (!PrintDiag) { consumeError(std::move(MatchErrors)); return; } MatchErrors = handleErrors(std::move(MatchErrors), [](const ErrorDiagnostic &E) { E.log(errs()); }); // No problem matching the string per se. if (!MatchErrors) return; consumeError(std::move(MatchErrors)); // Print "not found" diagnostic. std::string Message = formatv("{0}: {1} string not found in input", Pat.getCheckTy().getDescription(Prefix), (ExpectedMatch ? "expected" : "excluded")) .str(); if (Pat.getCount() > 1) Message += formatv(" ({0} out of {1})", MatchedCount, Pat.getCount()).str(); SM.PrintMessage( Loc, ExpectedMatch ? SourceMgr::DK_Error : SourceMgr::DK_Remark, Message); // Print the "scanning from here" line. SM.PrintMessage(SearchRange.Start, SourceMgr::DK_Note, "scanning from here"); // Allow the pattern to print additional information if desired. Pat.printSubstitutions(SM, Buffer); if (ExpectedMatch) Pat.printFuzzyMatch(SM, Buffer, Diags); } static void PrintNoMatch(bool ExpectedMatch, const SourceMgr &SM, const FileCheckString &CheckStr, int MatchedCount, StringRef Buffer, bool VerboseVerbose, std::vector *Diags, Error MatchErrors) { PrintNoMatch(ExpectedMatch, SM, CheckStr.Prefix, CheckStr.Loc, CheckStr.Pat, MatchedCount, Buffer, VerboseVerbose, Diags, std::move(MatchErrors)); } /// Counts the number of newlines in the specified range. static unsigned CountNumNewlinesBetween(StringRef Range, const char *&FirstNewLine) { unsigned NumNewLines = 0; while (1) { // Scan for newline. Range = Range.substr(Range.find_first_of("\n\r")); if (Range.empty()) return NumNewLines; ++NumNewLines; // Handle \n\r and \r\n as a single newline. if (Range.size() > 1 && (Range[1] == '\n' || Range[1] == '\r') && (Range[0] != Range[1])) Range = Range.substr(1); Range = Range.substr(1); if (NumNewLines == 1) FirstNewLine = Range.begin(); } } size_t FileCheckString::Check(const SourceMgr &SM, StringRef Buffer, bool IsLabelScanMode, size_t &MatchLen, FileCheckRequest &Req, std::vector *Diags) const { size_t LastPos = 0; std::vector NotStrings; // IsLabelScanMode is true when we are scanning forward to find CHECK-LABEL // bounds; we have not processed variable definitions within the bounded block // yet so cannot handle any final CHECK-DAG yet; this is handled when going // over the block again (including the last CHECK-LABEL) in normal mode. if (!IsLabelScanMode) { // Match "dag strings" (with mixed "not strings" if any). LastPos = CheckDag(SM, Buffer, NotStrings, Req, Diags); if (LastPos == StringRef::npos) return StringRef::npos; } // Match itself from the last position after matching CHECK-DAG. size_t LastMatchEnd = LastPos; size_t FirstMatchPos = 0; // Go match the pattern Count times. Majority of patterns only match with // count 1 though. assert(Pat.getCount() != 0 && "pattern count can not be zero"); for (int i = 1; i <= Pat.getCount(); i++) { StringRef MatchBuffer = Buffer.substr(LastMatchEnd); size_t CurrentMatchLen; // get a match at current start point Expected MatchResult = Pat.match(MatchBuffer, CurrentMatchLen, SM); // report if (!MatchResult) { PrintNoMatch(true, SM, *this, i, MatchBuffer, Req.VerboseVerbose, Diags, MatchResult.takeError()); return StringRef::npos; } size_t MatchPos = *MatchResult; PrintMatch(true, SM, *this, i, MatchBuffer, MatchPos, CurrentMatchLen, Req, Diags); if (i == 1) FirstMatchPos = LastPos + MatchPos; // move start point after the match LastMatchEnd += MatchPos + CurrentMatchLen; } // Full match len counts from first match pos. MatchLen = LastMatchEnd - FirstMatchPos; // Similar to the above, in "label-scan mode" we can't yet handle CHECK-NEXT // or CHECK-NOT if (!IsLabelScanMode) { size_t MatchPos = FirstMatchPos - LastPos; StringRef MatchBuffer = Buffer.substr(LastPos); StringRef SkippedRegion = Buffer.substr(LastPos, MatchPos); // If this check is a "CHECK-NEXT", verify that the previous match was on // the previous line (i.e. that there is one newline between them). if (CheckNext(SM, SkippedRegion)) { ProcessMatchResult(FileCheckDiag::MatchFoundButWrongLine, SM, Loc, Pat.getCheckTy(), MatchBuffer, MatchPos, MatchLen, Diags, Req.Verbose); return StringRef::npos; } // If this check is a "CHECK-SAME", verify that the previous match was on // the same line (i.e. that there is no newline between them). if (CheckSame(SM, SkippedRegion)) { ProcessMatchResult(FileCheckDiag::MatchFoundButWrongLine, SM, Loc, Pat.getCheckTy(), MatchBuffer, MatchPos, MatchLen, Diags, Req.Verbose); return StringRef::npos; } // If this match had "not strings", verify that they don't exist in the // skipped region. if (CheckNot(SM, SkippedRegion, NotStrings, Req, Diags)) return StringRef::npos; } return FirstMatchPos; } bool FileCheckString::CheckNext(const SourceMgr &SM, StringRef Buffer) const { if (Pat.getCheckTy() != Check::CheckNext && Pat.getCheckTy() != Check::CheckEmpty) return false; Twine CheckName = Prefix + Twine(Pat.getCheckTy() == Check::CheckEmpty ? "-EMPTY" : "-NEXT"); // Count the number of newlines between the previous match and this one. const char *FirstNewLine = nullptr; unsigned NumNewLines = CountNumNewlinesBetween(Buffer, FirstNewLine); if (NumNewLines == 0) { SM.PrintMessage(Loc, SourceMgr::DK_Error, CheckName + ": is on the same line as previous match"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.end()), SourceMgr::DK_Note, "'next' match was here"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), SourceMgr::DK_Note, "previous match ended here"); return true; } if (NumNewLines != 1) { SM.PrintMessage(Loc, SourceMgr::DK_Error, CheckName + ": is not on the line after the previous match"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.end()), SourceMgr::DK_Note, "'next' match was here"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), SourceMgr::DK_Note, "previous match ended here"); SM.PrintMessage(SMLoc::getFromPointer(FirstNewLine), SourceMgr::DK_Note, "non-matching line after previous match is here"); return true; } return false; } bool FileCheckString::CheckSame(const SourceMgr &SM, StringRef Buffer) const { if (Pat.getCheckTy() != Check::CheckSame) return false; // Count the number of newlines between the previous match and this one. const char *FirstNewLine = nullptr; unsigned NumNewLines = CountNumNewlinesBetween(Buffer, FirstNewLine); if (NumNewLines != 0) { SM.PrintMessage(Loc, SourceMgr::DK_Error, Prefix + "-SAME: is not on the same line as the previous match"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.end()), SourceMgr::DK_Note, "'next' match was here"); SM.PrintMessage(SMLoc::getFromPointer(Buffer.data()), SourceMgr::DK_Note, "previous match ended here"); return true; } return false; } bool FileCheckString::CheckNot(const SourceMgr &SM, StringRef Buffer, const std::vector &NotStrings, const FileCheckRequest &Req, std::vector *Diags) const { for (const Pattern *Pat : NotStrings) { assert((Pat->getCheckTy() == Check::CheckNot) && "Expect CHECK-NOT!"); size_t MatchLen = 0; Expected MatchResult = Pat->match(Buffer, MatchLen, SM); if (!MatchResult) { PrintNoMatch(false, SM, Prefix, Pat->getLoc(), *Pat, 1, Buffer, Req.VerboseVerbose, Diags, MatchResult.takeError()); continue; } size_t Pos = *MatchResult; PrintMatch(false, SM, Prefix, Pat->getLoc(), *Pat, 1, Buffer, Pos, MatchLen, Req, Diags); return true; } return false; } size_t FileCheckString::CheckDag(const SourceMgr &SM, StringRef Buffer, std::vector &NotStrings, const FileCheckRequest &Req, std::vector *Diags) const { if (DagNotStrings.empty()) return 0; // The start of the search range. size_t StartPos = 0; struct MatchRange { size_t Pos; size_t End; }; // A sorted list of ranges for non-overlapping CHECK-DAG matches. Match // ranges are erased from this list once they are no longer in the search // range. std::list MatchRanges; // We need PatItr and PatEnd later for detecting the end of a CHECK-DAG // group, so we don't use a range-based for loop here. for (auto PatItr = DagNotStrings.begin(), PatEnd = DagNotStrings.end(); PatItr != PatEnd; ++PatItr) { const Pattern &Pat = *PatItr; assert((Pat.getCheckTy() == Check::CheckDAG || Pat.getCheckTy() == Check::CheckNot) && "Invalid CHECK-DAG or CHECK-NOT!"); if (Pat.getCheckTy() == Check::CheckNot) { NotStrings.push_back(&Pat); continue; } assert((Pat.getCheckTy() == Check::CheckDAG) && "Expect CHECK-DAG!"); // CHECK-DAG always matches from the start. size_t MatchLen = 0, MatchPos = StartPos; // Search for a match that doesn't overlap a previous match in this // CHECK-DAG group. for (auto MI = MatchRanges.begin(), ME = MatchRanges.end(); true; ++MI) { StringRef MatchBuffer = Buffer.substr(MatchPos); Expected MatchResult = Pat.match(MatchBuffer, MatchLen, SM); // With a group of CHECK-DAGs, a single mismatching means the match on // that group of CHECK-DAGs fails immediately. if (!MatchResult) { PrintNoMatch(true, SM, Prefix, Pat.getLoc(), Pat, 1, MatchBuffer, Req.VerboseVerbose, Diags, MatchResult.takeError()); return StringRef::npos; } size_t MatchPosBuf = *MatchResult; // Re-calc it as the offset relative to the start of the original string. MatchPos += MatchPosBuf; if (Req.VerboseVerbose) PrintMatch(true, SM, Prefix, Pat.getLoc(), Pat, 1, Buffer, MatchPos, MatchLen, Req, Diags); MatchRange M{MatchPos, MatchPos + MatchLen}; if (Req.AllowDeprecatedDagOverlap) { // We don't need to track all matches in this mode, so we just maintain // one match range that encompasses the current CHECK-DAG group's // matches. if (MatchRanges.empty()) MatchRanges.insert(MatchRanges.end(), M); else { auto Block = MatchRanges.begin(); Block->Pos = std::min(Block->Pos, M.Pos); Block->End = std::max(Block->End, M.End); } break; } // Iterate previous matches until overlapping match or insertion point. bool Overlap = false; for (; MI != ME; ++MI) { if (M.Pos < MI->End) { // !Overlap => New match has no overlap and is before this old match. // Overlap => New match overlaps this old match. Overlap = MI->Pos < M.End; break; } } if (!Overlap) { // Insert non-overlapping match into list. MatchRanges.insert(MI, M); break; } if (Req.VerboseVerbose) { // Due to their verbosity, we don't print verbose diagnostics here if // we're gathering them for a different rendering, but we always print // other diagnostics. if (!Diags) { SMLoc OldStart = SMLoc::getFromPointer(Buffer.data() + MI->Pos); SMLoc OldEnd = SMLoc::getFromPointer(Buffer.data() + MI->End); SMRange OldRange(OldStart, OldEnd); SM.PrintMessage(OldStart, SourceMgr::DK_Note, "match discarded, overlaps earlier DAG match here", {OldRange}); } else Diags->rbegin()->MatchTy = FileCheckDiag::MatchFoundButDiscarded; } MatchPos = MI->End; } if (!Req.VerboseVerbose) PrintMatch(true, SM, Prefix, Pat.getLoc(), Pat, 1, Buffer, MatchPos, MatchLen, Req, Diags); // Handle the end of a CHECK-DAG group. if (std::next(PatItr) == PatEnd || std::next(PatItr)->getCheckTy() == Check::CheckNot) { if (!NotStrings.empty()) { // If there are CHECK-NOTs between two CHECK-DAGs or from CHECK to // CHECK-DAG, verify that there are no 'not' strings occurred in that // region. StringRef SkippedRegion = Buffer.slice(StartPos, MatchRanges.begin()->Pos); if (CheckNot(SM, SkippedRegion, NotStrings, Req, Diags)) return StringRef::npos; // Clear "not strings". NotStrings.clear(); } // All subsequent CHECK-DAGs and CHECK-NOTs should be matched from the // end of this CHECK-DAG group's match range. StartPos = MatchRanges.rbegin()->End; // Don't waste time checking for (impossible) overlaps before that. MatchRanges.clear(); } } return StartPos; } static bool ValidatePrefixes(StringRef Kind, StringSet<> &UniquePrefixes, ArrayRef SuppliedPrefixes) { for (StringRef Prefix : SuppliedPrefixes) { if (Prefix.empty()) { errs() << "error: supplied " << Kind << " prefix must not be the empty " << "string\n"; return false; } static const Regex Validator("^[a-zA-Z0-9_-]*$"); if (!Validator.match(Prefix)) { errs() << "error: supplied " << Kind << " prefix must start with a " << "letter and contain only alphanumeric characters, hyphens, and " << "underscores: '" << Prefix << "'\n"; return false; } if (!UniquePrefixes.insert(Prefix).second) { errs() << "error: supplied " << Kind << " prefix must be unique among " << "check and comment prefixes: '" << Prefix << "'\n"; return false; } } return true; } static const char *DefaultCheckPrefixes[] = {"CHECK"}; static const char *DefaultCommentPrefixes[] = {"COM", "RUN"}; bool FileCheck::ValidateCheckPrefixes() { StringSet<> UniquePrefixes; // Add default prefixes to catch user-supplied duplicates of them below. if (Req.CheckPrefixes.empty()) { for (const char *Prefix : DefaultCheckPrefixes) UniquePrefixes.insert(Prefix); } if (Req.CommentPrefixes.empty()) { for (const char *Prefix : DefaultCommentPrefixes) UniquePrefixes.insert(Prefix); } // Do not validate the default prefixes, or diagnostics about duplicates might // incorrectly indicate that they were supplied by the user. if (!ValidatePrefixes("check", UniquePrefixes, Req.CheckPrefixes)) return false; if (!ValidatePrefixes("comment", UniquePrefixes, Req.CommentPrefixes)) return false; return true; } Regex FileCheck::buildCheckPrefixRegex() { if (Req.CheckPrefixes.empty()) { for (const char *Prefix : DefaultCheckPrefixes) Req.CheckPrefixes.push_back(Prefix); Req.IsDefaultCheckPrefix = true; } if (Req.CommentPrefixes.empty()) { for (const char *Prefix : DefaultCommentPrefixes) Req.CommentPrefixes.push_back(Prefix); } // We already validated the contents of CheckPrefixes and CommentPrefixes so // just concatenate them as alternatives. SmallString<32> PrefixRegexStr; for (size_t I = 0, E = Req.CheckPrefixes.size(); I != E; ++I) { if (I != 0) PrefixRegexStr.push_back('|'); PrefixRegexStr.append(Req.CheckPrefixes[I]); } for (StringRef Prefix : Req.CommentPrefixes) { PrefixRegexStr.push_back('|'); PrefixRegexStr.append(Prefix); } return Regex(PrefixRegexStr); } Error FileCheckPatternContext::defineCmdlineVariables( ArrayRef CmdlineDefines, SourceMgr &SM) { assert(GlobalVariableTable.empty() && GlobalNumericVariableTable.empty() && "Overriding defined variable with command-line variable definitions"); if (CmdlineDefines.empty()) return Error::success(); // Create a string representing the vector of command-line definitions. Each // definition is on its own line and prefixed with a definition number to // clarify which definition a given diagnostic corresponds to. unsigned I = 0; Error Errs = Error::success(); std::string CmdlineDefsDiag; SmallVector, 4> CmdlineDefsIndices; for (StringRef CmdlineDef : CmdlineDefines) { std::string DefPrefix = ("Global define #" + Twine(++I) + ": ").str(); size_t EqIdx = CmdlineDef.find('='); if (EqIdx == StringRef::npos) { CmdlineDefsIndices.push_back(std::make_pair(CmdlineDefsDiag.size(), 0)); continue; } // Numeric variable definition. if (CmdlineDef[0] == '#') { // Append a copy of the command-line definition adapted to use the same // format as in the input file to be able to reuse // parseNumericSubstitutionBlock. CmdlineDefsDiag += (DefPrefix + CmdlineDef + " (parsed as: [[").str(); std::string SubstitutionStr = std::string(CmdlineDef); SubstitutionStr[EqIdx] = ':'; CmdlineDefsIndices.push_back( std::make_pair(CmdlineDefsDiag.size(), SubstitutionStr.size())); CmdlineDefsDiag += (SubstitutionStr + Twine("]])\n")).str(); } else { CmdlineDefsDiag += DefPrefix; CmdlineDefsIndices.push_back( std::make_pair(CmdlineDefsDiag.size(), CmdlineDef.size())); CmdlineDefsDiag += (CmdlineDef + "\n").str(); } } // Create a buffer with fake command line content in order to display // parsing diagnostic with location information and point to the // global definition with invalid syntax. std::unique_ptr CmdLineDefsDiagBuffer = MemoryBuffer::getMemBufferCopy(CmdlineDefsDiag, "Global defines"); StringRef CmdlineDefsDiagRef = CmdLineDefsDiagBuffer->getBuffer(); SM.AddNewSourceBuffer(std::move(CmdLineDefsDiagBuffer), SMLoc()); for (std::pair CmdlineDefIndices : CmdlineDefsIndices) { StringRef CmdlineDef = CmdlineDefsDiagRef.substr(CmdlineDefIndices.first, CmdlineDefIndices.second); if (CmdlineDef.empty()) { Errs = joinErrors( std::move(Errs), ErrorDiagnostic::get(SM, CmdlineDef, "missing equal sign in global definition")); continue; } // Numeric variable definition. if (CmdlineDef[0] == '#') { // Now parse the definition both to check that the syntax is correct and // to create the necessary class instance. StringRef CmdlineDefExpr = CmdlineDef.substr(1); Optional DefinedNumericVariable; Expected> ExpressionResult = Pattern::parseNumericSubstitutionBlock( CmdlineDefExpr, DefinedNumericVariable, false, None, this, SM); if (!ExpressionResult) { Errs = joinErrors(std::move(Errs), ExpressionResult.takeError()); continue; } std::unique_ptr Expression = std::move(*ExpressionResult); // Now evaluate the expression whose value this variable should be set // to, since the expression of a command-line variable definition should // only use variables defined earlier on the command-line. If not, this // is an error and we report it. Expected Value = Expression->getAST()->eval(); if (!Value) { Errs = joinErrors(std::move(Errs), Value.takeError()); continue; } assert(DefinedNumericVariable && "No variable defined"); (*DefinedNumericVariable)->setValue(*Value); // Record this variable definition. GlobalNumericVariableTable[(*DefinedNumericVariable)->getName()] = *DefinedNumericVariable; } else { // String variable definition. std::pair CmdlineNameVal = CmdlineDef.split('='); StringRef CmdlineName = CmdlineNameVal.first; StringRef OrigCmdlineName = CmdlineName; Expected ParseVarResult = Pattern::parseVariable(CmdlineName, SM); if (!ParseVarResult) { Errs = joinErrors(std::move(Errs), ParseVarResult.takeError()); continue; } // Check that CmdlineName does not denote a pseudo variable is only // composed of the parsed numeric variable. This catches cases like // "FOO+2" in a "FOO+2=10" definition. if (ParseVarResult->IsPseudo || !CmdlineName.empty()) { Errs = joinErrors(std::move(Errs), ErrorDiagnostic::get( SM, OrigCmdlineName, "invalid name in string variable definition '" + OrigCmdlineName + "'")); continue; } StringRef Name = ParseVarResult->Name; // Detect collisions between string and numeric variables when the former // is created later than the latter. if (GlobalNumericVariableTable.find(Name) != GlobalNumericVariableTable.end()) { Errs = joinErrors(std::move(Errs), ErrorDiagnostic::get(SM, Name, "numeric variable with name '" + Name + "' already exists")); continue; } GlobalVariableTable.insert(CmdlineNameVal); // Mark the string variable as defined to detect collisions between // string and numeric variables in defineCmdlineVariables when the latter // is created later than the former. We cannot reuse GlobalVariableTable // for this by populating it with an empty string since we would then // lose the ability to detect the use of an undefined variable in // match(). DefinedVariableTable[Name] = true; } } return Errs; } void FileCheckPatternContext::clearLocalVars() { SmallVector LocalPatternVars, LocalNumericVars; for (const StringMapEntry &Var : GlobalVariableTable) if (Var.first()[0] != '$') LocalPatternVars.push_back(Var.first()); // Numeric substitution reads the value of a variable directly, not via // GlobalNumericVariableTable. Therefore, we clear local variables by // clearing their value which will lead to a numeric substitution failure. We // also mark the variable for removal from GlobalNumericVariableTable since // this is what defineCmdlineVariables checks to decide that no global // variable has been defined. for (const auto &Var : GlobalNumericVariableTable) if (Var.first()[0] != '$') { Var.getValue()->clearValue(); LocalNumericVars.push_back(Var.first()); } for (const auto &Var : LocalPatternVars) GlobalVariableTable.erase(Var); for (const auto &Var : LocalNumericVars) GlobalNumericVariableTable.erase(Var); } bool FileCheck::checkInput(SourceMgr &SM, StringRef Buffer, std::vector *Diags) { bool ChecksFailed = false; unsigned i = 0, j = 0, e = CheckStrings->size(); while (true) { StringRef CheckRegion; if (j == e) { CheckRegion = Buffer; } else { const FileCheckString &CheckLabelStr = (*CheckStrings)[j]; if (CheckLabelStr.Pat.getCheckTy() != Check::CheckLabel) { ++j; continue; } // Scan to next CHECK-LABEL match, ignoring CHECK-NOT and CHECK-DAG size_t MatchLabelLen = 0; size_t MatchLabelPos = CheckLabelStr.Check(SM, Buffer, true, MatchLabelLen, Req, Diags); if (MatchLabelPos == StringRef::npos) // Immediately bail if CHECK-LABEL fails, nothing else we can do. return false; CheckRegion = Buffer.substr(0, MatchLabelPos + MatchLabelLen); Buffer = Buffer.substr(MatchLabelPos + MatchLabelLen); ++j; } // Do not clear the first region as it's the one before the first // CHECK-LABEL and it would clear variables defined on the command-line // before they get used. if (i != 0 && Req.EnableVarScope) PatternContext->clearLocalVars(); for (; i != j; ++i) { const FileCheckString &CheckStr = (*CheckStrings)[i]; // Check each string within the scanned region, including a second check // of any final CHECK-LABEL (to verify CHECK-NOT and CHECK-DAG) size_t MatchLen = 0; size_t MatchPos = CheckStr.Check(SM, CheckRegion, false, MatchLen, Req, Diags); if (MatchPos == StringRef::npos) { ChecksFailed = true; i = j; break; } CheckRegion = CheckRegion.substr(MatchPos + MatchLen); } if (j == e) break; } // Success if no checks failed. return !ChecksFailed; }